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ABSTRACT

RNA structural complexity and flexibility present a
challenge for computational modeling efforts. Ex-
perimental information and bioinformatics data can
be used as restraints to improve the accuracy of
RNA tertiary structure prediction. Regarding utiliza-
tion of restraints, the fundamental questions are: (i)
What is the limit in prediction accuracy that one can
achieve with arbitrary number of restraints? (ii) Is
there a strategy for selection of the minimal number
of restraints that would result in the best structural
model? We address the first question by testing the
limits in prediction accuracy using native contacts
as restraints. To address the second question, we
develop an algorithm based on the distance varia-
tion allowed by secondary structure (DVASS), which
ranks restraints according to their importance to
RNA tertiary structure prediction. We find that due to
kinetic traps, the greatest improvement in the struc-
ture prediction accuracy is achieved when we uti-
lize only 40–60% of the total number of native con-
tacts as restraints. When the restraints are sorted by
DVASS algorithm, using only the first 20% ranked re-
straints can greatly improve the prediction accuracy.
Our findings suggest that only a limited number of
strategically selected distance restraints can signifi-
cantly assist in RNA structure modeling.

INTRODUCTION

Biological functions of RNA molecules rely on a vari-
ety of complex 3D conformations, such as pseudoknots
and non-canonical base pairs. Over the past few decades,

high-resolution structures (1–3) of these complex confor-
mations have significantly advanced our understanding of
RNA structure and function. However, the gap between
high-resolution RNA tertiary structures solved experimen-
tally and newly discovered functional RNAs is immense
due to lack of efficient structural biology tools for solving
RNA tertiary structures. Although computer-based meth-
ods have progressed substantially in the past decade for
RNA structure modeling (4–21), based on the results of
an RNA tertiary structure prediction competition, RNA-
Puzzles (9–11), these methods are not yet adequate to model
large RNA structures with complex architectures. Predict-
ing structures of large RNA molecules with non-canonical
interactions has become increasingly difficult due to the
longer time scales needed to sample vast conformational
landscapes. Nonetheless, the efficiency and accuracy of sec-
ondary (22–24) and tertiary structure prediction algorithms
(4–11,14–21,25) can be substantially improved by combin-
ing with structural restraints derived from either sequence
co-evolution analysis data (12,26,27) or chemical detec-
tion data (e.g. SHAPE-MaP (28) and RING-MaP (29))
or hydroxyl radical detection (30) or mutation and map-
ping methods (31). In this process, researchers have effi-
ciently developed advanced methodologies for RNA struc-
ture prediction or modeling by amalgamating experimen-
tal and computational techniques (4,12,27,30,32). SimRNA
(15,33) supports user-designated distance restraints that
represent any type of pairwise interaction as long as it can
be defined in terms of any pair of the five atoms (P, C4′
and N1, C2, C4 for pyrimidines or N9, C2, C6 for purines)
or a virtual point at the middle of the base. FARFAR
(20,34) integrates NMR 1H chemical shift data with Rosetta
de novo modeling to consistently produce high-resolution
RNA structures. 3dRNA (12,35) utilizes sequence coevolu-
tion analysis results to guide the structure optimization pro-
cedure after an initial fragment assembly procedure. NAST
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(36) supports known or predicted tertiary contacts and ad-
ditionally, it can use residue-resolution experimental data
such as hydroxyl radical to filter the generated decoy struc-
tures. Vfold (6) is a statistical mechanics-based RNA fold-
ing model that can predict both RNA 2D and 3D structures.
RNAComposer (16) is a knowledge-based RNA model-
ing method employing fully automated fragment assembly.
ModeRNA (17) is a comparative RNA modeling method
capable of handling 115 different nucleotide modifications.
We have previously developed a platform iFoldRNA (http:
//iFoldRNA.DokhLab.org) (5,14) for RNA tertiary struc-
ture modeling using physical force field combined with dif-
ferent types of experimental data, including those obtained
from NMR (4) or FRET (37).

While the incorporation of restraints could efficiently
improve the prediction accuracy, additional restraints im-
pose significant burden on computational cost, especially
when the number of restraints is extremely large. Further-
more, unlike protein modeling (38), the incorporation of re-
straints in RNA structure prediction may not always lead
to an increase of the prediction accuracy due to kinetic
traps in over-constrained models. There is currently no
strategy available for selecting suitable restraints that con-
tribute to improving the accuracy of RNA structure pre-
diction. Such strategy would have significantly reduced ex-
perimental burden for structural characterization of RNA
molecules by focusing on determining experimental infor-
mation that would result in most accurate RNA structures.
Here, we ask two critical questions: (i) What is the limit
in accuracy that one can achieve with arbitrary number of
pair-wise distance restraints? (ii) Is there a strategy for selec-
tion of the minimal number of restraints that would result
in the best structural model of RNA?

We utilize the Gō model (39) to mimic pair-wise dis-
tance restraints. In Gō model, two nucleotides attract or
repel each other if they are or not in proximity in the na-
tive state. Gō potential effectively biases formation of na-
tive contacts and disfavors non-native ones, thus allow-
ing proteins (38,40-50) and RNA molecules (4,30,51,52) to
navigate the energy landscape (53–56) to their native state
by reducing frustrations in the free energy landscape (57).
Utilization of the Gō model in simulations ensures con-
sistency of the modeled RNA molecules with their native
structures without any specific force field biases. We have
found that (4,30,51,58–61) RNA native structures can be re-
produced with high fidelity using experimental-derived re-
straints through Gō model in discrete molecular dynamics
(DMD) simulations. Using a fraction of native contacts as
restraints in Gō model allows us to directly interrogate pre-
diction accuracy as a function of the fraction of utilized re-
straints, and address the first question.

To address the second question, we develop a restraints-
sorting algorithm based on distance variation allowed by
secondary structure (DVASS), which ranks restraints by
the distance variation between two residues when the given
secondary structure is formed. Using the distance varia-
tion metric, we measure the importance of restraints on
RNA tertiary structure prediction, that is, how much a con-
straint would improve the prediction accuracy. The DVASS
algorithm is based on purely geometrical considerations
and does not rely on molecular dynamics simulations, al-

lowing rapid evaluation of restraints’ importance. Our re-
sults show that DVASS can effectively rank all restraints,
and the high-ranking restraints could greatly improve the
structure prediction, while the low-ranking restraints re-
sult in insignificant accuracy improvement. Without us-
ing DVASS, approximately 40–60% of all the restraints are
needed to maximally improve the prediction accuracy. Af-
ter sorting the restraints by DVASS, if merely the 20% top
ranked sorted restraints are employed, the improvement
of the prediction accuracy is comparable to the improve-
ment of the prediction accuracy obtained by using 60%
unsorted restraints. Our findings suggest that due to the
rugged free energy landscape of RNA, constraining the
molecule in simulations beyond 60% of the total number
of restraints is not beneficial for accurate structure pre-
diction. Our new algorithm reduces the burden of deter-
mining pair-wise distance restraints to 20%, thus offering
a strategy for integration of experimental and computa-
tional workflows for RNA structure modeling. The im-
plementation of DVASS algorithm could be downloaded
from http://dokhlab.org/dokhlab/download/dvass.tar.gz or
https://bitbucket.org/dokhlab/dvass.

MATERIALS AND METHODS

iFoldRNA

iFoldRNA utilizes a coarse-grained three-bead RNA model
(5), in which each bead represents a phosphate, sugar or
nucleobase. The prediction is based on the discrete molec-
ular dynamics (DMD) (51,60,62) engine implemented in
Dokholyan Lab. Base-pairing information is incorporated
in the simulation as an additional potential. A collection of
RNA molecules are subject to replication exchange molec-
ular dynamics at different temperatures to enhance confor-
mation sampling (63). After the DMD simulation, the 100
lowest energy structures are selected and clustered accord-
ing to the RMSD between the selected pair of structures.
The centroid of the resulting cluster is preserved for all-
atom reconstruction. If hydroxyl radical reactivity probing
(30) or NMR data (4) are available, an additional force field
is applied to effectively bias the RNA to the native structure.
The reconstruction of an all-atom model from the coarse
grained model is performed by replacing each of the three-
bead nucleotides with a rotamer of the corresponding nu-
cleotide selected at random from all-atom structures avail-
able in Protein Data Bank (64).

Restraints definition

Base pairs between nucleotides in the form of Watson–
Crick interactions are the general form of restraints used
in RNA structure prediction approaches. Additional inter-
actions exist such as base stacking and non-canonical base
pairs such as reverse base pair interactions and Hoogsteen
base pairs (65). These interactions together form the basis
for the contacts defining RNA tertiary structures. We mea-
sure various canonical and non-canonical interactions seen
in published RNA structures in the Protein Data Bank (64)
to define a native contact reaction coordinate for our DMD
simulations (Figure 1A). We find that the optimal defini-
tion for a native contact in RNA is between any distance
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Figure 1. Design of RNA Native Contacts, Gō Potential Restraints and the DVASS Algorithm. (A) Distances between C1′ atoms in RNA fall under 15
Å for many common base interactions such as A-U Watson–Crick base pairs (10.2 Å) and G-C Watson–Crick base pairs (10.7 Å) or stacking interactions
with adjacent nucleotides (5.4–10.7 Å). Native restraints are modeled using a step-wise function in DMD simulations. Potential energy values for the well
reach −1.0 kcal/mol/K and the walls of the restraints span from 3.75 to 15 Å. (B) The workflow of DVASS algorithm. (C) The helix geometry parameters
and the chain connectivity parameters. (D) The triangle inequality.

less than or equal to 15 Å between C1′ atoms in any two
nucleotides. The C1′ atom, located in the sugar ring, is be-
tween the nucleobase and phosphate group and provides a
central and consistent marker for defining contacts of vari-
ous canonical and non-canonical RNA interactions. We can
then use this distance measurement to implement Gō re-
straints that reinforce native contacts with an energy bonus
defined by a step function (Figure 1A).

Implementation of RNA Gō potential

The potential is designed as step functions constraining dis-
tances between beads of the iFoldRNA three bead model.
Both attractive and repulsive restraints are tested and imple-
mented to either limit beads within or outside of the 3.75–
15 Å range. The restraints are only applied to pairs of nu-
cleotides with sequence numbers i and j ≥ i + 2. The en-
ergy well for inter-unit interactions is assumed to be iden-

tical for all interacting pairs and is assigned a value of 1.0
kcal/mol/K. The step-function also contains a single well
over the distance range allowing for flexibility within the
system during folding simulations.

Computational modeling using Gō restraints

We perform RNA coarse-grained DMD simulations, con-
sisting of three pseudo-atoms per nucleotide representing
base, sugar and phosphate groups. The native contacts and
Gō restraints are generated using a custom Python script
that analyzes the atom distances within a model from X-ray
crystal structures or the lowest energy model from NMR
ensembles downloaded from the Protein Data Bank. We
incorporate the native contacts into the DMD simulations
as attractive potentials and base pair (A•U, G•C Watson–
Crick pairs and G•U wobble base pairs) restraints into the
state file before running replica exchange DMD simulations
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for 500 000 time units (∼25 ns) at temperatures of 0.2, 0.225,
0.25, 0.27, 0.3, 0.333, 0.367 and 0.4 kcal/mol•kB. We per-
form a clustering analysis on the lowest energy models that
satisfy the native contacts from the coarse-grained trajec-
tories. Clustering analysis is performed using an RMSD-
based hierarchical clustering algorithm, OC (66), to select
the final structural model.

Thermodynamic study of the DMD simulation

We derive the potential of mean force (PMF) as follows:

PMF(RMSD, E) = −kbTln(W(RMSD, E))+C

where E is the iFoldRNA energy, kb is the Boltzmann con-
stant, T is the temperature (K), W is a function that defines
the probability of a given pair of RMSD and the iFoldRNA
energy, and the constant C sets the lowest PMF value at any
given temperature to be zero.

The DVASS algorithm

Using only the secondary structure as the input, the DVASS
algorithm estimates and outputs distance variation values
for all pairs of residues (or the given residue pairs list pro-
vided by the user). Distance variation of two residues is the
difference between the maximum and minimum distances
between the two residues among all possible structures in
the conformational space. By forming the secondary struc-
ture, the distance between any two residues in helix regions
is supposed to be nearly fixed because helices in RNA struc-
tures ordinarily possess similar structures without signif-
icant disparity. Based on distances between C1′ atoms in
residues, we compiled a set of parameters (Figure 1C) de-
picting characteristic local structures, such as helix, gener-
ally assuming a canonical double-helical form, and back-
bone bond, typically featuring fixed values of both bond
length and bond angle. The distance between two succes-
sive residues in the backbone, calculated by the distance be-
tween C1′ atoms in the two residues, is around 6.1 Å. The
distance between two residues in the backbone separated by
one residue is ∼11.2 Å. Based on this distance information
derived from the secondary structure, we could infer the
maximum and minimum distances of all other residue pairs
by conducting the steps in the workflow in Figure 1B. A
distance variation is then defined as the difference between
the minimum possible distance and the maximum possible
distance. The algorithm is implemented by iteratively ap-
plying the triangle inequality (Figure 1D). If we know the
minimum and the maximum distances between residue a
and residue b, and the minimum and maximum distances
between residue b and residue c, then we could infer the
minimum and maximum distances between residue a and
residue c.

We show in Supplementary Figure S1 an example of the
calculation of distance variations given an artificial sec-
ondary structure: ‘((((. . . .((((. . . ))))..(((())))..))))’. Initially,
we construct a matrix (N × N), where N is the number of
residues. Entries in the upper triangle of the matrix are all
assigned 999 (Å) and entries in the lower triangle are as-
signed 6.1 (Å), which is the distance between C4′ atoms in
two adjacent residues in RNA. The pair-wise distances in

the chain and the three helix regions (Supplementary Fig-
ure S1F) are determined based on the formula in Figure 1C
and 1D, and they are then assigned to the corresponding po-
sitions in the matrix (Supplementary Figure S1A). The tri-
angle inequality is then iteratively applied in the matrix. In
each step, all entries in the matrix are updated by applying
triangle inequality to all possible ternary tuples. The proce-
dure is converged after five steps when there are no changes
in the matrix (Supplementary Figure S1B, C and D). The
distance variations are then calculated by subtracting the
lower triangle from the upper triangle (Supplementary Fig-
ure S1E).

Once we attain all distance variations, the next step is to
cluster them since we observed that certain distance varia-
tions are inter-correlated. Suppose residue a and residue b
have a fairly large distance variation, while residue a and
residue c have an extremely small distance variation, then
the distance variation between residue c and residue b is
likely to be large. The clustering algorithm is based on
such a straightforward observation described above. Ini-
tially, each of the distance variations is allotted to a distinct
cluster, then we randomly pick out a distance variation and
then assign the distance of the corresponding residue pair
a definite value, which renders the selected distance varia-
tion to be 0. We then merge this distance variation and those
distance variations that undergo drastic change (larger than
a customized cut-off) into one single cluster. By iteratively
conducting this procedure, we cluster all the distance vari-
ations. The selection of the cut-off is crucial to the resulted
number of clusters. A small cut-off may result in a plethora
of clusters, while a large cut-off will only engender a smat-
tering of clusters.

Prediction of the number of contacts

We extend the DVASS algorithm to predict the number of
contacts given the secondary structure. First, we likewise as-
sign some initial distances by the knowledge of RNA helix
geometry parameter and backbone conformation (Figure
1C). We then iteratively utilize the triangle inequality (Fig-
ure 1D) to deduce the distance variations of all the residue
pairs. We traverse all the distance variations to find out the
one that has the largest value and then assign a definite
value to the distance between the two residues pertaining
to the corresponded distance variation. Thus, the new dis-
tance variation of this residue pair is 0. We then again itera-
tively utilize the triangle inequality to update all the distance
variations. We repeat this process 50 times and then count
the number of residue pairs that have the minimum distance
<15.2 Å, which is trained in a 22 RNAs dataset (Supple-
mentary Table S1) and slightly larger than the aforemen-
tioned cut-off value 15 Å. This number serves as the final
predicted number of contacts.

RESULTS

Dataset generation

We perform simulations of RNA folding using native con-
tact restraints in coarse-grained DMD simulations (iFol-
dRNA) to evaluate the relationship between the prediction
accuracy and the number of restraints imposed. We select
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22 RNAs (Supplementary Table S1) from PDB database as
the test set. We choose RNA structures from PDB database
in such a way that the lengths of the 22 RNAs vary from 22
to 233 nt, and they have various types of loops, including
hairpin loops (3OVA, 2ZY6), internal loops (2PXV, 4QVI),
junction loops (2N3R, 3RG5) and pseudo-knots (2M8K,
3L1V). Subsequently, we extract all contacts from their na-
tive structures. The contacts between two nucleotides are
defined by a distance less than or equal to 15 Å between
corresponding C1′ atoms. This definition covers commonly
occurring native contacts, such as Watson–Crick base pairs,
and non-canonical interactions crucial for proper modeling
of complex RNA. Each of the contacts could be used in the
structure prediction as a constraint.

Correlation between the number of restraints and the predic-
tion accuracy

To test how the prediction accuracy changes with the num-
ber of restraints, we vary percentages (0%, 5%, 10%, 20%,
40%, 60%, 80% and 100%) of the total native contacts re-
straints used in simulation to determine the tertiary struc-
tures of the 22 RNAs. For each set of restraints, we ran-
domly select a corresponding subset of restraints and per-
form 20 different simulation attempts. The restraints in dif-
ferent simulation attempts are different. For each of the
RNAs, we calculate the average RMSD and the correspond-
ing standard deviation of each of the constraint sets.

From our simulations, we find that the RMSD decreases
steadily with the rise in the percentage of restraints from 0 to
40% (Figure 2A). The RMSD shows no noticeable decrease
when the restraints percentage increases from 40% to 60%
(Figure 2A). The RMSD increases when more than 60% re-
straints are imposed on the RNA model, suggesting that the
molecule becomes kinetically trapped in local minima. Us-
ing 100% native contacts restraints to model RNA results
in a slightly higher RMSD of the predicted structure than
that using 60% restraints (Figure 2A) for some but not all
studied RNA. For some of the RNAs (such as 2L1V, Fig-
ure 2C), using 100% restraints results in an RMSD as low as
that of 60% restraints, while for other RNAs (such as 3LA5,
Figure 2B), 100% restraints result in a much higher RMSD
than that of 60% restraints. Kinetic traps associated with
RNA folding are likely related to the complexity of RNA
structure. For example, the secondary structure of 3LA5 is a
complex three-way junction (Figure 2D); correspondingly,
the RMSD of the predicted native structure significantly in-
creases when more than 60% restraints are imposed (Fig-
ure 2B). The secondary structure of 2L1V is relatively sim-
ple since it contains only two short helices (Figure 2E), al-
though it is a pseudo-knot structure; correspondingly, the
RMSD of the predicted native structure does not increase
when more than 60% restraints are imposed (Figure 2C).

The folding landscape by using Gō model

We select a three-way junction from the Varkud Satellite
Ribozyme (67) (PDB ID: 2MTJ) as a case to interrogate
how a Gō model constrains the folding landscape during
simulations. The simulations with no restraints show a sin-
gle free energy minimum (Figure 3A), which is referred to

as a distal-native state (DN). The simulations with 40% re-
straints (Figure 3B) show both a DN state and a near-native
state (NN), suggesting that the imposed restraints are capa-
ble of shifting the sampling space of the simulations toward
the NN states. The RMSD of the NN state is ∼3.37 Å (Fig-
ure 3D), and that of the DN state is ∼9.96 Å (Figure 3E).
Almost no energy barrier exists between the two states, sug-
gesting that the DN and NN states could be inter-converted
readily. The simulations with 80% restraints (Figure 3C)
show separated NN state and DN state, indicating that the
two states are hard to inter-convert due to the kinetic bar-
riers formed by the additional restraints. Once the struc-
ture situates in one state, it is prone to being trapped due
to the higher free energy barrier (white dashed box in Fig-
ure 3C). The dissection of the contacts in the native struc-
ture, the NN and the DN structures (Figure 3F) suggests
that a portion of the contacts (red dashed box in Figure 3F)
do not readily form even though they are imposed as re-
straints. The existence of the free energy barrier hinders the
conversion of the structure to a near-native state, in which
all contacts are formed.

DVASS strategy for restraints selection

We have demonstrated that the usage of ∼40–60% restraints
yields optimum structures in RNA structure prediction. We
will utilize the DVASS algorithm to further reduce the min-
imum required number of restraints. We hypothesize that
the extent of distance variation is directly correlated with
its ability to improve the prediction accuracy of RNA ter-
tiary structure. We test our hypothesis and subsequently the
potency of DVASS using the same dataset of 22 RNAs. Ini-
tially, we extract all native contacts from these RNAs as
restraints, calculate distance variation between every two
bases by using DVASS and sort all the restraints accord-
ing to distance variation. The larger the distance variation,
the higher the corresponding constraint is ranked. Subse-
quently, we divide the ranked restraints into five groups,
where each group consists of the top 20%, 20–40%, 40–
60%, 60–80% and 80–100% restraints, respectively. In ad-
dition, we consider a control group with no restraints. We
perform 20 predicting attempts for each of the groups, and
the average RMSDs are shown in Figure 4A. The average
normalized RMSD reaches a minimum when the top 20%
ranked restraints are employed, and RMSD gradually in-
creases when low ranked restraints are used (Figure 4A).
The positive correlation (Figure 4A) between the average
normalized RMSD, standing for the prediction accuracy,
and the rank of restraints, standing for the extent of dis-
tance variation, attests to our hypothesis that the extent of
distance variation is correlated with its ability to improve
the prediction accuracy. The RMSDs of 3RG5 (Figure 4E)
generated by using different groups of restraints present the
same trend as the overall average normalized RMSD. It is
intriguing to find that by using only the top 20% ranked re-
straints, we could achieve an RMSD as low as that obtained
by using 60% unsorted restraints (Figure 4C and E).

We use 3RG5 as an example to demonstrate how differ-
ently ranked restraints are typically distributed in the RNA
structure. The secondary structure of 3RG5 (Figure 4D)
is a 5-way junction encompassing a pseudo-knot between
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Figure 2. Relationship between the normalized RMSD and the percentage of imposed restraints. (A) The average normalized RMSD of the 22 RNAs
when using 0%, 5%, 10%, 20%, 40%, 60%, 80% and 100% restraints, respectively. (B) The RMSD of 3LA5 when using different fractions of restraints. (C)
The RMSD of 2L1V when using different fractions of restraints. (D) The secondary structure of 3LA5. (E) The secondary structure of 2L1V.

residue 20 and 70. Six different residue pairs are colored by
red, green, light green, pink, blue and cyan, respectively. The
red residue pair [1, 37] is predicted to have the largest dis-
tance variation. Residues 1 and 37 are located at the very
end of the two longest stems in the junction. The blue [7,
79] and cyan [20, 69] residue pairs are predicted to have the
lowest distance variations. Residues 7 and 79 are spaced by
only one residue, which makes sense of having a low dis-
tance variation. Although the location of residue 20 and
residue 69 is similar to that of residues 1 and 37, which are
also located at the very end of two stems, the existence of the
pseudo-knot [20, 70] makes the two residues spatially close
to each other. Apparently, a high-ranked restraint such as
the one in residue pair [1, 37] affects the spatial arrange-
ment of the two longest stems, while a low-ranked restraint
in residue pair [7, 79] or [20, 69] only affects local structures,
and restraints in other residue pairs colored in Figure 4D
affect the structure of 3RG5 to various extent.

Predict the number of native contacts

Although using 20% top ranked restraints is demonstrated
to be sufficient to obtain a satisfactory prediction accuracy,
the percentage is relative to the total number of native con-
tacts. In most cases we lack a priori knowledge of the ter-
tiary structure, thus we cannot calculate the total number of
native contacts to further derive the minimum needed num-
ber of restraints for optimum prediction accuracy. Hence, it
is necessary to estimate the number of native contacts given
only the sequence and the secondary structure. Therefore,
we extend the DVASS algorithm further (see ‘Materials and
Methods’ section) to predict the number of contacts from
RNA secondary structure. We test our prediction ability
in 22 RNAs based on their secondary structural data. Our
analyses provide a direct correlation between the predicted
number of contacts and the number of native contacts (Fig-
ure 4B), thereby validating our methodology.
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Figure 3. Thermodynamic analyses of a three-way junction in Varkud Satellite Ribozyme. (A, B and C) The free energy landscapes of 2MTJ obtained by
imposing no restraints (A), 40% restraints (B) and 80% restraints (C), respectively. NN refers to the near-native structure, and DN refers to the distal-native
structure. The white box refers to a free energy barrier that impedes the inter-conversion of the NN and DN states. The landscapes are derived from the
potential of mean force of RMSD and iFoldRNA energies. The color bar represents the relative Helmholtz free energy in kcal/mol. (D) Overlap of the
crystal structure (green) of 2MTJ and the NN structure (olive) with an RMSD of 3.37 Å. The red color refers to the red boxed region in (F). (E) Overlap
of the crystal structure (green) of 2MTJ and the DN structure (blue) with an RMSD of 9.96 Å. The red color refers to the red boxed region in (F). (F) The
comparison of the contacts in the native structure (grey square), the NN structure (olive circle) and the DN structure (blue circle) of 2MTJ.

DISCUSSION

We find that the reduction in the number of restraints does
not negatively influence the prediction accuracy, while uti-
lization of 100% restraints does not necessarily improve
the accuracy of RNA tertiary predictions. Hence, we can
choose only a fraction of the restraints (40–60%) to re-
duce the overhead caused by restraints. The application of
DVASS algorithm can further reduce the number of re-
straints to be imposed by outlining crucial restraints for
structure prediction. Through our analyses, we observed
that a portion of restraints does not play a significant role in
improving the prediction accuracy (Figures 3D and 4A). In
even worse cases (Figure 4E), imposing the lowest ranked
(80–100%) restraints result in higher RMSD than that pro-
duced by not using any constraint. This finding sheds light
on the phenomenon that imposing 100% restraints does not
necessarily lead to better prediction accuracy, because some
restraints play negligible or even negative role on improving
the prediction accuracy. Hence, we can safely ignore such
restraints to unload computational burden and to improve
the speed of calculation. Therefore, using only a subset of
all possible restraints that are beneficial for structure pre-

diction is a rational strategy to reduce the time overhead
and improve the prediction accuracy.

We observe a strong correlation between distance vari-
ation and the capacity of restraints to improve the predic-
tion accuracy (Figure 4A), which could be rationalized from
a conformational space perspective. Suppose all distances
between all residues are given definite fixed values, the con-
formational space would thus contain only one structure. If
the distance between two certain residues is no longer fixed,
rather it varies in a range, the conformational space then
extends to some allowed volume. The larger is the distance
variation, the larger is the allowed conformational space,
the smaller is the probability of finding the native structure
upon sampling, the more likely the prediction accuracy will
be low. Therefore, large distance variations strongly affect
prediction accuracy compared to that of small distance vari-
ations.

The DVASS algorithm, described in the ‘Materials and
Methods’ section, is not limited to RNA. We initially ex-
tract all the helices from the 22 RNA structures and subse-
quently obtain inter-residue distances from the helices (Fig-
ure 1C). In addition, based on the chain connectivity of
RNA strands, we acquire distance information between ad-
jacent residues. Then, we employ DVASS to derive the maxi-
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Figure 4. DVASS Algorithm Test Results in the 22 RNAs Dataset. (A) The average normalized RMSD of the 22 RNAs when using 0%, 0–20%, 20–40%,
40–60%, 60–80% and 80–100% top ranked restraints. (B) Predicted number of contacts versus the number of native contacts. The green line refers to the
linear regression of the correlation between the predicted and native contacts, which is: Npredicted = 0.989 × Nnative − 13.9, where Npredicted is the predicted
number of contacts and Nnative is the genuine number of contacts. The Pearson Correlation Coefficient is 0.962. The P-value is 3.54 × 10−12. (C) The
RMSD of 3RG5 obtained by imposing 0%, 5%, 10%, 20%, 40%, 60%, 80% and 100% unsorted restraints. (D) The secondary structure of 3RG5. Restraints
in residue pairs colored by red, green, light green, pink, blue and cyan are predicted to be located in top 0–20%, 20–40%, 40–60%, 60–80%, 80–100% and
80–100% ranked area, respectively. The brown dashed line refers to the pseudoknot. (E) The average RMSD of 3RG5 obtained by imposing 0%, 0–20%,
20–40%, 40–60%, 60–80% and 80–100% top ranked restraints.

mum and minimum distances between other residues in the
RNA structure. Thus, the DVASS algorithm is essentially
utilized to deduce other distance restraints from a given set
of distance restraints. Hence, it is apparent that the DVASS
algorithm can be not only used to predict the importance of
RNA restraints, but also technically used to derive the im-
portance of restraints used in protein structure prediction.

Gō model was initially proposed in protein folding re-
search (68). While Gō model is computationally efficient,

its application has been limited by several known shortcom-
ings. First, the details of the computational folding kinet-
ics mechanisms are not always exactly the same as experi-
ments (69–72). Second, the simulated folding temperature
in the Gō model appears to show a strong dependence on
the number of native contacts and the number of residues
(53). The utilization of Gō model in our work is not aimed
at studying the details of RNA folding kinetics mechanisms,
but rather on the thermodynamic outcomes––the predic-
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tion of the native structural ensemble of RNAs. Hence,
these shortcomings of Gō model have no ramification on
our work. Interestingly, the formation of kinetic traps for
some RNAs (Figure 3) may, in some cases, be attributed
to Gō model artifacts. Kinetic traps might be the reason
behind the anti-correlation between larger than optimal
number of restraints and the extent of the improvement of
RNA tertiary structure prediction accuracy. The utilization
of DVASS algorithm circumvents this shortcoming to some
extent by significantly reducing the number of restraints to
decrease the odds of forming kinetic traps. Hence, amalga-
mating Gō model and DVASS algorithm provides an avenue
of efficiently and accurately predicting RNA tertiary struc-
ture. In the future, we plan to propose more sophisticated
strategies to more confidently subdue the shortcomings of
Gō model. For example, an ostensibly reasonable and vi-
able method is to tune the order in which the restraints are
applied in the simulation. It is well known that the assem-
bly of ribosomal RNA (rRNA) is a complex process with
multiple assembly steps at different locations within the cell
(73,74). If we can determine how the order of the formation
of contacts affects the folding of rRNA, we may be able to
computationally mimic the folding process or even predict
the structure of ribosomal RNA efficiently, which is not cur-
rently feasible.
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