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ABSTRACT: Collagen-based nanobiocomposites can reabsorb and are biode-
gradable. These properties are effectively controlled by the number of cross-links.
This study demonstrates an effortless and proficient approach for the
functionalization of Fe3O4 NPs for cross-linking collagen obtained from biowaste,
viz., fish scales of Lates Calcarifer, a marine origin. The size of Fe3O4 NPs (10−40
nm) was confirmed using particle size analysis. The physico-chemical properties of
the aminosilane-coated Fe3O4 NPs cross-linked via succinylated collagen (FFCSC)
were characterized using different analytical techniques and compared with
succinylated collagen doped with Fe3O4 NPs (FDSC). Thermogravimetric analysis
indicates cross-linked product FFCSC to be more stable than the FDSC. Also, the
antibacterial effect was more pronounced for FFCSC than for FDSC nano-
biocomposites. FFCSC exhibited improved mechanical properties which are
essential for materials used for wound dressing purposes. Moreover, the cell
viability of fibroblasts (3T3-L1) and their morphology studied by SEM and fluorescence microscopy showed biocompatibility of
both FDSC and FFCSC. Thus, the current investigation, involves a waste to wealth approach where the collagen-based
nanobiocomposites present an easy way to recycle the biowaste to value-added products using simple and clean methods, which are
suitable for use in biomedical and environmental applications.

1. INTRODUCTION
Collagen is a structural protein and a biopolymer and
considered as a versatile biomaterial due to its better biological
properties, which lead to its profound use in biomedical
applications.1 However, there are certain drawbacks of
denaturation at temperatures above 37 °C and its inability to
dissolve in neutral pH buffers that limit its application in tissue
engineering and regenerative medicine.2,3 Specifically, collagen
extracted from bovine sources is the most common but
increased reports on transmissible diseases in collagen-based
products have led to the search for an alternate source.4−6

Moreover, researchers have focused on the sustainable
pathways to perform the conversion of bio-waste to value-
added products such as catalysts useful for various industrial
applications.7−12 Fish scales, which are non-edible bio-waste,
produce an obnoxious smell when kept aside for a longer
duration and cause environmental pollution.13,14 However,
these fish processing wastes can be utilized for various
industrial applications.15−19 Additionally, collagen can be
derived from fish scales, which become an excellent alternative
to the bovine source and are free from transmissible diseases in
the developed products.20,21 Despite these benefits, the
collagen extracted from fish scales, especially from marine
origin has a low denaturation temperature. Also, the high rate

of biodegradation and low mechanical stability of collagen are
the major problems to be solved for its application.22−24 A
simple procedure usually adopted to overcome the above-
mentioned problem is to crosslink collagen, which reduces the
biodegradation and also enhances the mechanical stability of
collagen in the native state. However, this procedure is
unsuitable for several in vivo based applications.25,26 After this
study, collagen-based materials crosslinked via succinylation
have been reported in the recent past.27,28 In this study, it is
established that succinic anhydride restricts the breaking of
lysyl peptide bonds of trypsin, and hence, one positive charge
is substituted by two negative units of charge, which leads to
polyanionic collagen at physiological pH.26

It is also essential to highlight here that the magnetite
nanoparticles (Fe3O4 NPs) are well known to exhibit
properties such as nano-size and superparamagnetism, which
have been extensively used in various pharmaceutical and
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medical applications.29−31 Though Fe3O4 NPs are used for
numerous biological purposes mainly in drug delivery,32,33 cell
seeding process in scaffolds,34−36 cell tracking,37 hyper-
thermia,38 and as MRI contrast agent for the treatment of
cancers,39 the low solubility and hydrophobic surfaces result in
their aggregation via dipole−dipole attractions between
particles.40−42 Thus, surface coating is necessary, which enables
the homogeneous dispersion by the formation of hydrophilic
surfaces that provide stability to the Fe3O4 NPs.43 Hence,
surface modifications of NPs and their interaction with various
biodegradable polymers, which are also biocompatible have
been the subject of interest and thus are widely inves-
tigated.44,45 The capping of Fe3O4 NPs with silanes has been
investigated in the recent past.46−51 However, very few studies
on the interaction of functionalized Fe3O4 NPs with collagen is
documented. Additionally, so far, no study on the comparison
between collagen nanobiocomposites doped with Fe3O4 NPs

and cross-linked with functionalized Fe3O4 NPs has been
reported previously. Consequently, motive of the work is to
design, characterize, and conduct a comparative study of the
collagen nanobiocomposites derived from biowaste, i.e., fish
scales of marine origin, viz., Lates Calcarifer, which are doped
with Fe3O4 NPs and cross-linked with functionalized Fe3O4

NPs for various biological and environmental applications. A
simple and efficient approach to cross-link aminosilane
functionalized Fe3O4 NPs with collagen is described in this
present investigation. Multiple amine groups on the Fe3O4 NPs
surfaces enable links up with collagen. The peptide bonds
formation due to −COOH groups present in collagen is
increased when succinylation is performed. Moreover, the
stability, physico-chemical properties, and biocompatibility of
these fabricated nanobiocomposites were investigated.

Scheme 1. Synthesis of Amine-Functionalized Fe3O4 Nanoparticles Crosslinked with Succinylated Collagen
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2. MATERIALS AND METHODS
2.1. Materials. The chemicals as well as reagents for this

investigation were procured from Sigma-Aldrich (AG). Also,
deionized water was utilized for the complete study.
2.2. Instrumentation. Fourier transform-infrared (FT-IR)

analysis was conducted on a PerkinElmer Spectrum 2000
instrument. Pellets were prepared by mixing 2 mg of sample
with KBr (1:5) via a hydraulic press and spectra recorded from
400 to 4000 cm−1 with a resolution of 2 cm−1. Circular
dichroism (CD) studies for the confirmation of collagen were
conducted on a spectropolarimeter (JASCO J-715 model).
Thermal analyses (DSC and TGA) of the nanobiocomposites
were assessed with a PerkinElmer Model. The thermograms
for samples placed in aluminum pans heated at a rate of 10 °C/
min from 30 to 300 °C in a N2 atmosphere were recorded. The
samples were sputter coated with gold to study the surface
morphology using scanning electron microscopy (SEM),
Philips XL-30. Also, the morphologies of Fe3O4 doped on
succinylated collagen (FDSC) and functionalization Fe3O4
cross-linked to succinylated collagen (FFCSC) were studied
via a tunneling electron microscope (model: Jem-2100).
Malvern-based Zetasizer model no. 3000 HSA was used to
gather vital information on zeta potential and particle size
distribution. The paramagnetic effect of the nanobiocomposite
was determined from the vibration sample magnetometer
(VSM 7300-model). The mechanical characteristics of NBCs
were obtained using SATRA, UK, model no. TM-43 at 25 °C.
The prepared NBCs in the form of dumbbells with 16 mm
were immersed in distilled water for 30 min and the tensile
force were applied at an extension rate of 10 mm/min.
Pneumatic grips subjected to 40 psi pressure were used to
clamp the sample specimen and the tensile strengths of the
NBCs were determined.
2.3. Synthesis and Functionalization of Fe3O4 NPs.

Fe3O4 NPs were prepared using two-phase water/toluene
system that also contained oleic acid.52 Functionalization of
Fe3O4 NPs was achieved by two-step silanization processes at
60 ± 3 °C.53 2 mL of 0.1 M (3-mercaptopropyl)-
trimethoxysilane and (3-aminopropyl) trimethoxysilane
(APTMS) were added to 2 mL of 0.1 M Fe3O4 NP dispersion.
The contents were heated at 60 ± 3 °C, and the obtained
precipitate separated and repeated methanol washing was
carried out. To the precipitate was added toluene and tetra
butyl ammonium hydroxide and contents were heated at 60 ±
3 °C for 2 h. The solid precipitate was washed with toluene to
remove the excess silane and bases.
2.4. Fe3O4 NPs Cross-Linking to Collagen via

Succinylation. The aminosilane-functionalized Fe3O4 NPs
were cross-linked with succinylated collagen (SC). Collagen
was isolated from the scales of marine fish, Lates Calcarifer.14

The method of succinylation of collagen was reported earlier.5

10 g of collagen added in 4 L water and pH 2.5 adjusted by dil.
HCl. To the solubilized collagen, NaOH solution was added to
obtain pH 9. Then, succinic anhydride solution (2%) was
added to the contents and the SC precipitation was done at pH
4 using dilute HCl. The entire process was conducted in ice-
cold conditions. The yield and purity of acid solubilized
collagen were found to be 0.58% (based on dry weight) and
20%, respectively. For the preparation of nanobiocomposites, a
homogenizer was used for the mixing of the functionalized
Fe3O4 NPs (60 μL, 0.1 M) with SC (1% soln.), followed by the
lyophilization process carried out at −80 °C. To further

stabi l ize these nanobiocomposi tes , 1-ethyl -3-(3-
dimethylaminopropyl)carbodiimidehydrochloride (EDC) and
N-hydroy succinimide (NHS) in 50 mM 4-morpholine ethane
sulfonic acid in 40% ethanol (MES soln) were added. The soln.
pH was adjusted to 5 with the help of 0.1 M NaOH soln. Also,
nanobiocomposites of SC doped with 60 μL of 0.1 M Fe3O4
NPs (FDSC) were prepared. The preparation of FFCSC
nanobiocomposites is depicted in Scheme 1.
Ninhydrin assay, a method that provides the amount of free

amines, was employed in the functionalized SC.54−56 To
explain, 4% (w/v) of ninhydrin in 100 mL of ethylene glycol
monoethyl ether was added to a mixture of 100 mM citric acid
and 0.16% (w/v) SnCl2. The contents were thoroughly mixed
by maintaining pH 5 through the addition of 5 M NaOH. The
nanobiocomposites (50 mg) were weighed and immersed in
the contents and then further incubated at 80 °C for 45 min.
Subsequently, 300 μL of isopropanol was added to the
nanobiocomposites, which lead to the purple color formation.
The absorbance was recorded at 570 nm.
2.5. Biodegradability Assay. For the biodegradability

experiment of the Fe3O4 NPs in collagen-based nano-
biocomposites (FDSC and FFCSC), the procedure of Kesava
Reddy and Enwemeka57 was used, i.e., 20 mg of nano-
biocomposites was incubated at 40 °C for 120 h after
treatments with enzyme buffer (150 μL) and collagenase
enzyme (500 μL) procured from Sigma-Aldrich. After every 12
h, the released amount of the hydroxyproline was determined
via the method used by Woessner.58

2.6. Antibacterial Studies. For the nanobiocomposites,
minimum inhibitory concentration (MIC) was carried out on
two different bacterial cultures: Staphylococcus aureus (ATCC
25923), which is Gram-positive, and Escherichia coli (ATCC
25922), a Gram-negative strain, using CLSI/NCCLS meth-
ods.59 The experiment was carried out in triplicates and values
are reported as mean ± SD.
2.7. Biocompatibility and Cell Culture Studies. The

compatibility of the nanobiocomposites was determined using
the procedure mentioned in Mandal et al.24 The procedure for
cell culture of mice fibroblasts (3T3-L1) were carried out by
following the protocol used in Mandal et al.24,60

2.8. Viability Study on Collagen Nanobiocomposites.
The viability for fibroblast cells on collagen nanobiocompo-
sites, viz., FDSC and FFCSC, was carried out via the
methylthiazol tetrazolium (MTT) assay. The seeding of the
3T3-L1 cells was allowed for 6 days. Subsequently, 400 μL of
3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bro-
mide was added to the nanobiocomposites, and TCP was
used as the control. Following incubation at 40 °C for 3 h, the
active cells take up MTT and forms a purple-colored formazan,
which was further dissolved in DMSO (500 μL/well). A
microplate spectrophotometer (λ = 570 nm) was used to find
out the optical density. Absorbance of cells by nano-
biocomposites to that of control cells gives the cell
proliferation.61,62 The cell viability of samples were computed
using the equation described below

% cell viability
mean OD

mean OD
100Sample

Blank
= ×

The fluorescent microscope was employed for this purpose
and the attachment as well as proliferation of 3T3-L1 cells on
the prepared NBCs. The procedure of studying cell
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morphology and compatibility for the prepared NBCs have
been explained in detail in our previous studies.3

2.9. Statistical Analysis. Studies on the adherence of 3T3-
L1 cells and their proliferation on the prepared NBCs were
conducted as triplicates. The data obtained were reported in
the form of mean ± standard deviation (SD). Also, the
comparison of the data were done using ANOVA and then
Duncan multiple test with SPSS 13 software. Those values
were p < 0.05 were regarded as significant.

3. RESULTS AND DISCUSSION
The CD spectrum of aqueous SC solution exhibited π−π*
amide and n−π* transitions at 201 and 228 nm, respectively
(Figure 1). The intensity of both these bands was compared to

determine the triple helical content of collagen molecules and
matched well with that of unmodified collagen. From the CD
spectra, the ratio between positive and negative peaks (Rpn)
was obtained for native and modified collagen solution are
provided in Table 1. The Rpn value for native collagen was

0.106, whereas for SC, it was found to be 0.13. The process of
succinylation resulted in the increased Rpn value. The
incorporation of Fe3O4 NPs in FDSC and FFCSC shows no
significant alterations in the CD spectra, which confirms the
absence of conformational changes in the collagen structure,
respectively. Therefore, the Rpn value for FDSC was 0.12,
similar to that of native collagen. However, in FFCSC, it was
found to be 0.14 which can be attributed to the crosslinking
effect with SC and also indicates that the maximum
stabilization effect on the native conformation of collagen
molecule was exerted by FFCSC. The findings are in
accordance with the earlier reported works.63,64

The particle size of the bare and aminosilane-functionalized
Fe3O4 NPs (from PSA) was 10−40 nm (Figure 2). The

information on the structural parameters for the prepared
nanoparticles was acquired by XRD. The XRD prototypes
found for both bare and aminosilane-functionalized nano-
particles are in agreement with the reference sources.65−67

The peaks at 2θ = 31, 35.5, 43, 53.5, 57, and 62° matched
with JCPDS card no. 85-1436 are due to (200), (311), (400),
(422), (511), and (440) Bragg reflections, confirms Fe3O4
with cubic spinel arrangement67 (see Figure 3). Also, the
particle size calculated for bare and aminosilane-capped Fe3O4
NPs from well-known Scherrer’s equation: d = Kλ/β cos θ.66

The diameter values obtained were 19 and 31 nm for bare
and aminosilane-functionalized Fe3O4 NPs, which is following
the PSA results. Fe3O4 NPs (<10 nm) exhibit quasi-single or
single magnetic domain structures that result in super-
paramagnetism.68,69 To compare the magnetic properties
between bare Fe3O4 NPs and amine-functionalized Fe3O4
NPs, their M−H curves at 300 K were measured by a
magnetic property measurement system. Figure 4 depicts the
M−H curve of bare and functionalized Fe3O4 NPs at 300 K.
The graph demonstrates superparamagnetism at 300 K as very
low values of coercivity and remanence are observed. The
saturation magnetization (Ms) value reduces when particle size
is lowered courtesy to finite size effect.67 The Ms of bare Fe3O4

Figure 1. CD spectrum of (a) native collagen, (b) SC, (c) FDSC, and
(d) FFCSC, respectively.

Table 1. Rpn Values for Native Collagen C, SC, FDSC, and
FFCSC NBCs Respectively

sample Rpn value

collagen 0.106
SC 0.13
FDSC 0.12
FFCSC 0.14

Figure 2. Particle size distribution of bare and functionalized Fe3O4
NPs.

Figure 3. XRD graph of (a) bare and (b) aminosilane-functionalized
Fe3O4 NPs.
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NPs was observed at 61.8 memu/g but it was lowered to 56.5
memu/g for functionalized Fe3O4 NPs. This observation could
be due to the more pronounced surface disorder and modified
cationic distribution noted for smaller-sized particles that
restrict the core spins to align with the field and results in
lower saturation magnetization. Thus, magnetic measurements
on both Fe3O4 NPs (before and after functionalization)
indicate that the particles are superparamagnetic at 300 K and
the net magnetization of the particles is zero even without an
external field. The superparamagnetic properties exerted by the
Fe3O4 NPs play a crucial role in magnetic composites that have
biomedical applications. It is well established that these Fe3O4
NPs present effective mechanical stimulation under an external
magnetic field and facilitate tissue regeneration.32 The Ms
value decreases after incorporating Fe3O4 NPs into the SC
matrix and was found to be the least in the case of FFCSC.
This can be attributed to the entanglement of the collagen
fibers that cover the magnetic domains of functionalized Fe3O4
NPs and formed chemical bonds with SC, respectively. Also, it
can be summarized that lower Ms value for FFCSC can be
correlated to the reduced porosity and increased tensile
strength of the NBC, respectively. The Fe3O4 NPs stability in
solution was assessed with zeta potential measurements. It is
noteworthy to mention here that the stability of the NPs is of
utmost essential for their application in medical fields.70 Zeta
potential of −23.2 mV for bare Fe3O4 NPs shows that solution
is stable for a long time. Similarly, aminosilane-capped Fe3O4
NPs exhibit a zeta potential of +18.6 mV. Aminosilane is
responsible for providing stabilization and controls the
movement of iron ions during the reaction and prevents
aggregation.24

The high zeta potential value is due to electrostatic repulsion
between NPs and this avoids their deposition and results in
highly stable NPs. Ninhydrin assay evaluated the free amino
groups on the collagen nanobiocomposites, and the result is
illustrated in Figure 5. EDC/NHS cross-linking showed lower
number of free amines (63%) than the FDSC (70%) and SC
(73%). The free amine content further decreased in the case of
the FFCSC nanobiocomposites (61%).
3.1. Physico-Chemical Properties of the Nanobio-

composites. The thermal stabilities of the samples: SC,
FDSC, and FFCSC were determined by TGA. In Figure 6, the

decomposition monitored for SC, FDSC, and FFCSC can be
divided into two steps. The first step occurs at temperatures
below 100 °C, where the mass loss is attributed to evaporation
of low-molecular-weight compounds, that is, mainly due to
adsorbed water.6,71 At comparable temperatures, say 80 °C,
samples showed mass loss are 5.6, 5.0, and 2.5%, for SC,
FDSC, and FFCSC, respectively. The FFCSC degradation
(6.5%) occurred at temperatures above 170 °C, while SC and
FDSC showed mass losses as 10.1 and 7.8%, respectively. Most
of the degradation takes place between 400 and 500 °C and
shows mass loss of 83.5, 72.2, and 64% in SC, FDSC, and
FFCSC, respectively. Furthermore, to complement the TGA
data obtained for samples, SC, FDSC, and FFCSC, DSC
technique was also employed (Figure 7). There were three
peaks in both SC and FDSC. For SC, it was found to be 91,
152, and 216 °C having activation energies of 42.1, 56, and 183
J/g, respectively. For FDSC, the calculated activation energies
were found to be 306.6, 11.5, and 16.8 J/g for respective peaks
at 85, 172, and 251 °C. However, there were four peaks
obtained in the case of FFCSC at 94, 134, 189, and 225 °C,
whose activation energies were 21.3, 10.7, 8.3, and 59.3 J/g,
respectively.
The higher values of transition temperatures suggest that the

collagen-based nanobiocomposites are stable. The high

Figure 4.M−H curve of (a) bare Fe3O4 and (b) functionalized Fe3O4
NPs, (c) FDSC, and (d) FFCSC at 300 K, respectively.

Figure 5. Percentage of amine content of the NBCs produced in this
study, concerning non-cross-linked collagen scaffolds. Values are
presented as mean ± SD (n = 3).

Figure 6. TGA of nanobiocomposites: (a) SC, (b) FDSC, and (c)
FFCSC, respectively.
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thermal stability affects the collagen-based nanobiocomposites
and also accounts for their durability. Also, the melting
temperature was also recorded and it was found to be SC (91
°C), FDSC (85 °C), and FFCSC (94 °C), as shown in Figure
7. Overall, the above-mentioned analytical techniques demon-
strate FFCSC as more stable than SC and FDSC. Besides, this
the final residue (%) that remained above 600 K was more in
FFCSC (21.8%) than that in SC (12.6%).
FT-IR spectroscopy, the versatile technique to characterize

and study the interaction between Fe3O4 NPs and collagen.
Figure 8 shows FT-IR spectra of SC alone, FDSC, and FFCSC

nanobiocomposites. The Fe3O4 NPs peak usually noticed due
to the Fe−O bond formation at 580 cm−1 had shifted to 632
and 636 cm−1 in FDSC and FFSC, respectively.26 The
blueshift can be ascribed to the Fe3O4 NPs in collagen that
was monodispersive with the precursors.60 The broadening
and higher shift in the band due to Fe−O−Si bonds was
observed in FFCSC.72 S−H stretch vibration band due to
mercaptosilane in amino-functionalized Fe3O4 NPs was noted
at 2590 cm−1. Also, additional bands are noticed for silane-
modified Fe3O4 NPs compared to the uncoated NPs. The
bands between 1000 and 1150 cm−1 are due to Si−O−Si

vibrations for siloxanes. Here, in this case, it is due to the
condensation of siloxane (Si−O) molecules onto the surface of
the magnetic, Fe3O4 NPs.73 Moreover, in FFSC, low-intensity
bands, 1300−1600 cm−1 associated to both free and bound
aminopropyl segment, which can be overlapped by the OH
band are observed. The 1491 cm−1 peak is due to the
symmetric deformation mode of the −NH3

+ group.74 The
amino-silane also shows two N−H bendings at 1633 and 1571
cm−1, characteristic of the presence of NH3

+ groups.60 The
peaks at 1515 and 1421 cm−1, are due to interactions of oleic
acid with iron oxide. Also, an additional vibration band at 1348
cm−1 validates the oleylamine bound on the surface of Fe3O4
NPs.48 Moreover, FTIR spectra of FDSC and particularly
FFCSC displayed the distinctive vibration bands at 2850 and
2920 cm−1 are due to amide bond formation. This confirms
the linkage of the SC with that of the antisymmetric −CH2
moieties of ole amine present in synthesized magnetic NPs to
form covalent bond formation. The FT-IR spectra also showed
all the main amide peaks; noticed at 1654 cm−1 (amide I C�
O stretching), 1554 cm−1 (amide II N−H stretching), and
between 1140 and 1315 cm−1 due to amide III (C−N and N−
H stretching).
These peaks confirm the retainment of the collagen

structure. Moreover, the T1454/T1234 ratio has a value close
to unity in all the nanobiocomposites, indicating the
conservation of the triple helical conformation of collagen
formed in the covalent networks.75 The band at 1450 cm−1 is
due to C−H bending and the amide band (symmetric N−H
stretching) observed at 3311 cm−1, which suggests that the
water is present in traces.27,76 X-ray photoelectron spectros-
copy (XPS) provides vital information on the binding modes/
mechanism of bimetallic nanoparticles with that of biomate-
rial.77 A separate study will be carried out using computational
(DFT) and XPS techniques to ascertain the attachment of
Fe3O4 NPs with that of collagen in detail. In FT-IR spectra
(Figure 8), the peak appeared at 3313 cm−1 for SC and the
interactions between SC and aminosilane-functionalized Fe3O4
NPs are associated with the occurrence of peak at 3324 cm−1

(FFCSC). This peak is shifted to 3318 cm−1 in the case of
FDSC. The broad peak is due to the interactions between the
hydroxyl groups of SC and partial positive charge on the
surface of Fe3O4 NPs.53,54 The amide band (−NH stretching)
observed at 3324 cm−1 is almost symmetric, which suggests
that the amount of water present is low.52,78 However,
intermolecular H-bonding may not be ruled out. The micelle
formation on collagen in acetic acid/acetate buffer and its
interactions with various surfactant micelles and urea had been
discussed thoroughly by Mandal et al.79−81 in the light of
aggregation, shape, size, hydrations, conformations, and
thermodynamic studies. Both one hydrogen bonded and two
hydrogen bonded models were discussed. The aggregation, H
bonding, and thermodynamic studies in tetra-peptide and tri-
peptide micelle in aqueous and non-aqueous solvent were
reported in the past82,83 where the temperature dependence
proton chemical shift, i.e., (dδ/dT), will dictate whether strong
covalent bond (intramolecular) or weak H-bond (intermo-
lecular) takes place. Therefore, in our present FTIR spectra, it
is difficult to predict clearly. Further studies using temperature
dependence 1H NMR in this direction would be interesting.
3.2. Mechanical Properties. The mechanical character-

istics of the developed collagen-based nanobiocomposites were
also studied with respect to SC to ensure whether the
biomaterial will be intact during clinical applications. The

Figure 7. DSC analysis of nanobiocomposites: (a) SC, (b) FDSC,
and (c) FFCSC, respectively.

Figure 8. FTIR spectra of nanobiocomposites: (a) SC, (b) FDSC,
and (c) FFCSC, respectively.
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percentage elongation at break of 48.1% was noticed for
FFCSC nanobiocomposites; while the value was lower in the
case of FDSC nanobiocomposites (31%) and the minimum
percentage, i.e., 23% was observed with the SC nano-
biocomposite. The tensile strengths of SC, FDSC, and
FFCSC nanobiocomposites were found to be 1.1 ± 0.31,
1.45 ± 0.61, and 5.3 ± 0.71 MPa, respectively (see Figure 9).

Hence, the cross-linked product lead increased the tensile
strength by fivefold in comparison with SC. The results thus
imply that surface-modified Fe3O4 NPs crosslinked with
collagen increase the elasticity, useful to prepare artificial
heart valves. The nanobiocomposite porosity was calculated by
following the protocol employed by Shimizu et al.36 The
porosities of the SC, FDSC, and FFCSC nanobiocomposites
were 95.42 ± 0.37, 93.17 ± 0.45, and 91.94 ± 0.77%,
respectively. In the current investigation, collagen derived from
the fish scales was succinylated and used. It is to be noted that
no drastic change in mechanical stability results for SC doped
with iron oxide (FDSC) when compared to SC. However, in
the case of SC functionalized and cross-linked with iron oxide
(FFCSC), the mechanical strength in addition to the thermal
stability was significantly enhanced. From our understanding,
not many reports exist on collagen cross-linking with succinic
acid. It is well known that amine groups present in the proteins
such as collagen (lysyl ε-NH2) are powerful nucleophiles,
which react with a carbonyl group (−C�O) to form covalent
bonds via the nucleophilic addition−elimination reaction.84

However, in the present study, ionic interaction takes place
which can be described as follows: succinic acid protonates
−NH2 groups of collagen and the resulting −NH3

+ sites
interact with −COO− of succinic acid to form stronger
biocomposites. The presence of Fe cations enhances the
transformation process. SEM images as illustrated in Figure
10(b,c) show that there was no significant agglomeration,
courtesy to the substitution of ligand oleic acid with APTMS
that occur on the nanoparticles surface. The EDAX spectrum
has a strong signal of Fe. Also, observed signals of C, O, Cl,
and Si (Figure 10d) are due to the coating process involved for
Fe3O4 NPs.
TEM images of the NBCs, FDSC, and FFCSC reveal that

the Fe3O4 NPs were well dispersed on the collagen surface (see

Figure 11). Moreover, the size of Fe3O4 was found to less than
50 nm which is in accordance with PSA and XRD results.
Slight aggregation of Fe3O4 NPs was noticed in FFCSC due to
crosslinking of the collagen fibers. A similar kind of effect was
noticed for chitosan rods when reinforced in multiwalled
carbon nanotubes.85

3.3. Biological Properties. To evaluate the prepared
biomaterial for its use as implants, it is vital to assess the
biodegradability. So, the collagen nanobiocomposites cross-
linked with surface-modified Fe3O4 NPs were treated with
collagenase enzyme and their rate of degradation was
monitored. The collagenase enzyme is responsible for the
release of hydroxyproline from the nanobiocomposites. The
experiment was monitored for 108 h and the result is shown in
Figure 12. The hydroxyproline released from the nano-
biocomposites after 24 h of treatment with collagenase did
not show any drastic change. However, a significant difference
was noticed from 12 to 24 h where the release of
hydroxyproline of SC is higher compared to FDSC and
FFCSC nanobiocomposites. Therefore, it can be confirmed
that all the nanobiocomposites developed are biodegradable
when treated with collagenase. The MIC for nanobiocompo-
sites, FDSC, and FFCSC were determined for both types of
bacterial strains concerning SC as control is shown in Figure
13.
The MIC value for SC was 350 ± 11 μg/mL for E. coli,

whereas the increased value of 425 ± 17 μg/mL was observed
for Gram-positive strain, S. aureus. The FFCSC nano-
biocomposites displayed lower MIC in comparison to Fe3O4
NPs impregnated in SC nanobiocomposites (FDSC). For
Gram-negative bacteria, E. coli, FFCSC demonstrated a value
of 232 ± 7 μg/mL, lower than FDSC nanobiocomposites,
which exhibited 275 ± 12 μg/mL, respectively. A similar trend
for Gram-positive bacteria, S. aureus, was observed, where 317
± 11 μg/mL for FFCSC in comparison to 345 ± 16 μg/mL for
NBCs: SC that contains Fe3O4 NPs was noted. The superior
antibacterial outcome in E. coli is due to its lack of cell
membrane where the Fe3O4 NPs easily infiltrate and act with
cellular contents to inhibit bacterial growth. It is well
documented that the surface immobilization of nanoparticles
leads to more contact and so kills the bacteria effectively
compared to colloidal ones.86 Thus, FFCSC exhibits improved
efficacy than FDSC that can be used in tissue engineering
applications.
3.4. In Vitro Studies: Viability and Morphology of

3T3-L1 Cells. The surface chemistry and topography are
major factors that govern and regulate cell behavior, which
decides if the nanobiocomposites can behave as scaffolds. The
proliferation of 3T3-L1 on FDSC and FFCSC cultured for 6
days was evaluated from MTT assay, and results are provided
in Figure 14.
For the proliferation of the fibroblast, both FDSC and

FFCSC had superior cell viability than SC. Among the
nanobiocomposites, FDSC showed a marginal increase in the
proliferation rate compared to FFCSC. SEM images of both
FDSC and FFCSC nanobiocomposites seeded with 3T3-L1
cells on days 2 and 6 were compared with SC nano-
biocomposites and examined to investigate their morphology
(see Figure 15). It is obvious from the SEM depicted in Figure
15c−f which show both the nanobiocomposites FDSC and
FFCSC, facilitated the proliferation of the 3T3-L1 cells
required for tissue formation and thereby the nanobiocompo-
site provide a matrix and acts as scaffolds. Similarly,

Figure 9. Stress strain curve for collagen-based NBCs: (a) FFCSC,
(b) FDSC, (c) SC, and (d) collagen alone, respectively.
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fluorescence micrographs of 3T3-L1 cells were taken after 48 h
of culture on the nanobiocomposites: SC, FDSC, and FFCSC
(see Figure 16). The presence of Fe3O4 NPs in FDSC and
FFCSC nanobiocomposites most likely modulate the orienta-
tion of collagen fibers to enhance cell differentiation and
proliferation.87

Figure 10. SEM images of (a) SC, (b) FDSC, and (c) FFCSC NBCs, respectively. (d) Elemental composition of FFCSC NBCs using energy
dispersive X-ray spectroscopy.

Figure 11. TEM images of (a) FDSC and (b) FFCSC NBCs,
respectively.

Figure 12. Biodegradability assessment based on the release of
hydroxyproline from SC, FDSC, and FFCSC nanobiocomposites.
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4. CONCLUSIONS
The present investigation reports the fabrication of thermally
stable biopolymer material from collagen obtained from scales
of Lates Calcarifer, a marine origin, and succinic acid which
enhanced the thermal properties on cross-linking with Fe3O4
NPs. The amino groups in APTMS functionalize magnetic
nanoparticles and enables them toward cross-linking to
collagen by succinylation. Detailed characterization to under-
stand the physicochemical properties of the fabricated
nanobiocomposites FFCSC were carried and assessed with
FDSC. The VSM result confirms the magnetic property of
both Fe3O4 and functionalized Fe3O4 NPs. The DSC/TGA
analyses indicate more stability of FFCSC than FDSC
attributed to the cross-linking effects. Additionally, improved
mechanical and biodegradation properties were noticed in
FFCSC as compared to the FDSC nanobiocomposite.
Enzymatic degradation of FFCSC, FDSC, and SC nano-
biocomposites was studied, and the results showed that all the
nanobiocomposites degraded when treated with the collage-
nase enzyme. Morphology and viability data of 3T3-L1 cells
suggest both FDSC and FFCSC nanobiocomposites as
compatible that is apt for biomedical purposes. However, the

cell viability of FDSC nanobiocomposites with fibroblast cells
showed a marginal increase in the proliferation rate than the
FFCSC nanobiocomposite. Hence, it is noteworthy to state
that both FDSC and specially FFCSC could find potential
applications as a MRI contrast agent and possibly in targeted
therapeutics, as the nanoparticles are water soluble and also
biocompatible. Moreover, better attachment with biomolecules
like collagen is facilitated by the amino groups present on
Fe3O4 NPs surface (FFCSC) and can be further used for
labeling cells in cancer therapy. Therefore, in this study, the
collagen-based nanobiocomposites incorporated with Fe3O4

Figure 13. MIC for FDSC and FFCSC nanobiocomposites tested
against both Gram-positive and -negative bacterial strains compared
to SC used as the control. The asterisks indicate statistically significant
differences compared to the control (p < 0.05).

Figure 14. MTT assay illustrates the cell viability of fibroblast (3T3-
L1) cells on SC, FSC, and FFCSC nanobiocomposites, respectively.
The asterisks indicate statistically significant differences compared to
the control (p < 0.05).

Figure 15. Evaluation of biocompatibility after 2 and 6 days for SC
(a,b), FSC (c,d), and FFCSC (e,f) nanobiocomposites, respectively,
with 3T3-L1 cells, captured by SEM.

Figure 16. Fluorescence micrographs (20×) of 3T3-L1 cells captured
after 48 h of culture on (a) SC, (b) FDSC, and (c) FFCSC
nanobiocomposites, respectively. All scale bars are 200 μm.
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NPs (FFCSC and FDSC) present a straight forward, clean, and
effective method for the renewal and recycle of the bio-waste
to value-based materials that have potential biomedical
applications.
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