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Abstract: This study designed an in-plane resonant micro-accelerometer based on electrostatic stiff-
ness. The accelerometer adopts a one-piece proof mass structure; two double-folded beam resonators
are symmetrically distributed inside the proof mass, and only one displacement is introduced under
the action of acceleration, which reduces the influence of processing errors on the performance of
the accelerometer. The two resonators form a differential structure that can diminish the impact
of common-mode errors. This accelerometer realizes the separation of the introduction of electro-
static stiffness and the detection of resonant frequency, which is conducive to the decoupling of
accelerometer signals. An improved differential evolution algorithm was developed to optimize the
scale factor of the accelerometer. Through the final elimination principle, excellent individuals are
preserved, and the most suitable parameters are allocated to the surviving individuals to stimulate the
offspring to find the globally optimal ability. The algorithm not only maintains the global optimality
but also reduces the computational complexity of the algorithm and deterministically realizes the
optimization of the accelerometer scale factor. The electrostatic stiffness resonant micro-accelerometer
was fabricated by deep dry silicon-on-glass (DDSOG) technology. The unloaded resonant frequency
of the accelerometer resonant beam was between 24 and 26 kHz, and the scale factor of the pack-
aged accelerometer was between 54 and 59 Hz/g. The average error between the optimization
result and the actual scale factor was 7.03%. The experimental results verified the rationality of the
structural design.

Keywords: resonant accelerometer; electrostatic stiffness; structural design; differential evolution
algorithm

1. Introduction

As a kind of micro-electro-mechanical system (MEMS) accelerometer, a silicon reso-
nant micro-accelerometer has the advantages of a direct digital signal output, high sen-
sitivity, high resolution, wide dynamic range, strong anti-interference ability, and good
stability [1–5]. It has the advantage of being useable to develop a higher-precision micro-
electromechanical accelerometer. The electrostatic stiffness resonant micro-accelerometer
combines electrostatic stiffness with the resonance principle. The resonant frequency is
affected by the change in electrostatic stiffness, which greatly reduces the dependence of
the device performance on processing errors [6].

At present, there are two main types of resonant accelerometers based on electrostatic
stiffness: in-plane and out-of-plane [7–10] detection. The in-plane electrostatic stiffness
resonant micro-accelerometer mainly has two structural forms: one is a structure in which
the proof mass and the resonator are independent [6,11–17], and the other is a structure in
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which the proof mass is a component of the resonator [18–20]. The first type of accelerometer
is composed only of a double-ended tuning fork (DETF) and two proof masses. In terms
of structure, the two proof masses and the resonator are independent of each other. The
two beams of the DETF are electrically connected to the two masses by means of small
parallel plate capacitors. This structure is simple and implementable. In the second type of
accelerometer, the proof mass is an integral part of the resonator. The reverse arrangement
of the two resonators is realized by the reverse arrangement of the electrostatic negative
stiffness plate capacitor. The acceleration is calculated by the difference in the frequency
of the two resonators. Each resonator is composed of two proof masses, and the in-phase
and anti-phase vibration modes of the two proof masses are used for sensitive mode and
modulation mode, respectively. Although the difficulty of designing sensitive structures is
increased, the multiplexing of proof masses and resonators can better save the layout of
sensitive structures.

The structure’s performance is determined by the structure itself, so the design and
improvement of the micro-accelerometer structure have become one of the hot directions
in the field of micro-accelerometer research. There are two main ideas for the structural
design of the micro-accelerometer. One is to verify the rationality of the structural design
by simulating the structure with finite element analysis software based on rich design
experience and experiments. The relationship between performance indexes and key
structural parameters is investigated through simulation. The optimization of the structural
parameter values is realized by comprehensive consideration. This method can design
structures that meet certain performance requirements, but it is difficult to find structures
that meet the optimal performance. The other is to establish the mathematical model of the
optimization problem according to the structural optimization theory and seek the optimal
structural parameters that meet some design requirements under certain constraints. For
example, Pei et al. [21] combined the zero-order method and the gradient search method to
complete the coarse and exact optimization. The scalar factor of the optimized quartz beam
accelerometer improved 16%, which improved the performance of the accelerometer. Wang
and Zhao et al. [22] aimed at the piezoelectric accelerometer with high sensitivity. The
beam configuration of the accelerometer with high sensitivity and low stress characteristics
is obtained by means of a genetic algorithm. Wang et al. [23] used genetic algorithms
to optimize the design of the flexible structure of the mechanically amplified MEMS
accelerometer, which greatly improved the bandwidth and sensitivity of the accelerometer.
In Pak’s research [24], a sensor noise model was developed for two MEMS accelerometers
with the same topology, and the noise performance of the accelerometer was improved
using the MOEA/D evolution algorithm optimization. Zhang and Shi [25] obtained the
final optimized model by the NSGA-II algorithm using a combination of OSF-based and
Kriging agent models. The optimized accelerometer size was reduced by 29.33%, and its
resonant frequency and sensitivity were improved.

Based on the first type of accelerometer, we designed an in-plane electrostatic stiffness
resonant micro-accelerometer. The accelerometer adopts a one-piece proof mass struc-
ture; two double-folded beam resonators are symmetrically distributed inside the proof
mass. Only one displacement of the proof mass is introduced under acceleration, which
reduces the influence of the processing error on the accelerometer performance. The two
resonators form a differential structure, which can reduce the impact of common-mode
errors. The structure realizes the separation of electrostatic stiffness introduction and reso-
nant frequency detection, which is conducive to the decoupling of accelerometer signals
and simplifies the design of accelerometer circuits.

The differential evolution algorithm is introduced to optimize the scale factor of the
accelerometer. An improved differential evolution algorithm was developed to save the
better individuals through the principle of last elimination and assign the most suitable
algorithm parameters to the surviving individuals in order to stimulate the ability of the off-
spring individuals to find the global optimum. While maintaining the global optimality, the
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complexity of the algorithm is reduced. The parameters achieved the optimal configuration,
and the structural optimization of the accelerometer was deterministically realized.

2. Structural Design of a Resonant Micro-Accelerometer Based on
Electrostatic Stiffness
2.1. Overall Structure Design

The overall structure of the new resonant micro-accelerometer based on electrostatic
stiffness is shown in Figure 1. Two perfectly symmetrical double-folded beam resonators
are contained in the accelerometer. The driving and detection of a single resonant beam are
performed by two sets of comb capacitors, respectively, and the parallel plate capacitor is
used only to adjust the resonant beam stiffness. The above capacitor design realizes the
separation of electrostatic stiffness introduction and resonant frequency detection. During
operation, the resonant beam is connected to the carrier signal, and the fixed driving comb
capacitor is connected to the reverse AC voltage with DC bias to drive the resonant beam to
the resonant state. Another DC voltage is applied to the proof mass to generate the voltage
difference of the parallel plate capacitor, which introduces electrostatic negative stiffness
for the tuning fork beam. Each resonator provides two sets of driving combs and detecting
combs. One set of resonator driving combs is connected to voltage Va1 = Vcsinωt + Vd,
and the other set is connected to Va2 = −Vcsinωt + Vd. Thus, V2

a1 −V2
a2 ∝ sinωt, and the

driving force is a sinusoidal harmonic force. The accelerometer adopts a one-piece proof
mass structure. Two resonators are symmetrically distributed inside the proof mass to
form a differential structure, reducing the influence of common-mode errors. The proof
mass only introduces one displacement under the action of acceleration, which reduces the
influence of manufacturing errors on the performance of the accelerometer.
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Figure 1. Schematic diagram of the overall structure of the accelerometer.

Since the accelerometer proof mass adopts a one-piece structure, when there is no
acceleration, the proof mass is subjected to two electrostatic forces of equal magnitude and
opposite direction, the proof mass is in a static initial position, the electrostatic stiffnesses
introduced by two resonators are equal. The resonant frequencies of two resonators are
equal and the output of the accelerometer is zero. When the accelerometer is sensitive to
acceleration, the proof mass is displaced under the action of inertial force. The gap of the
parallel plate capacitors between the mass and a resonator increase, and the electrostatic
stiffness decreases, which increases the resonant frequency. At the same time, the gap of
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the parallel plate capacitors between the proof mass and the other resonator reduces, and
the electrostatic stiffness increases, which reduces the resonant frequency. The resonant
frequency difference of two resonators is used as the output of the accelerometer, which is
approximately linear with the input acceleration.

2.2. Theoretical Analysis

For dynamic analysis of a resonator, the vibration equation of a single resonant beam
can be expressed as [13,14]

m
..
y + c

.
y + ky = Fd + Fe (1)

where m is the effective mass of the resonant beam vibrating transversely, c is the vibration
damping coefficient, k is the effective mechanical stiffness of the resonant beam, y is the
resonant beam vibration mode coordinate, Fd is the driving force generated by the driving
comb capacitor in the resonant beam vibration direction, and Fe is the electrostatic force
generated by the parallel plate capacitor in the resonant beam vibration direction.

Substituting specific expressions of Fd and Fe into Equation (1), ignoring higher terms
and combining like terms, we have [13,26]

m
..
y + c

.
y + (k− ke)y =

Nεh
2d0

V2
a −

εAV2
s

2g2
0

(2)

where N is the number of driving comb capacitor pairs, ε is the dielectric constant, h is the
effective thickness of the driving comb capacitor, d0 is the gap of the driving comb capacitor
pole plates, Va is the driving voltage of the comb structure, A = NShl is the orthogonal area
of the parallel plate structure, NS is the number of parallel plate capacitor pairs, l is the
effective length of each pair of parallel plates, g0 is the static initial gap of a single parallel
plate capacitor, Vs is the potential difference between the resonant beam and the parallel

plate, and ke =
εAV2

s
g0

3 is the electrostatic stiffness. When a potential difference exists between
the resonant beam and the proof mass, the electrostatic negative stiffness is generated to
make the resonant beam stiffness weaker and reduce its resonant frequency.

Let y1 be the displacement corresponding to the change in the y-direction of the
resonant beam under the action of electrostatic force when the acceleration is zero. ∆y1
is the displacement of the resonant beam in the y-direction relative to y1 under the action
of electrostatic force when the acceleration is not zero. Unlike other accelerometers, this
accelerometer adopts a single proof mass structure. When there is no acceleration, the proof
mass is subjected to two electrostatic forces of equal magnitude and opposite directions.
In this case, the displacement of the proof mass-support beam system in the y-direction is
0. Let ∆y2 be the displacement of the proof mass-support beam system in the y-direction
when the acceleration is not 0. When the accelerometer is operating, a DC voltage Vs is
applied at the proof mass anchor, the driving comb is connected to Va1 = Vcsinωt + Vd,
and the resonant beam is connected to a square wave signal Vf. The output frequency fe1
can be expressed as [14]

fe1 =
1

2π

√√√√ k− εAV2
s

(g0+∆y2−y1+∆y1)
3

m
(3)

Similarly, the output frequency fe2 of the other resonator can be expressed as

fe2 =
1

2π

√√√√ k− εAV2
s

(g0−∆y2−y1−∆y1)
3

m
(4)
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Through calculation and simplification [13,26], we can obtain

fe1 = 1
2π

√√√√ k−
εAV2

S

g3
0(1+

∆y2
g0

)
3

m = f0

√
1− β

(1+α)3

≈ f0(
√

1− β + 3
2

β√
1−β

α− 3
4 (

3β2√
(1−β)3

+ 8β√
(1−β)

)α2 + o(α2))

fe2 = 1
2π

√√√√ k−
εAV2

S

g3
0(1−

∆y2
g0

)
3

m = f0

√
1− β

(1−α)3

≈ f0(
√

1− β− 3
2

β√
1−β

α− 3
4 (

3β2√
(1−β)3

+ 8β√
(1−β)

)α2 + o(α2))

(5)

The frequency difference of the two resonators is

∆ f = fe1 − fe2 ≈ f0
3β√
1− β

α (6)

where f0 is the unloaded resonant frequency of the beam, β is the stiffness ratio, and their
expressions are as follows [27]:

f0 =
1

2π

√
k
m

=
1

2π

√√√√ 16.539Ew3

L3
(

0.397ρAl + ρA f

) ,β =
ke

k
, ∆y2 =

ms · a
ks − 2ke

, α =
∆y2

g0
=

msa
g0(ks − 2ke)

(7)

where E is the modulus of elasticity of silicon; ρ is the density of silicon; L, w, and h are
the length, width, and thickness of the resonant beam, respectively; Al = wL is the surface
area of the beam; A f is the surface area of the additional proof mass; and ms is the mass of
the proof mass.

The scale factor (SF) is an important indicator for assessing the performance of an
accelerometer, and is expressed as

SF ≈ δ∆ f
δa gn ≈ 3 f0

β√
1−β
· ms

g0(ks−2ke)
gn = 3ke f0√

k(k−ke)
· ms

g0(ks−2ke)
gn

= 1
2π

3ke√
m(k−ke)

· ms
g0(ks−2ke)

gn
(8)

where gn is the value of gravitational acceleration.

3. Structural Optimization Design by the Improved Differential Evolution Algorithm
3.1. Optimization Objectives

The structure size parameter is brought into Equation (8) to obtain

SF =
1

2π

3εAV2
s

g3
0

√(
0.397 · ρwLh + ρA f h

)
×
(

16.539 · Ew3h
L3 − εAV2

s
g3

0

) ·
(
ρw2L2h− ρAth + ρAph

)
g0

(
Ew3

1h
2L3

1
− 2 εAV2

s
g3

0

) · gn (9)

where w2 and L2 are the maximum values in the length and width directions of
the proof mass, At is the area of the hollowed-out part of the proof mass, and Ap is the
area of the parallel plate structure inside the proof mass, L1 is the length of the support
beam, and w1 is the width of the support beam. There are many parameters that affect
the accelerometer scale factor in Equation (9), but the key parameters are DC voltage VS;
resonant beam length L and width w; support beam length L1 and width w1; and the initial
gap between parallel plates g0.

It can be seen from Equation (9) that Vs is positively correlated with SF; however,
due to the pull-in effect of the parallel plate capacitor structure in the accelerometer, the
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DC voltage Vs connected to the proof mass should be less than the pull-in voltage V′s . It
is also known from the literature [13,17,26,28] that the pull-in voltage V′s is related to the
size parameter, and that V′s is negatively related to the range. Considering the range and
structural stability, the pull-in voltage V′s is controlled between 20 and 30 V [17].

Therefore, the range of Vs is determined as 5 ≤ Vs ≤ 15 V (Vs < 0.8 ·V′s ). Considering
the size of the package housing, w2 is taken as 2800 µm and L2 as 3800 µm.

Considering the existing manufacturing technology, pull-in voltage, scale factor, non-
linearity, and other factors, the optimization problem is shown in Equation (10):

min f (x) = −SF
s.t. 3 < g0 < 4.5,

1100 < L < 1300, 7.5 < w < 10,
500 < L1 < 600, 9 < w1 < 12,

24, 000 < f0 < 30, 000,
20 < ks < 36, 0 < ke < 4,

5 ≤ Vs ≤ 15 and Vs < 0.8 ·V′s

(10)

where the units of ke and ks in the above equation are measured in N/m, and the
other length units are measured in µm. The goal of structural optimization design is to
obtain the optimal value of the scale factor under the above constraints. In the actual
process of optimizing the accelerometer problem, the parameter dimension is 6 (length
and width of the resonant beam; length and width of the support beam; parallel plate
capacitor gap; and DC voltage VS (taking into account the pull-in effect)), corresponding to
the above-given limitation factors. The other structural parameters of the accelerometer are
shown in Table 1.

Table 1. Structural parameters of the accelerometer.

Parameter Values Units

Structural layer thickness 60 µm
Driving comb length 20 µm
Driving comb width 4 µm

Detecting comb length 20 µm
Detecting comb width 4 µm

Parallel plate capacitor length 25 µm
Parallel plate capacitor width 4 µm

Comb frame length 700 µm
Comb frame width 20 µm

Distance between two resonant beams 100 µm

3.2. Standard DE

The DE (differential evolution) algorithm [29,30] was originally designed to solve the
Chebyshev polynomial. The main idea is to use the differences between individuals in the
population to make the next generation of individuals search the solution space to find
the optimal solution. The main process includes initial population, mutation operation,
crossover operation, and selection operation.

The steps for standard DE are as follows [30].

3.2.1. Initialization

After determining the constraints on the number of populations NP, the maximum
number of generations Gmax and the dimensionality of the problem D, the initial generation
of individuals (vectors) within the population is initialized:

xG = (xG
(1), xG

(2), . . . . . . , xG
(NP)) G = 1, 2, 3, . . . , Gmax (11)

where xG
(i) =

[
xG
(i,1), xG

(i,2), . . . . . . , xG
(i,d)

]
i = 1, 2, . . . , NP.
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The initial vector is randomly selected and can be represented by the following equation:

x0
(i,j) = x(i,jmin) + rand(0, 1)

[
x(i,jmax) − x(i,jmin)

]
j = 1, 2, . . . , D (12)

where x(i,jmin) and x(i,jmax) are the limit range of the j-th parameter.

3.2.2. Mutation Operation

In this step, the standard DE algorithm is described as the mutation of all target
individuals in the population:

DE/rand/1 : vG
i = xG

r1 + F ·
(

xG
r2 − xG

r3

)
where, F ∈ (0, 1) (13)

The algorithm adopts the DE/rand/1 mutation strategy. In this step, each mutated
individual is composed of a parent part and a mutated part. The mutated part is obtained by
the difference of two randomly selected individuals from the parent population, except for
the aforementioned parent individual. The individual obtained by the mutation operation
is the mutation vector [31]. In addition, Price, Storn, and other studies have proposed
various strategies, including DE/best/1 and DE/rand-to-best/1 [29,32].

3.2.3. Crossover Operation

The mutant individuals generated in the previous generation are cross operated with
their parents to generate test vectors. At least one element of the test vector comes from a
mutated individual, which provides power for the next generation of population evolution.

u(i,j) =

{
v(i,j), i f (rand(0, 1) ≤ CR) or j = jrand
x(i,j), otherwise

(14)

where jrand = rand(0,1), and CR is the crossover rate, which is a key parameter in the differential
evolution algorithm that reflects the differences between parent and offspring individuals.

3.2.4. Selection Operation

After the crossover operation is completed, the objective function values of the test
individuals u and x are used for one-to-one selection. For the minimization problem, the
selection operation can be expressed as

xG+1
i =

{
uG+1

i , f
(

uG+1
i

)
≤ f

(
xG

i
)

xG
i , otherwise

(15)

It is important to select the better vector to survive to the next generation by comparing
the parent vector with the test vector. The above steps are then repeated until the number
of evolutionary generations reaches Gmax.

3.3. Improved Differential Evolution Algorithm

The DE optimization algorithm has the problems [31] of search stagnation and pre-
mature convergence in the application. The main reasons for this are that [33] (1) strict
constraints may create an extremely narrow region in which the optimal objective function
value exists, and that (2) it is of great significance to have a high searchability to leave out
the local optimum when searching for the best results. Therefore, it is a necessary condition
to have a strong global search ability to maintain population diversity. The performance
of the DE algorithm mainly depends on several control parameters, including scale factor
F [34], the crossover rate CR, population size NP [35,36], and the mutation strategy.

Various self-adaptive DE algorithms have been proposed by many researchers. For
example, Liu and Lampinen proposed a fuzzy adaptive DE algorithm [37], which uses a
fuzzy logic controller to adjust the parameters F and CR. Qin et al. proposed the SaDE
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algorithm [38], where F and CR are adaptively adjusted based on a previous high-quality
solution experience. Fan and Zhang proposed a differential evolution algorithm, CSA-
SADE [39], with crossover strategy adaptation; this method can obtain suitable control
parameters, mutation strategies, and crossover strategies at different stages of evolution. By
optimizing the mutation strategy, Deng developed a new, improved DE algorithm based
on the wavelet basis function [40], which realized the acceleration of convergence and the
search for the global optimum.

The idea of RDE [41] is that when the parent is a better individual, a new individual
is generated near it, then a mutation vector is generated near the parent vector through
a smaller F, and a test vector is generated near the mutation vector through a larger CR.
If the parent vector is poor, the mutation vector is generated by a larger F far away from
the parent vector, and the smaller CR generates the test vector far away from the mutation
vector. This balances the convergence and divergence of the search well, improves the
search efficiency of the algorithm, and reduces unnecessary searches and the computational
complexity of the algorithm.

Based on RDE and considering the globality and optimality of DE algorithm optimiza-
tion, an improved algorithm, SAPRDE (self-adaptive population rank-based differential
evolution), was developed. SAPRDE sorts the previous generation population during
the evolution process, then preserves the good individuals through the final elimination
principle. In addition, after population sorting and global parameter sorting, it maps
the most suitable parameters, mutation rate F and crossover rate CR to each surviving
individual, which stimulates the ability of offspring individuals to find the global optimum.
The above is SAPRDE’s core idea. In this way, global optimality is maintained while
algorithm complexity is reduced. Moreover, the parameters are optimally configured, and
the optimization of the accelerometer scale factor is achieved.

The initial population size (NPmax) of the SAPRDE algorithm is 15D–20D, and the
termination size (NPmin) is 2D. For the DE algorithm, different mutation strategies will
have different effects on the performance of the algorithm. The SAPRDE algorithm adopts
the DE/best/1 strategy. At the beginning of evolution, the rich population makes the
algorithm’s global search ability strong. On this basis, the adaptively adjusted mutation
and crossover rates make the optimal evolution direction unrestricted.

If the mutated vector exceeds the specified range in the optimization process, it will
be initialized again. Then, the program will continue to run. The main steps of SAPRDE
are as follows. Record the information provided by the ranking in each round. One is to
provide the basis for the parameter allocation for the population; the other is to provide
information on the linear decrease in the population number NP. Then, the parameters are
taken linearly in the interval and wait for allocation according to Equations (16) and (17).

Fj = Fmin + (Fmax − Fmin)
Sj

NP− 1
(16)

CRj = CRmax − (CRmax − CRmin)
Sj

NP− 1
(17)

NPi = NPmax − round
[

2i
Gmax

(NPmax − NPmin)

]
, when i ≤ Gmax

2
(18)

In Equations (16)–(18), i is the current evolutionary generation, Sj is the ranking of
the fitness of each individual in the population in each round, and Fj and CRj are the
parameters that are linearly allocated to the population during the execution process.
Taking the interval of CR and F suggested in the article of Storn and Price as the standard,
Fmin, Fmax, CRmin, and CRmax are taken as the two ends of the interval (0.5,1), (0.8,1); the
specific values optimize changes with the actual accelerometer parameters. On this basis,
the algorithm uses the parameters to be assigned as calculated in Equations (16) and (17)
to linearly assign the population. Figure 2 is the flow chart of the algorithm program.
After the judgment operation between s f

(
uG+1

i

)
and s f

(
xG

i
)
, the algorithm sorts the
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fitness of all surviving individuals in all populations at the time described above. After
sorting, the ranking information is recorded. Obviously, the ranking information is used
for the corresponding selection of the next round of parameter allocation. The algorithm
eliminates bad individuals every few rounds, leaving the top-ranked individuals, so the
ranking information also eliminates poor individuals. This is a method of RDE assignment.
The number of populations in each round is shown in Equation (18). Then, the next round
begins, and so on, until the termination conditions are met. It should be noted that the
eliminated vector needs to be approximated before the elimination process is performed.
All the improvement steps are marked in red in Figure 2. After the above steps, every
control parameter in each round is assigned to the most suitable surviving individuals. This
algorithm thusly realizes self-adaptive parameter assignment, eliminates bad individuals,
and reduces unnecessary calculations.
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Figure 2. SAPRDE flow chart.

3.4. Optimization Results

The optimization algorithm program was run in the software Matlab2020b. To reflect
the effect of SAPRDE, we used the ordinary DE algorithm with the same strategy as
SAPEDE for comparison. The algorithm parameters and condition settings of both were the
same, except for the improved content proposed in this article, in the sense that both used
the parameter interval suggested in Storn and Price [30]. Four results of the two algorithms
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can be randomly taken for comparison. In Figure 3, the general DE algorithm eventually
reaches a stable state after 200–500 generations (generally 300 generations) of evolution.
In the process of evolution, the algorithm reaches stability with too many evolutionary
generations due to its slow speed of searching for good individuals. The value of the stable
state did not ultimately converge to a fixed value: it converged to the local optimum and
lacked the motivation to jump out of the local area. In contrast, the four runs in Figure 3b
demonstrate the good repeatability of the SAPRDE algorithm, as the results of several
runs were relatively consistent. The algorithm basically reached a stable state near the
100th generation and evolved to stabilize at 200–300 generations. After improvement,
the number of iterations to find the optimal parameters was greatly reduced, and the
success rate of finding the optimal solution was also higher. The results prove that the
above-mentioned self-adaptive strategy increases the diversity of the population. Figure 4
shows the change curve of each specific parameter in the study of the evolution process.
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As shown in Figure 4, it is obvious that the performance of SAPRDE is better than
that of the ordinary DE algorithm in the optimization of the accelerometer parameters. The
ordinary DE algorithm undergoes a long evolutionary process in parameter optimization.
For example, the support beam length L1 and width w1 were still unstable at nearly 800 gen-
erations. On the contrary, the SAPRDE algorithm quickly searches for the optimal values of
each parameter and quickly enters a stable state. The convergence values of L, w, L1, w1,
g0, and VS were 1100 µm, 8.64 µm, 502.26 µm, 9.61 µm, 3.15 µm, and 15 V, respectively.

Figure 5 shows the evolution value of four hundred generations in six random runs.
Unlike the ordinary DE algorithm, the result of SAPRDE was almost identical, which shows
the good repeatability of the improved algorithm. In addition, we can see that the final
value of the ordinary DE algorithm did not achieve the optimal effect every time. This
is because the algorithm cannot be adjusted in time when it falls into local optimization,
resulting in the evolution result not reaching the ideal optimization. In terms of time
complexity, SAPRDE also had a running time reduction of 25% compared to the ordinary
DE algorithm, which also verifies that the method of selecting excellent individual survival
of the fittest reduces the overall computational complexity of the algorithm. The optimized
result of the scale factor was 60.27 Hz/g; the unloaded resonant frequency of the resonator
beam was 24.148 kHz.
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4. Experiment

The resonant micro-accelerometer based on electrostatic stiffness was fabricated by
the deep dry silicon-on-glass (DDSOG) process. Photographs of the fabricated resonant
accelerometer taken under the microscope are shown in Figure 6.
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Figure 6. Photographs of the fabricated accelerometer.

With the help of the probe station (Figure 7a), an open-loop test of the accelerometer
was conducted. The outer fixed combs of the upper resonant beam and the inner fixed
combs of the lower resonant beam are the driving end, and the opposite is the detection
end. The two sides of the resonator are connected with a DC biased AC driving voltage to
drive the resonator to the reverse working mode. The common terminal current is drawn
at the anchor. The test leads are shown in Figure 7b.

Micromachines 2022, 13, x FOR PEER REVIEW 13 of 16 
 

 

4. Experiment 
The resonant micro-accelerometer based on electrostatic stiffness was fabricated by 

the deep dry silicon-on-glass (DDSOG) process. Photographs of the fabricated resonant 
accelerometer taken under the microscope are shown in Figure 6. 

 
Figure 6. Photographs of the fabricated accelerometer. 

With the help of the probe station (Figure 7a), an open-loop test of the accelerometer 
was conducted. The outer fixed combs of the upper resonant beam and the inner fixed 
combs of the lower resonant beam are the driving end, and the opposite is the detection 
end. The two sides of the resonator are connected with a DC biased AC driving voltage to 
drive the resonator to the reverse working mode. The common terminal current is drawn 
at the anchor. The test leads are shown in Figure 7b. 

  
(a) (b) 

Figure 7. Open-loop test. (a) Probe station. (b) Accelerometer open-loop test pinout. 

All the accelerometers on the wafer were tested in the open-loop mode. The unloaded 
resonant frequencies of all the accelerometers were between 24 and 26 kHz. The test data 
of 10 accelerometers are shown in Table 2. Due to manufacturing errors, the resonant fre-
quency of the resonator fluctuates, and there is a difference between the resonant frequen-
cies of the two resonators of the same accelerometer. In general, the measured resonant 
frequencies of the fabricated accelerometer were basically consistent with the theoretical 
values. 

Driving

Common 
end

Driving

Vd+Vc sinωt

Vd-Vc sinω t

Figure 7. Open-loop test. (a) Probe station. (b) Accelerometer open-loop test pinout.

All the accelerometers on the wafer were tested in the open-loop mode. The unloaded
resonant frequencies of all the accelerometers were between 24 and 26 kHz. The test data of
10 accelerometers are shown in Table 2. Due to manufacturing errors, the resonant frequency
of the resonator fluctuates, and there is a difference between the resonant frequencies of the
two resonators of the same accelerometer. In general, the measured resonant frequencies of
the fabricated accelerometer were basically consistent with the theoretical values.
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Table 2. Unloaded resonant frequency of accelerometer resonator (kHz).

Accelerometer Number 1 2 3 4 5 6 7 8 9 10

Upper resonator 24.64 25.67 24.77 25.93 25.57 25.63 25.89 25.36 25.41 25.23
Lower resonator 24.69 25.78 24.86 25.98 25.53 25.64 25.87 25.43 25.48 25.29

The scale factor test of five packaged accelerometers was performed through closed-
loop circuits (Figure 8). With the 15 V detection voltage provided, the scale factor of
accelerometers is shown in Table 3. It can be seen from the test data that the average
error between actual scale factor and the result of the optimized design of five packaged
accelerometers was 7.03%. The actual scale factor of the packaged accelerometers was
basically consistent with the result of the optimized design, taking into account factors
such as manufacturing and packaging errors.
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Table 3. Scale factor and error of packaged accelerometers.

Accelerometer Number 1 2 3 4 5

Scale factor (Hz/g) 54.23 55.46 55.94 56.36 58.17
Error (%) 10.02 7.98 7.18 6.49 3.48

5. Conclusions

This paper designed a resonant micro-accelerometer based on electrostatic stiffness.
The working principle of the accelerometer was analyzed, and the expression of the scale
factor was deduced. The mathematical model for the optimal design of a specific accelerom-
eter structure was determined. An improved differential evolution algorithm, SAPRDE,
was developed to optimize the accelerometer scale factor. The improved algorithm not
only maintained the global optimality of the scale factor, but also reduced the complexity
of the algorithm. The optimization results show that the SAPRDE algorithm has obvi-
ous advantages over the ordinary DE algorithm in terms of global search and computing
time. The optimized accelerometer was fabricated by the DDSOG process. The unloaded
resonant frequency of the fabricated accelerometer resonant beam was between 24 and
26 kHz, and the scale factor of the packaged accelerometers was between 54 and 59 Hz/g,
which met the design and optimization expectations. The results showed that the SAPRDE
algorithm optimization was in accordance with the structural characteristics of the resonant
micro-accelerometer based on electrostatic stiffness.
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