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Nash Equilibrium of Social-Learning 
Agents in a Restless Multiarmed 
Bandit Game
Kazuaki Nakayama1, Masato Hisakado2 & Shintaro Mori3

We study a simple model for social-learning agents in a restless multiarmed bandit (rMAB). The bandit 
has one good arm that changes to a bad one with a certain probability. Each agent stochastically selects 
one of the two methods, random search (individual learning) or copying information from other agents 
(social learning), using which he/she seeks the good arm. Fitness of an agent is the probability to know 
the good arm in the steady state of the agent system. In this model, we explicitly construct the unique 
Nash equilibrium state and show that the corresponding strategy for each agent is an evolutionarily 
stable strategy (ESS) in the sense of Thomas. It is shown that the fitness of an agent with ESS is superior 
to that of an asocial learner when the success probability of social learning is greater than a threshold 
determined from the probability of success of individual learning, the probability of change of state of 
the rMAB, and the number of agents. The ESS Nash equilibrium is a solution to Rogers’ paradox.

One of the differences between human beings and other animals is that the former transfer their predecessors’ expe-
rience and wisdom in the form of knowledge1. Social learning—learning from the experience of others— is advan-
tageous compared to individual learning2–4. Without social learning everybody would have to learn everything 
for themselves2. In other words, individual learning costs more than social learning does2–4. Therefore, Rogers’ 
finding that social learning is not necessarily more advantageous than individual learning is counterintuitive5.  
This is now called Rogers’ paradox.

Rogers’ conclusion seems very strange in light of our experience4. Several attempts have been made to solve 
Rogers’ paradox in social learning. Boyd and Richerson2 pointed out that Rogers’ paradox is not a paradox when 
the only benefit of social learning is to avoid learning costs. Further, on analysing two models where social learn-
ing reduces individual-learning costs and improves the information obtained through the latter, they concluded 
that social learning can be adaptive. Enquist et al.3 advocated a learning form called critical social learning, which 
is social learning supplemented by individual learning. They discussed using rate equations and succeeded in 
solving the paradox. Rendell et al.4 studied the relative merits of several learning strategies by using a spatially 
explicit stochastic model.

The concept of adaptive information filtering3, 6 has been proposed as key to the effective working of social 
learning. It indicates that each member effectively learns good-quality information provided by other members. 
For example, in a famous tournament by Rendell et al.6, discountmachine that did the most effective social learn-
ing won over the other strategies that combined individual learning and social learning.

In this study, we propose a stochastic model to solve Rogers’ paradox in the framework of a restless multi-
armed bandit (rMAB) used in that tournament. The objective of this study is to analyse equilibrium social learn-
ing in an rMAB. An rMAB is analogous to the “one-armed bandit” slot machine but with multiple “arms”, each 
with a distinct payoff. We call an arm with a high payoff a good arm. The term “restless” means that the payoffs 
change randomly. Agents maximise their payoffs by exploiting an arm, searching for a good arm at random 
(individual learning), or copying an arm exploited by other agents (social learning). Because rMAB is simple in 
structure and its generality, we believe that it is an appropriate framework to consider Rogers’ paradox.

As a model for social-learning collectives, Bolton and Harris studied an agent system in a multi-armed bandit7.  
They assumed that the agents could know all information of other agents and obtained a socially optimal experi-
ment (learning) strategy. In the present study, we consider the bounded rationality of agents, who can access the 
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results of their respective choices only. In addition, we assume that the environment (i.e., the rMAB) changes 
randomly. We obtain the socially optimal and equilibrium learning strategies.

Model
We make the model as simple as possible and incorporate the property of adaptive filtering of information into it. 
A mathematical overview of the model is given in the Methods section.

The rMAB has only one good arm and infinitely many bad arms. There are N agents labeled by n = 1, …, N. 
In each turn, an agent (say, agent n) is randomly chosen. He/she exploits his/her arm and obtains payoff 1 if he/
she knows a good arm. If he/she does not know a good arm, he/she randomly searches for it (individual learning) 
with probability 1 − rn, or copies the information of other agents’ good arms (social learning) with probability 
rn. In the random search, the probability that he/she successfully finds a good arm is denoted as qI. On the other 
hand, we assume that the copy process succeeds with probability qO

8 if there is at least one agent who knows a 
good arm, and fails if no agent knows a good arm. Then, with probability qC/N, the good arm changes to a bad one 
and another good arm appears. If a good arm changes to a bad one, the agents who knew the arm are forced to 
forget it and to know a bad one. See Fig. 1. The difference with our previous model8 is that there are M good arms 
in the previous model, whereas in the present model there is only one good arm.

Let σn be a random variable defined by

σ =



 .

n
n

1, if agent knows a good arm,
0, if agent does not know a good arm (1)

n

This is simply the payoff for agent n. For each turn t, we have a joint probability function P(σ1, …, σN|t), which 
evolves in t according to the aforementioned rule. To exclude trivial results, we assume that qC, qI and qO are positive 
and that rns are less than 18. Then, in the long run, we have the unique steady probability function 

σ σ σ σ= →∞ P P t( , , ) lim ( , , )N t N1 1 . Now, we shall introduce the expected payoff for each agent in the steady state,
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This quantity depends on parameters N, qC, qI, qO, and rns. We regard wn mainly as a function of rns. We denote 
this function by w(rn, rn), where
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Thus, we have wn = w(rn, rn) for each n = 1, …, N.
In this study, we treat wn as the fitness for agent n.

Figure 1.  An agent and an rMAB. The number of agents who know a good arm is denoted as N1.
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Results and Discussion
Pure Strategies and Rogers’ Paradox.  In the present study, the strategy of agent n refers to the social 
learning probability, rn. We call rn = 0, 1 as pure strategies and 0 < rn < 1 as mixed strategies.

First, we confirm that Rogers’ paradox occurs when agents adopt pure strategies. We shall divide N agents into 
two groups. The first group consists of NI individual learners (rk = 0, k = 1, …, NI). The second group consists of 
NS = N − NI social learners (rk = 1, k = NI + 1, …, NI + NS). The corresponding fitness per agent, which we denote 
respectively as wI and wS, are given by

=
+

=
+ +

w
q

a q
w

N q q
a N q a q

,
( )( )

,
(6)

I
I

I
S

I I O
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where a is defined in equation (4).
When qO ≤ qI, we have wI > wS. Therefore, in this case, individual learning is always favourable over social 

learning.
Now, we consider the qO > qI case. Figure 2 is the plot of wI and wS for sufficiently large N.
When the proportion of social learners is small, social learning is effective. However, as the proportion of 

social learners increases, wS monotonically decreases and tends to zero. Thus, Rogers’ paradox occurs.
It is important to note that wI < wS is true when NI/N is finite, with a sufficiently large N. This is because, as 

N → ∞, we have wI → qI/(qC + qI) and wS → qO/(qC + qO).

Nash Equilibrium and Rogers’ Paradox.  Let us assume that each agent adopts a mixed strategy, that is, 
for each n = 1, …, N, the social-learning probability, rn, is an arbitrary number between 0 and 1. This means that 
agent n performs social learning with probability rn and individual learning with probability 1 − rn. The learning 
mode that he/she chooses would be decided stochastically and automatically.

We consider the N-tuple, (r1, …, rN), of the social-learning probabilities. This is a point in the N-dimensional 
unit cube J = [0, 1] × … × [0, 1]. J is regarded as the space of N-tuples of mixed strategies. For each point in J, a 
joint probability function P(σ1, …, σN) is determined and an N-tuple, (w1, …, wN), of the fitness functions of the 
agents is calculated.

Now, imagine that agent n maximises wn by adjusting rn for fixed rks (k ≠ n). It is not difficult to show that the 
maximum point is unique (Fig. 3) and expressed as

=r f r( ), (7)n n
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Figure 2.  Plots of wI and wS. Parameters: N = 10, qC = 0.2, qI = 0.3, qO = 0.8.
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We note that f(r) → 0 as qO → qI + 0. Next, we introduce the function,

= . F r r f r f r( , , ) ( ( ), , ( )) (11)N N1 1

This is a continuous function mapping from the N-dimensional unit cube J into itself. As shown in the 
Methods section, the fixed point of F is unique and is on the diagonal line of J,

= = =r r r , (12)N1 Nash

where rNash is a function of qC, qI, qO and N. The value of rNash is explicitly given by
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The entity rNash has the following properties (see the Methods section): (i) 0 ≤ rNash < 1, (ii) rNash → 0 as 
(qO − qI)N − (a + qO) → 0, and (iii) the fixed point (rNash, …, rNash) is the unique Nash equilibrium point in J. 
Figure 4 is a schematic explanation of the Nash equilibrium point.

Moreover, the corresponding mixed strategy is an evolutionarily stable strategy (ESS)9 because the fixed point 
is a Nash equilibrium point in the strong sense,

> ≠ .w r r w r r( , ) ( , ), for all r r (16)Nash Nash Nash Nash

Further, it is an ESS in the sense of Thomas10, because the inequality,

> ≠w r r w r r( , ) ( , ), for all r r , (17)Nash Nash

is true.
Now, we consider the two fitness functions, wI and wN = w (rNash, rNash). As shown in the Methods section, the 

inequality wN > wI is correct if and only if (qO − qI) N > a + qO. See also Fig. 5. The Nash equilibrium point is usu-
ally regarded as a stable point in the sense that no agent has an intention to change his/her strategy. Therefore, this 
inequality claims that the mixed strategy rn = rNash (n = 1, …, N) can outperform the pure strategy of individual 
learning. This solves Rogers’ paradox. We note that the Nash equilibrium point is realised as a mixed strategy of 
social learning and individual learning.

Pareto Optimality.  Pareto optimality is an important concept alongside Nash equilibrium. Thus, we con-
sider Pareto optimality in our model. We shall adopt a natural definition of the Pareto-optimal point in J as the 

Figure 3.  Plots of the function w(r, r) versus r for various values of r . Parameters: N = 10, qC = 0.2, qI = 0.3, 
qO = 0.8.
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maximum point of the function, ∑ = wk
n

k1 . We can show that the maximum point is unique and is on the diagonal 
line of J,

= = =r r r , (18)N1 Pareto

where rPareto is a function of qC, qI, qO, and N. The value of rPareto is explicitly given by
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Figure 4.  Plot of the vector field (f(r1) − r1, f(r2) − r2). The red spot is the Nash equilibrium point. Parameters: 
qC = 0.1, qI = 0.1, qO = 0.8, and N = 2.

Figure 5.  Plots of wI, wN, and wP as functions of qI. Parameters: N = 10, qC = 0.2, qO = 0.8. Thus, 
− − .N q a N(( 1) )/ 0 7O .



www.nature.com/scientificreports/

6Scientific Reports | 7: 1937  | DOI:10.1038/s41598-017-01750-z

Further, rPareto has the following properties: (i) 0 ≤ rPareto < 1, (ii) rPareto → 0 as (qO − qI)N − (a + qO) → 0, (iii) 
rPareto < rNash if and only if (qO − qI)N > a + qO (see the Methods section), and (iv) the point (rPareto, …, rPareto) is the 
Pareto-optimal point in J. Here, by Pareto optimality, we imply that the statement “if an agent succeeds to increase 
his/her fitness by changing his/her social-learning probability from rPareto to rPareto + δr by δr ≠ 0, then another 
agent’s fitness certainly decreases” is true. Such a δr exists when rPareto > 0 and no δr exists when rPareto = 0. The 
statement is correct in both cases.

We define the Pareto fitness function, wP = f(rPareto, rPareto). Then, we have the inequality wP > wN if and only 
if (qO − qI)N > a + qO (see Fig. 5 and the Methods section). This is trivial by the definition of the Pareto-optimal 
point. Thus, we have established the relation among fitness functions,
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> > − > +

= = − ≤ + .

w w w q q N a q
w w w q q N a q
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Concluding Remarks
We have proposed a stochastic model of N agents and an rMAB. The unique Nash equilibrium point in the mixed 
strategy space J has been presented and shown to be an ESS in the sense of Thomas10. The corresponding fitness 
wN per agent is greater than the fitness wI for an individual learner. This solves Rogers’ paradox.

In this study, we concentrated on steady states. This is valid if the system relaxes quickly to the steady state 
(see the Methods section). However, if rns change faster than the relaxation to the steady state, it is an introduc-
tion of non-trivial dynamics. It may be possible that our system has a nice dynamics possessing the stable Nash 
equilibrium point.

As a future research subject, we propose an experimental study of human collectives in rMAB. There 
have been several attempts in this direction11–13, whose target has been the improvement of performance 
by social learning, that is, collective intelligence effect. Since we have shown that there is an ESS Nash 
equilibrium in the social-learning agents system in rMAB, it is interesting to experimentally examine 
whether the prediction is realised. As a first step, the interactive rMAB game might be a suitable envi-
ronment where one human competes with many other mixed-strategy agents and r = rNash. We can check 
whether the social-learning rate of people is the same with rNash. Second, when many people compete, the 
Nash equilibrium emerges as the model parameter qI changes. Meanwhile, we might be able to detect some 
phase-transitive behaviour8.

As for theoretical research, the stage of our analysis is far from mature. In the present work, we have studied 
the game of rMAB in the steady state of the system. However, when the relaxation time of the system discussed 
in the Methods section is not small enough, the assumption of steadiness is unrealistic in the laboratory experi-
ment. Thus, we need to develop a t-dependent theory. It might be a difficult problem. We believe that the research 
direction is fruitful.

Methods
Mathematical Overview of the Model.  For simplicity we use the following notation,

∏σ σ σ δ δ= = = = .σ σ σ σ
=
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Our model develops in t according to an agent action and the subsequent state change of the rMAB. This is a 
Markov process14. The probability of change σ σ→ ′�� ��  is described by the transition probability matrix14,
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The joint probability function σ σ σ= …��P t P t( ) ( , , )N1  satisfies the Chapman-Kolmogorov equation14,

∑σ σ σ σ+ = ′ ′ .
σ ′

�� �� �� ��
��

P t T P t( 1) ( ) ( )
(26)

Our assumption is that qC, qI, qO > 0 and rn < 1 (n = 1, …, N). In this case, the matrix T is shown to be irreduc-
ible and primitive15. Then, the Perron-Frobenius theory15 ensures that (i) λ1 = 1 is an eigenvalue of T of multiplic-
ity 1 and the steady probability function P(σ��) is a corresponding eigenvector, (ii) the set {|λi|}i≥2 of absolute 
values of eigenvalues of T other than λ1 has an upper bound ρ < 1. When rns are fixed, we have the 
time-homogeneous Markov process14, that is, the matrix T does not depend on t. Therefore, for any initial prob-
ability function σP( 0), we have the unique limit σ σ= ∞

��
�

��P P t( ) lim ( )t . Then, it is not difficult to derive equation 
(3) using σ��P( ).
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The convergence σ σ�� � ��P t P( ) ( ) is exponential, σ σ ρ− ∼ P t P( ) ( ) t. This means that the relaxation time is 
τ ρ= − −1/ log 1. Thus, when no agent changes his/her social learning probability over a much longer period than 
τ, the fitness per agent per turn is almost exactly equal to the value of the function w in equation (3).

Existence of a Fixed Point of F.  Since the N-dimensional cube J = [0, 1] × … × [0, 1] is a compact, convex 
set and F is a continuous function mapping from J into itself, Brouwer’s fixed-point theorem16 guarantees that 
there exists a fixed point of F in J.

A Fixed Point of F is a Nash Equilibrium Point, and Vice Versa.  Let (r1, …, rN) be a fixed point of F, that is, 
rn = f(rn) for each n = 1, …, N. Since r = f(rn) is the unique maximal point of w(r, rn), we have w(rn + δr, rn) < w(rn, rn) 
for each n = 1, …, N when δr ≠ 0. Thus, (r1, …, rN) is a Nash equilibrium point. Conversely, let (r1, …, rN) be a Nash 
equilibrium point, that is, r = rn is a maximal point of w(r, rn) for each n = 1, …, N. Since r = f(rn) is the unique maxi-
mal point of w(r, rn) (see Fig. 3), we have rn = f(rn). Thus, (r1, …, rN) is a fixed point of F.

Uniqueness of the Fixed Point of F.  When qO ≤ qI, we have the unique fixed point (0, …, 0).
Next, we consider the qO > qI case.
Let (r1, …, rN) be a fixed point of F. Since r n = (s − rn)/(N − 1), = ∑ =s rk

N
k1 , all the rns satisfy the common 

relation,
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.r g r f s r

N
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1 (27)

Figure 6(b) is a plot of the function g(r).
This is a strictly increasing concave function for s − (N − 1)r* ≤ r ≤ s − (N − 1)r*, where
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− −
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2 2

It is not difficult to show that r* < r* < 1. The maximum value of the derivative g′(r) is 1/2, which is realised at 
r = s − (N − 1)r*. Thus, = −g r r g r( ) ( ) is a strictly increasing function such that ≤ ≤ g g(0) 0 (1). Therefore, 
there is only one zero, r0, of the function g r( ) in the interval 0 ≤ r ≤ 1. Then, we conclude that r1 = … = rN = r0.

Now we have s = Nr0. Therefore, r0 is a solution of the equation,

= .r f r( ) (31)

Figure 6(a) is a plot of the function f(r). The function f(r) is a decreasing function. Thus, h(r) = r − f(r) is a 
strictly increasing function such that h(0) ≤ 0 ≤ h(1). Therefore, the function h(r) possesses only one zero, rNash, 
such that 0 ≤ rNash < 1. Thus, we have r0 = rNash. This proves the uniqueness of the Nash equilibrium point.

Inequality wP > wN > wI.  It is sufficient to consider the (qO − qI)N > a + qO case. Then, rNash satisfies 
=r f r( ). We introduce the following function,

= + − − + + + − + − − .k u a q u q q N a q aN q q q u q q q q N( ) ( ) {( )( ) ( )( )} ( )( ) (32)O O I O O O I O I O I
2 2

It is not difficult to check that 1/(1 − rNash) is the larger root of k(u). We note that k(1) < 0.
Next, we define rI as

Figure 6.  (a) Plot of the function f(r). (b) Plot of the function g(r).
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= −
+
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This entity has the following properties: (i) 0 < rI < 1, (ii) w(rI, rI) = wI, and (iii) k (1/(1 − rI)) > 0. On the other 
hand, it is elementary to show that k (1/(1 − rPareto)) < 0. Thus, we conclude that rPareto < rNash < rI.

Now, rPareto is the maximal point of w(r, r). Therefore, we have the inequality w(rPareto, rPareto) > w(rNash, 
rNash) > w(rI, rI), that is, wP > wN > wI.
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