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This study aimed to identify the biological processes associated with long-term survival in high-grade serous ovarian
cancer (HGSOC). HGSOC cases obtained from The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) database were
divided into long-term survivors (LTS) and normal-term survivors (NTS) based on survival cutoffs defined by the
HGSOC cohort in the SEER database. Differentially expressed genes (DEGs) were screened using the generalized linear
modeling (GLM) method. Gene Ontology (GO) functional and KEGG pathway enrichment analyses were performed
using DAVID Bioinformatics Resources. DEG-related protein-protein interactions (PPI) were extracted from the
STRING database and hub genes were identified using CytoHubba in the Cytoscape program. In total, 157 DEGs, in-
cluding 155 upregulated and 2 downregulated genes, were identified. Upregulated genes were statistically enriched
in 80 GO terms and 11 KEGG pathways related to energy and substrate metabolism, such as protein absorption, diges-
tion, and metabolism as well as signaling pathways, including chromatin silencing, regulation of ERK1 and ERK2 cas-
cade, and regulation of MAPKKK. ALB and POMC were the common hub genes. These findings reveal that protein
anabolism is crucial to long-term survival, regulated by activation of the MAPK/ERK signaling pathway and chromatin
silencing. Comprehensive understanding of the molecular mechanisms via further exploration may contribute toward

Keywords:

Ovarian cancer
Long-term survivor
Protein anabolism

Gene expression profiling

an effective treatment for ovarian cancer.

Introduction

High-grade serous ovarian cancer (HGSOC) is one of the most common
types of gynecologic malignancy in the United States with 22,530 estimated
new cases and 13,980 estimated deaths in 2019 [1]. Although majority of
these patients are generally considered to be incurable with median sur-
vival duration of less than five years, approximately 15% of them survive
for more than ten years and are seemingly cured after standard initial ther-
apy [2-4]. Clinicopathologic factors associated with long-term survival in
HGSOC include younger age at diagnosis, earlier stage, lower grade, ab-
sence of ascites, primary debulking surgery, normal CA-125 level prior to
chemotherapy, and microscopic disease after cytoreductive surgery
[2,4,5]. Since even patients with negative prognostic factors including ad-
vanced stage, platinum resistance, and recurrence can become long-term
survivors (LTS), clinicopathologic criteria cannot be used on an individual
basis to reliably predict who will be an LTS [1,4,6].

The advent of affordable sequencing technologies has facilitated gene
expression analyses to elucidate relationships between LTS of ovarian
cancer and potential causative genetic alterations. Spentzos et al. [7,8]

identified two genetic signatures of ovarian cancer, one associated with
prognosis and the other with chemotherapy response. Yoshihara et al. [9]
reported a prognostic gene expression profile related to immune response,
focusing on the antigen presentation pathway. The Cancer Genome Atlas
(TCGA) uses transcriptional patterns to divide ovarian cancer into 4 sub-
types that are unrelated with respect to prognosis [10]. Interestingly,
there was are only a few overlapping genes among the reported signatures,
suggesting that the signatures characterized distinct features of the tumors.
Because of differences in research methods and clinical baselines between
studies, it is difficult to obtain a consistent gene expression profile of LTS.

Accurate and consistent selection of LTS and controls is critical in iden-
tifying conserved genetic features associated with long-term survival [11].
However, limited by the small sample size and survival overlap issue, many
patients probably get assigned to the wrong group based solely on survival
time; therefore, any future predictions based on this model are rendered un-
reliable [12]. In order to address the overlap issue, a population-based ap-
proach was used to define the survival cutoffs based on the HGSOC
cohort in the Surveillance, Epidemiology, and End Results (SEER) database,
which is completely independent of the gene expression cohort.
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In this study, we describe an in-depth analysis of transcriptomic alterna-
tions between LTS and normal-term survivors (NTS) with HGSOC to
identify key genes and biological pathways. First, we divided the cases in
The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) hg38 dataset into
the LTS and NTS groups exclusively based on overall survival time and
screened the differentially expressed genes (DEGs). Next, we performed
Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis for all DEGs. Finally,
we constructed a DEG-related protein-protein interaction (PPI) network
and identified hub genes and functional modules. Cumulatively, these find-
ings could help us in furthering our understanding of the molecular mech-
anisms related to long-term survival and ideally applying them to prolong
the life of NTS.

Materials and methods
Definition of LTS and NTS

The gene expression profile matrix and clinical information of samples
were downloaded from the National Cancer Institute Genomic Data Com-
mons website (GDC, https://portal.gdc.cancer.gov/). TCGA-OV dataset
provided both the ‘legacy’ GRCh37 (hg19) data and its GRCh38 (hg38) ver-
sion as ‘harmonized’. The relative abundance results of these two versions
were very highly concordant while restricting to a single workflow; how-
ever, the bias in absolute counts prevented direct comparison of abundance
between them [13]. Therefore, only cases in the TCGA-OV hg38 dataset
were included.

This study included cases diagnosed as per the International Classifica-
tion of Disease for Oncology, 3rd Edition (ICDO3) histology code 8441 and
excluded those with unknown variables in the “year of diagnosis”, “age at
diagnosis”, and “vital status”, as well as gene expression information.
Using these criteria, 374 cases were retrieved from the TCGA-OV hg38
dataset. These cases were diagnosed between 1992 and 2013 and grouped
according to age, at five-year intervals. For deceased patients, survival in
days was converted to survival in years by dividing by 365. For surviving
patients, survival was defined as the time period till the last follow-up
and converted to years.

In order to define reliable and accurate cutoffs for overall survival time,
the present study referred to the survival landscape derived from the ovar-
ian cancer cohort in the SEER database (www.seer.cancer.gov SEER*Stat
Database: Incidence - SEER 18 Regs Research Data + Hurricane Katrina Im-
pacted Louisiana Cases, Nov 2018 Sub 1975-2016 varying). Surveillance
Research Program, National Cancer Institute SEER*Stat software (seer.
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cancer.gov/seerstat) version 8.3.6 was used to screen cases that met the fol-
lowing criteria: (1) Year of diagnosis = “1992 to 2013”; (2) Site recode ICD-
0-3/WHO 2008 = “ovary”; (3) Behavior recode for analysis = “malignant”;
(4) Histologic type ICD-O-3 = “8441”, and (5) Vital status recode (study cut-
off used) = “dead”. After excluding 10 patients with unknown survival
months, 9413 cases were included and their survival information was used
to draw a survival landscape, which comprised boxplots in five-year groups.
As shown in Fig. 1, the survival scatter plot of the TCGA-OV cohort was
added to the survival landscape. LTS were defined as cases both alive and
dead in outlier areas, while NTS were defined as only dead cases within
the boxes. The cutoffs of LTS and NTS in each five-year group are shown
in Table S1. Ultimately, this study included 19 LTS and 105 NTS, and
their baselines were compared with no significant differences in age, histo-
logical diagnosis, FIGO stage, chemotherapy, and radiotherapy (Table 1).

Gene expression data download and processing

The harmonized gene expression profile matrix was downloaded from
the National Cancer Institute Genomic Data Commons website (GDC,
https://portal.gdc.cancer.gov/) via the “TCGAbiolinks” package 3.10 in R
program [14]. According to the suggested workflow, an SE object included
information for both genes and samples with gene expression tables of
HTSeq-based counts from reads harmonized and aligned to the hg38 ge-
nome assembly. Next, an array-array intensity correlation (AAIC) was ap-
plied to pinpoint samples with low correlation (threshold of 0.6). Finally,
the gene counts were normalized for GC content and quantile filtering
was applied with a cutoff of 0.25.

DEG screening

We used the TCGAbiolinks package called the edgeR pipeline [15]
implementing a generalized linear modeling (GLM) procedure based on
the log-rank score method to screen the DEGs between LTS and NTS sam-
ples. Genes with an adjusted P value of <0.001 and [log fold change
(FC)| > 1 were set as cutoff criteria for DEGs.

GO functional and KEGG pathway enrichment analyses of DEGs

The DAVID 6.8 database (https://david.ncifcrf.gov/) [16,17] is a com-
monly used database for gene enrichment and functional annotation analy-
ses. This database integrates biological data and analytical tools to provide
systematic and comprehensive annotation of biological functions for large-
scale lists of genes or proteins with respect to three aspects: molecular
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Fig. 1. Survival landscape of HGSOC and selection of long-term survivors (LTS) and normal-term survivors (NTS) from TCGA cohort. The boxplots were drawn according to
the survival time of deceased HGSOC cases in SEER database. Red points represent the LTS, including both alive and deceased cases. They are distributed in the outlier region
of their respective age groups. The green points represent the NTS. They are deceased cases within the box. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Table 1

clinical and demographic information of study cohort.
Characteristics LTS NTS p value
Number 19 105
Age (mean = sd), years 60.5 + 8.3 59.1 + 85  0.480
Figo stage

Stage IC - 1

Stage IIB - 1

Stage IIC - 2

Stage IIIA - 3 0.772

Stage I1IB - 2

Stage I1IC 16 77

Stage IV 3 19
Chemotherapy

Yes 18 101

No - - 0.571

NA 1 4
Radiotherapy

Yes 1 9

No 17 94 0.656

NA 1 2
Vital status

Alive 14 -

Dead 5 105 <0.001
Survival (mean = sd), years 104 = 1.6 2.9 + 0.9 <0.001
Race

White 19 91

Black or african american - 10 0.174

Native hawaiian or other pacific islander - ’

Asian - 3
Ethnicity

Not hispanic or latino 16 61

Hispanic or latino 0 1 0.070

Not reported 3 43

function (molecular-level activities performed by gene products), cellular
component (the locations relative to cellular structures in which a gene
product performs a function), and biological process (the larger processes,
or ‘biological programs’ accomplished by multiple molecular activities).
GO annotation and KEGG pathway enrichment analyses of the identified
DEGs were performed using DAVID, and the TXT files of their results
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were downloaded for subsequent analysis. The results were considered sta-
tistically significant if P < 0.05. A visual network analysis of the GO anal-
ysis results was performed using QuickGO, a web-based tool for GO
searching (https://www.ebi.ac.uk/QuickGO/) [18].

PPI network construction and hub gene identification

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is
a search tool that can analyze the interaction relationships between pro-
teins (https://string-db.org/) [19]. STRING was used to analyze the PPI net-
work of DEGs to help us understand the relationships between different
genes. The minimum required interaction score was set as the median con-
fidence (0.400). The TVS file of the PPI results was downloaded for subse-
quent analysis.

The PPI result was imported into the Cytoscape 3.7.2 software [20]. Hub
genes were screened from the PPI network using the cytoHubba plugin [21].
In this study, we explored hub genes in DEG-related PPI networks using four
topological algorithms: degree, bottleneck (BN), closeness, and between-
ness. The top ten ranked genes were selected as candidate hub genes in
each method. Venn diagram analysis was used to identify common genes.

Authorization was not requested from a local ethics committee, as all
data were available on open access from the GEO and SEER databases.

Results
Identification of DEGs

A total of 157 genes were differentially expressed with |log2FC| > 1 and
FDR < 0.001, of which 155 genes were upregulated and only two were
downregulated (Fig. 2). These genes identified in the tumors of LTS and
NTS were significantly different (Table S2).
GO functional and KEGG pathway enrichment analyses of DEGs

GO function annotation of the integrated DEGs was performed using the

DAVID database and its online analysis tool. The GO functional analysis of
the integrated differential genes was divided into the following three parts:
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Fig. 2. The differentially expressed genes (DEGs) were identified between long-term survivors (LTS) and normal-term survivors (NTS) with HGSOC. The black points were not
DEGs with |log2FC| < 1 or FDR = 0.001. The red points were up-regulated genes (log2FC > 1 and FDR < 0.001), while the green points were down-regulated genes (log2FC
< —1 and FDR < 0.001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. GO Biological Function Enrichment for up-regulated DEGs. Contain: Molecular Function Group (MF), Biological Process Group (BP), and Cellular Component Group

(CQ).

biological process (BP), molecular function (MF), and cell component (CC).
The results were considered statistically significant if P < 0.05 and yielded
a total of 80 results from the GO enrichment analysis of the upregulated
DEGs, as shown in Table S3. The top 15 results obtained from the GO en-
richment analysis of the upregulated DEGs are shown in Fig. 3. The enrich-
ment analysis of these genes identified the extracellular region and cell
surface as the CC. Their MF comprised protein homodimerization activity,
protein heterodimerization activity, receptor binding, serine-type endopep-
tidase activity, and transcriptional activator activity. Their BPs were positive
regulation of transcription from RNA polymerase II promoter, proteolysis,
platelet degranulation, digestion, and blood coagulation.

A KEGG pathway analysis of the integrated DEGs was performed using
the DAVID database. The DAVID database and the results of the analysis are
shown in Table S3 and Fig. 4, respectively. The upregulated DEGs were
mainly enriched in two KEGG pathways, namely pancreatic secretion and
protein digestion and absorption.

To understand the panorama of biological processes related to long-
term survival, an ancestor chart for all 80 GO function terms was generated
using the QuickGO online tool (Fig. S1). Furthermore, in order to make the

biology clearer and more interpretable, functional annotation clustering
was performed using the DAVID online tool. The classification stringency
was set to ‘low’ as the default, and the result set included 10 clusters. The
top 5 results obtained from the functional annotation clustering of the up-
regulated DEGs are shown in Table S3. The upregulated five genes positively
regulate protein digestion and absorption, coagulation and fibrinolysis, car-
bohydrate metabolic process, regulation of endopeptidase activity, and
chromatin silencing, respectively.

PPI network and hub gene identification

The STRING online database was used to analyze all 157 DEGs and con-
struct a PPI network. The PPI network included 143 nodes and 262 edges
with an average node degree of 3.66. The PPI enrichment p-value was
less than 1.0 x 107 '6. The results were downloaded and analyzed via
the cytoHubba plug in Cytoscape 3.7.2 software. Based on their scores cal-
culated using four topological algorithms, the genes were ranked and the
top 10 genes were filtered as hub genes (Table 2). A Venn diagram was con-
structed to identify common hub genes. ALB and POMC were common
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Fig. 4. KEGG pathway enrichment analysis of up-regulated DEGs.
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Table 2
Hub genes for DEGs, highly expressed genes ranked in cytoHubba.

Catalog Rank methods in cytoHubba
Degree BottleNeck Closeness Betweenness
Gene symbol top 10 ALB ALB ALB ALB
FGA SOX2 AFP SOX2
CPAl SERPINF2 FGA GAD1
AFP AFP SERPINF2 POMC
FGG GAD1 POMC PRSS1
POMC PLA2G1B FGG REN
SERPINF2 HIST2H2AA HNF4A HIST2H2AA
APOH POMC SOX2 HIST2H2AA3
ITIH2 HNF4A PRSS1 HNF4A
AMBP PRSS3P2 AMBP ONECUT1

according to four algorithms, and SERPINF2, AFP, SOX2, and HNF4A were
common according to three algorithms.

Discussion

In this study, we developed a population-based approach to divide
HGSOC cases in the TCGA-OV dataset into LTS and NTS groups based exclu-
sively on overall survival time. The gene expression profile between the two
groups should be almost identical because of the exact same histopathology
and clinical baseline, except a small difference attributable to the difference
in survival times. In the present study, we identified 157 differentially
expressed genes between LTS and NTS, consisting of 155 upregulated
genes and 2 downregulated genes. These upregulated genes are compre-
hensively enriched in multiple metabolic processes and homeostasis as
well as regulatory pathways, including chromosome silencing, MAPK/
ERK signaling pathway, fibrinolytic system, and regulation of endopepti-
dase activity. Additionally, two common hub genes ALB and POMC were
identified. Interpretation of the GO annotation panorama shows that pro-
tein anabolism is the key to long-term survival of patients with HGSOC,
against cancer-related malnutrition and cachexia.

Serum albumin has been shown to be an accurate predictor of malnutri-
tion and subsequent survival in ovarian cancer [22,23]. Serum albumin is
exclusively synthesized in the liver and its synthesis is modulated by die-
tary factors such as amino acid and protein intake [24]. One study discov-
ered a direct correlation between serum albumin levels and survival,
wherein people with lower levels showed poor survival. Low preoperative
serum albumin is also associated with poor survival in patients undergoing
optimal debulking [25] and cytoreductive surgery [26]. Although tumor-
expressed albumin and normal serum albumin have different functions, it
has been proven that tumor cells can produce albumin. In the present
study, ALB, a common hub gene, was upregulated in LTS. Given that
most ovarian cancer cases in this study were FIGO stage 3 and 4 with rela-
tively high tumor burden, it is reasonable to expect that the upregulated
ALB expression in tumors has a positive effect on serum albumin levels. Fur-
ther studies are needed to reveal the correlation between tumor ALB ex-
pression and serum albumin levels in ovarian cancer [27].

The present study found that activation of the MAPK/ERK signaling
pathway in LTS functions as a tumor suppressor by promoting protein anab-
olism. Recent evidence indicates that the MAPK/ERK signaling node dem-
onstrates both oncogenic and tumor suppressor effects depending on the
tissue-specific tumor microenvironment [28]. In a gynecologic oncology
group study, a phase II trial of the MEK inhibitor selumetinib did not sup-
port the preponderant role of the MAPK/ERK pathway as a targeting onco-
genic driver in low-grade serous ovarian tumors [29]. Another study
regarding sorafenib did not demonstrate the biochemical activity of re-
duced ERK activation in high serous histology recurrent ovarian cancer pa-
tients, indicating the lack of genomic events in the MAPK/ERK pathway
[30]. These results suggest that ovarian cancer patients cannot benefit
from MAPK/ERK inhibition. On the contrary, the results of this study dem-
onstrate that activation of the MAPK/ERK pathway is associated with long
overall survival. The MAPK/ERK pathway, a convergent signaling node
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receiving inputs from numerous stimuli, promotes proliferation and inva-
sion in cancer [31]. During the growth stage of cell proliferation, cells syn-
thesize new DNA and proteins required for cell division. In the present
study, the activation of anabolism, which promotes protein synthesis, is as-
sociated with long-term survival, but new DNA synthesis and invasion are
antagonized by other biological processes.

The present study found that activation of new DNA synthesis in the
MAPK/ERK pathway is antagonized by chromatin silencing. Chromatin si-
lencing is the repression of transcription by altering the structure of chro-
matin to an inaccessible state [32]. In the present study, upregulation of
HIST1H2AB, HIST1H2AH, HIST2H2AA3, and HIST2H2AA4 is associated
with long-term survival. Histone 2A monoubiquitination is more often asso-
ciated with gene silencing [33]. Some other mechanisms may also be in-
volved in the regulation of chromosome silencing, but remain unclear.

The present study also found that activation of cell invasion, associated
with tumor metastasis, was inhibited by functions of the only two downreg-
ulated genes, HMCNZ2 and ARHGAP6. HMCNZ2 encodes an evolutionarily
conserved protein that belongs to the fibulin family of extracellular matrix
proteins, which regulate tissue adhesion and cell migration [34]. A human
cell model for epithelial breast cell invasion revealed HMCNZ as one of the
most strongly upregulated genes in invasive cells [35]. A study on ovarian
cancer demonstrated that ARHGAP10, a member of the RhoGAP family
of proteins, was downregulated in ovarian cancer and suppressed tumorige-
nicity of ovarian cancer cells by inhibiting cell adhesion, migration, and in-
vasion [36]. ARHGAP6, another member of the RhoGAP family of proteins,
has a function similar to that of ARHGAP10 as a GTPase activator for the
Rho-type GTPases by converting them to an inactive GDP-bound state.
However, it demonstrated the opposite effect in the present study. This re-
sult is caused by the other function of ARHGAPS as a cytoskeletal protein
that promotes actin remodeling [37]. Therefore, it is possible that downreg-
ulation of ARHGAPG6 can reduce cell invasion more than its upregulation in
ovarian cancer.

The present study found that upregulated genes SERPINF2, APOH, FGG,
and FGA were enriched in the fibrinolytic system, namely fibrinolysis, and
negatively regulated fibrinolysis. Fibrinogen and fibrin are essential for he-
mostasis and are major factors in thrombosis, wound healing, and several
other biological functions and pathological conditions. Upon cleavage of fi-
brinopeptides by thrombin, fibrinogen is converted to fibrin monomers
[38]. Fibrin promotes cell migration by providing a matrix for tumor cell mi-
gration and interacting with adhesive molecules and integrins [39]. Plas-
minogen activator inhibitor 1 (PAI-1), a component of the fibrinolytic
system, inhibits apoptosis and increases tumor cell survival, representing a
strong biomarker for tumor aggressiveness and poor prognosis. A mouse
model of cerebral infarction demonstrated that aspirin was beneficial in
thrombolysis by decreasing PAI-1 expression [40]. Therefore, use of aspirin
may improve ovarian cancer prognosis by downregulating PAI-1 expression.

The present study found that upregulated POMC, encoding
proopiomelanocortin peptide, is one of the common hub genes associated
with long-term survival. POMC, a precursor of ACTH and (3-LPH, is responsi-
ble for central melanocortin signaling in the control of food intake and energy
homeostasis [41,42]. Excess cortisol secretion, caused by pituitary tumors
that predominantly secrete ACTH precursors or by nonpituitary or ectopic tu-
mors, is defined as Cushing's syndrome [41]. However, the expression of
POMC is relatively low in peripheral tissues including normal and ovarian
tumor tissues [43,44], and it cannot produce active POMC-derived peptides.
Therefore, upregulated POMC expression in LTS with HGSOC may not
contribute to appetite regulation. In vivo investigations in breast cancer
demonstrated that POMC interference regulated tumor proliferation via
modulating protein phosphorylation mediated by G-protein-coupled estro-
gen receptors [45]. Accordingly, POMC-expressing HGSOCs may enhance
the biological processes related to proliferation.

Conclusion

LTS have distinct biology and molecular features and differ from NTS
despite having the same histopathology type (HGSOC) and similar clinical
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baselines. The present study used bioinformatics methods and revealed that
protein anabolism is the core biological process associated with long-term
overall survival in HGSOC, that is comprehensively regulated by the
MAPK/ERK pathway, chromatin silencing, and the fibrinolytic system.
These results suggest that the long-term overall survival of patients with
HGSOC might be related to these hub genes and biological pathways, and
a more comprehensive interpretation of the molecular mechanisms by fur-
ther exploration might contribute to the development of an effective treat-
ment for ovarian cancer.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100885.
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