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Abstract
Until either efficacious therapy or vaccination for COVID-19 is achieved, there will be a need to regain world economic stability
while yet controlling the pandemic with current approaches. For those infected thus far, there is a prevailing perspective that
devising recognition for protective immunity will progressively allow segments of society to return to some functionality more
than is existing. At this time, the best correlates with protection from natural coronavirus infections are systemic neutralizing
antibody and mucosal IgA. Serum neutralizing antibody more easily fulfills the latter requisite, but current live virus methods for
neutralization prevent large-scale application. It is conceivable that the exposure of previously infected individuals can allow for
the definition of protective thresholds of neutralizing antibody. Thereafter, many other antibody assays will be able to screen for
surrogate protection after correlations with protective neutralizing antibody are made. Specificity of common antibody tests
would benefit from confirmatory blocking systems or confirmatory immunoblotting fingerprints with well-defined antigen(s).
The opportunity for the scientific community to make these assessments is evident in the current context of the COVID-19
epidemic given the large numbers of infected individuals worldwide. Such information will also be vital to guide vaccine
development and/or immunotherapy.
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Introduction

The clinical burden of COVID-19 in the current pandemic is
undoubtedly considerable, but the socioeconomic burden
must equally weigh in determining how the world will move
forward until either an effective chemotherapy and/or vaccine
is devised [1]. Pending that such success in treatment and/or
prevention are achieved, the continuous or relapsing lock-
down of societies and hence economies has the potential to
cause more damage than may be initially apparent [2]. Indeed,
it could be prognosticated that the relative economic stand-
still may cause more damage to humanity than the disease
itself. Many countries have attempted to partially restore

pre-pandemic functions only to experience yet second
waves of increasing infections during July and August,
2020. To some, the answer may be to tolerate the expecta-
tions of herd immunity with lesser in the way of resistance
to infection spread [3, 4]. To others at the other end of the
spectrum, a more cautious approach has been to create the
best environment for disease prevention while patching
holes for or propping up failures in the economy as they
appear [3]. Somewhere in the midst of this maelstrom, there
will need to be practical strategies for achieving success
with both the pandemic and the economies simultaneously.
Contexts of disease and economy will no doubt vary along
a spectrum and may require somewhat different approaches
in their detail.

In this review, a minimalist strategy is proposed to in part
provide some solutions towards regaining economic focus
while preventing disease. These steps are a modest beginning
from the perspective of devising recognition for protective
immunity that will progressively allow segments of society
to proceed with their lives as they once were or nearly so.
Such a strategy will thereafter be enhanced as treatment or
vaccine developments arise.
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Provisional Acceptance of What Constitutes
Immunity

Studies with passive immunity are highly suggestive that
antibody has a significant role in protection of coronavirus
infection [5–12]. The latter includes passive administra-
tion of anti-SARS-CoV-2 human monoclonal antibody in
animal systems [13]. These findings are critical to our
theme since direct antibody in some way may be used as
the correlate with neutralization if not directly then by
association. Therefore, the prospects of finding a serolog-
ical assay based on antibody detection that defines in some
way neutralization and then after disease prevention are
considerable.

Infection with coronaviruses generally protects against re-
infection [12, 14–22]. Analogous to the role of passive immu-
nity, pre-existing immunity can potentially be defined with the
right measures.

Both parenteral neutralizing antibody and secretory IgA
(sIgA) are associated with protection in model systems [14,
15, 23–27]. sIgA has logistical problems with collection and
analysis, although technological advances are quite likely ca-
pable of overcoming the latter. Therefore and in the interim,
serum neutralizing antibody measurements will generally be
applied as the standard, and other correlates of the latter could
be put into common use.

For MERS, mild infection was associated with de-
creased antibody levels [28–30]. Severe infections are as-
sociated with long-lived neutralizing antibody. Increased
neutralizing antibody is associated with decreased viral
shedding, but there have not been enough natural infec-
tions to allow for study and analysis of natural protection
as would be desirable. Likewise for SARS, field studies
for the practical protective effects of neutralizing antibody
could not be studied due to the short-lived spread of the
virus.

In studies for SARS-CoV-2, of over 700 control sera from
uninfected patients, no neutralizing antibodies were found
[31]. Severe disease was associated with earlier generation of
anti-SARS-CoV-2 antibody, and peak neutralizing antibody
was measured at approximately 2 ½ weeks. Stereotypic anti-
body responses to SARS-CoV-2 led to hypotheses that there
should be cross-reactivity with SARS-CoV in the constant
RBD [32]. In both humans and animals, such cross-reactivity
was suspected to be due to non-neutralizing anti-S antibody
again likely relating to a conserved region [33]. Cross-
neutralization was however uncommon, but conceivably there
could be other reasons for any such non-specificity [34–36].
Among humans, S-specific antibody dominates and may cor-
relate better with neutralization [34, 35, 37]. Furthermore, the
correlation between antibodies for different antigens (e.g., S
and N proteins) may not be as initially conceived [35, 38].
Human monoclonal antibodies that neutralize virus or

pseudovirus especially recognized the RBD [39].
Collaborative groups have found a strong association between
neutralizing antibodies and IgG antibodies to the RBD [36,
40]. Others have found strong correlations between neutraliz-
ing antibodies and EIA-detected antibodies to various
SARS-CoV-2 antigens [41, 42].Some have found diversity
in immune responses contingent on the nature of presenting
disease [38, 43]. The latter would be consistent with the
variable antibody responses now determined for the spec-
trum of pediatric disease [44]. For EIA-based antibody
studies otherwise, we have learned so far that the type and
severity of disease and age may have bearing on the quality
and quantity of antibody responses [34, 45–48]. Gender
may also possibly affect antibody responses or other rele-
vant immune responses [34, 49].

Does neutralization antibody ensure protection? At this
time, we can reasonably conclude that the existence of
neutralizing antibody and its quantitation associate with
protection against coronavirus infections. What we cannot
do, however, is guarantee that the presence of all such
neutralizing antibody, as measured by conventional live
virus neutralization methods in vitro, will ensure protec-
tion. That is, laboratory methods measure neutralization as
so defined but not protection directly. Therefore, it can be
held that not all neutralization methods duly measure the
same effect that leads to that neutralization outcome [50].
In essence, what creates an in vitro neutralization may or
may not truly block viral entry, prevent intracellular
events, or ameliorate disease. One potential and theoretical
approach to vetting sera that have a higher likelihood of
indication for protection is to choose those with higher
neutralizing titres.

There are several limitations with the application of neu-
tralization as a surrogate for protection [25, 51]. Infections
with coronaviruses do not always lead to a major increase
in such antibody. Previously acquired antibody is not al-
ways protective for subsequent infection, but low levels of
antibody better correlate with susceptibility. Resistance is
best to the homologous coronavirus, but susceptibility can
be had to heterologous strains. There is also the prospect
that subsequent changes in viral genome may be accompa-
nied by changes in epitopes that afford neutralization with
an accompanying change in neutralization capacity of
post-infection or post-vaccination sera [52]. The latter
could be the prelude to neutralization escape mutants
should they occur [53]. The latter may also be the prelude
to emerging reports of possible SARS-CoV-2 repeat infec-
tions [54].

The traditional approach to determining antibody re-
sponses is likely to dominate the search for protective immu-
nity, but due consideration and open-mindedness should be
maintained for measuring T cell post-infection immunity and
its correlates [55–58].
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The Need for Blocking Tests or Fingerprints
in Confirmatory COVID-19 Seroepidemiology

With the availability of viral antigen, most scientists in the
know-how would be able to fashion a test for antibody deter-
mination in short order and most would likely choose an en-
zyme immunoassay (EIA) (or nearly equivalent non-enzyme-
based assay) for its potential of automation and widespread
use. The latter is especially likely in the current context where
a majority of serodiagnostic tests are of that methodology. The
expeditious derivation of an EIA or equivalent is a common
goal when serodiagnosis is deemed to be of potential value.
Whereas the creation of an EIA is seemingly a relatively easy
task, the application of any such is where the test of the matter
lies. Historically, whether for antibody or antigen detection,
EIA approaches had a number of pitfalls that were repetitively
realized for nearly every such system that was subsequently
developed [59, 60]. As would naturally be desirable, an assay
with very high sensitivity at the appropriate timing is one
evident target. Furthermore, an assay with a highly specific
result is another evident target. The reality of serodiagnostic
systems, however, is that there is generally a gray or indeter-
minate zone where sensitivity and specificity collide [60].
There is an intersection of true positive results and false pos-
itive results more or less in almost every system with few
exceptions. For whatever maneuver is conceived to diminish
that overlap, EIA or an equivalent for antibody detection can
be modulated to enhance predictive values in one direction or
another, but commonly realizing that there will be a trade-off.

The application of a serodiagnostic assay for antibody post-
infection or vaccine is furthermore complicated in its evaluation.
Typically, a standard set of known or presumed “negative” sera
are tested as is a standard set of known or presumed “positive”
sera. Many such analyses, however, do not thereafter assess the
assay in the context of the working world prospectively. The
jeopardy here is that the prevalence of true disease in the popu-
lation of patients from whom sera are acquired can vary consid-
erably. There is an inherent bias in such assessments to ensure
that the tested serum pool has a considerable number of true
positive samples. Biases in this regard can be greater than those
engendered by convenience sampling [61, 62]. Given the func-
tionality of these assays, the predictive values of positive or
negative tests vary considerably depending on the prevalence
of the infection in the population so studied [63]. For example,
even for a given high sensitivity and specificity, a reduction in
prevalence from 30 to 3% can lead to a situation where the false
positive assays nearly equal the number of true positive assays.
The latter scenario can occur when assessments are performed
on preselected sera rather than on sera from patients prospec-
tively collected in a larger population. Therefore, unless there is
considerably widespread infection leading to a proportionately
high seroprevalence, serodiagnostic tests will likely suffer with

their predictive values. How would this dilemma then be poten-
tially overcome?

One such approach to improving specificity would be to
conduct blocking assays (direct or competitive) for positive
sera in order to reduce the number of false positive tests [64].
This is a time-honored approach that is often forgotten when
new serodiagnostic assays are initially created. The approach
was also germane to some antigen detection EIA versions.
Effectively, the specificity is enhanced when it can be shown
that the antigen of choice significantly reduces the assay quan-
titation after absorption. The implementation of a blocking
step can be entered into an automated procedure in tandem
from the start or may be performed as a confirmatory test. The
latter is especially suited to a scenario where the proportion of
positive tests is low. The simplicity of a blocking test man-
dates only a brief turnaround time if it is performed in an
algorithmic second step. There may be various approaches
to the definition of antigen used in the blocking test, but it
would be best in the inaugural stages to choose antigen(s) that
are deemed inherent to the neutralization effects seen in post-
infectious sera. Although it could prove that one antigen, e.g.,
RBD or spike protein sequence otherwise, may alone suffice,
pilot studies would be better to work backwards after estab-
lishing the antigen-neutralization correlates as described
above. Purity of the blocking antigen is essential to avoid
non-specific competition of non-viral elements if virus is ac-
quired from tissue cultures. Another approach to a blocking
assay would be the competition between antibody in the hu-
man serum specimen and a known monoclonal antibody with
affinity to SARS-CoV-2. Choice of a specific monoclonal
antibody, or several for this purpose, requires specific charac-
terization. There are many commercial assays for SARS-
CoV-2 antibody that have emerged, but for a survey sample
of several so assessed thus far, none has blocking assays as
potentially part of the procedure [65–71]. Developmental as-
says also commonly do not include blocking assays [72–74].
IgM assays are particularly an issue with non-specificity since
apparent IgM rises may relate in part to solid phase (e.g.,
polystyrene) absorption or non-specific IgM antibody (e.g.,
rheumatoid factor). Of note, early reports have now emerged
of blocking assay variations for systems relating to either
MERS-CoV or SARS-CoV-2 [75–77].

As suggested above, antigen detection can also suffer from
non-specificity, and this dilemma has now been found in some
systems [78–80]. Again, a blocking assay in any such config-
uration for antigen detection has potential to resolve this crit-
ical issue especially when raising the threshold for the en-
hancement of sensitivity is being considered.

A second approach, alone or alongside an EIA-blocking
assay, could be immunoblotting. Again, it could prove that
one antigen substrate may suffice, but it would be prudent to
work backwards after establishing the antigen-neutralization
correlates. As experienced pointedly with Lyme disease or
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HIV infections, the immunoblot response can be considerably
variable, but a confirmatory fingerprint or several fingerprints
can be defined as minimal diagnostic thresholds. A higher
threshold stringency can enhance serodiagnostic specificity.
Guan and others provided some key insights in this regard
with SARS-CoV immunoblotting, and it is only highly prob-
able that similar findings will be had with SARS-CoV-2 [81].
Not all antigens identified in immunoblotting may have func-
tions in neutralization, and likewise, there may be more anti-
gens that are capable of inducing neutralization than are iden-
tified by resolving antigens in denaturing electrophoresis pro-
cedures [50]. Given advances as detailed by Olvera et al. and
several others, the fingerprint patterns could also conceivably
be assessed with peptide sets rather than larger antigens which
may bear non-specific epitopes [50, 81, 82]. The protein
micro-array concept bears relevance to the ingenuity of how
a complex recognition pattern could occur and be thereafter
automated [82, 83]. Furthermore, we should not restrict our-
selves to common antigens that are currently thought relevant
since novel key antigens may yet arise [55].

If serological methods of choice later prove to be a surro-
gate for infectious virus neutralization, e.g., viral
pseudoparticles, blocking test components can also be built
into those processes [84–88]. The latter approaches too are
capable of automation design or large batch processing. If
conventional neutralization assays yield titres in lower dilu-
tion than pseudotype virus neutralization assays (e.g., S
protein-bearing pseudoviruses with murine leukemia virus),
the latter may set higher thresholds as the correlation dictates
[89].

Setting Safe Thresholds for Protective
Immunity

If neutralizing antibody correlates with protection, is there a
threshold at which the prediction can be confident? Whereas
there are no guarantees, if the presence of neutralizing anti-
body correlates with protection, it can be reasonably hypoth-
esized that more protection correlates with higher titres. Such
a hypothesis is easily testable in the current pandemic given
preliminary consensus for the type of neutralization assay to
be used. It is proposed that the 1:32–1:40 standard of conven-
tional neutralizing antibody be used as the minimal threshold
in inaugural studies. The threshold could be raised or lowered
depending on the outcome of field assessments. Prospective
follow-up of study subjects with the established minimum
neutralizing antibody and its potential change in titre and/or
protection would be determinable over time.

There is then a role for other measures of antibody there-
after. As the initial neutralizing antibody threshold for protec-
tion is established, correlates with other tests as surrogates can
then begin. In the latter, it would also be best to choose higher

thresholds of positivity rather than any positive test per se.
Such thresholds could thereafter vary pending correlations
that become apparent. Such an approach provides an abun-
dance of precaution rather than the converse.

The Acid Tests of Assessing a Strategy

The test of a minimalist strategy and thereafter its refinement
is currently feasible in the milieu of the current pandemic.
Given the magnitude of infected individuals throughout the
world, the numbers required to test for protection could be
easily acquired from a multi-centered approach with highly
endemic foci or with even a regional study again in a highly
endemic area. There will be concern in allowing previously
infected, neutralizing antibody-positive individuals to be nat-
urally exposed once again in the community, but such an
approach has little difference to the broad testing of candidate
vaccines. Indeed, the answers may come sooner than the an-
swers of whether vaccine candidates will succeed.

Infection exposures in the community for those previously
infected with or without such antibodymarkers will also slow-
ly answer other questions relating to those with low level
neutralizing antibody (e.g., below threshold), those that do
not have any measurable antibody, anamnestic responses,
and susceptibility to changing virus.

Furthermore, the minimalist strategy will potentially set the
goal posts for vaccine evaluations.

Translational Case Studies and their
Implications

Reports of repeat SARS-CoV-2 infections have already begun
to emerge as the pandemic continues [54, 90–92].
Undoubtedly, much more similar information will be collated
anecdotally or in larger series and observations. An analysis of
these is relevant in considering any minimalist strategy.

Gousseff et al. present a case series of healthcare workers
and community patients who appeared to have a relapsing
pattern of COVID-19 [90]. The establishment of re-infection
within such a short period of time is tenuous at best. Early and
later positive diagnostic samples could be assessed with viral
sequencing. Serological profiling with both IgG and IgM and
correlation with viral neutralization are additional tools of in-
terest. The persistence of viral genome after acute infection,
and as determined with genetic amplification technology, is
well-known and can be measured in weeks. Accordingly,
comparison of diagnostic cycle thresholds can be of value as
was done. Co-determination of other pathogens, especially
viral for co-infection, is essential. That some patients may
clinically relapse with a complicating respiratory illness after
an initial non-complicated illness is in keeping with many
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other respiratory infections. Viral culture to confirm live virus
provides an additional step in confirmation but evidently is
difficult to achieve without support from reference level 3
laboratories. As the authors suggest, are these examples sim-
ply ones of persistence or re-infection?

Bentivegna et al. describe a 69-year female with possible
re-infection in which repeat RT-PCR positive samples of the
respiratory tract were obtained in the context of four negative
samples in between over a 6–7-week period [91].
Immunoglobulin G serology was reactive on each occasion.
IgM serology was reactive only late in the second putative
infection. Blocking assays for the second serology could have
potential use if devised. Neutralization tests would have been
of value to correlate with putative protection. An established
fingerprint of immunoblotting if devised could be sought for
in both early and later blood samples to further characterize
the quality of immune reactivity. This case report emphasizes
the role for a better understanding of applicable diagnostic and
confirmatory serology.

Tomassini et al. highlight a case series of six patients who
were possibly re-infected [92]. IgM serology, blocking for
IgG serology, neutralization correlates, and comparison of
diagnostic Ct values all have their potential merit.

To and colleagues describe a repeat infection in a 33-year
male in which two distinct isolates were believed to have been
identified by whole-genome sequencing [54]. The episodes
occurred some 5 months apart. Measurable IgG was not de-
tected within 10 days of the first episode. IgM diagnostics,
blocking for IgG serology, and neutralization correlates all
have their potential merit. The authors initiate relevant dialog
about the relevance of genetic drift and possible re-infection.

Van Elslande et al. provide some evidence for a repeat
infection after a 3-month interval [93]. A comparison of diag-
nostic samples suggested repeat infection with phylogeneti-
cally distinct strain detections. Diagnostic serology with
blocking studies, neutralization correlates, and comparison
of diagnostic Ct value all have their potential merit. These
authors repeat the theme on genetic drift and its implications.

In any of the aforementioned, sample collection and recol-
lection validation shortly after the initial diagnostic specimen
test positive can also contribute to overall accuracy of deter-
mining re-infections.

Interim Fidelity to Practical Preventions

While such an approach to defining protective immunity in
the interim reaches our goals if that is possible, the otherwise
sensible approaches to disease prevention should continue to
be enforced. Given the current evidence on person–person
direct transmission, person–person aerosol transmission, and
environment–person indirect transmission, adherence to the
basic principles of abrogating infection spread should be

maintained as is practical. Facets of physical distancing, ap-
propriate decontamination and disinfection, and context-
appropriate use of masking all have their roles in minimizing
risk. It will be the study populations where some of these
preventions may be less stringent in order to test the hypoth-
eses of natural protection after infection or vaccine prevention.
Nevertheless, if we do define a highly probable and preventa-
tive serodiagnostic correlation, the modes of prevention may
eventually be seen in alternative fashion or stringency. The
overall approach to disease control will be fluid and will adapt
as the potential arises.
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