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Host–microbiota interactions

Commensal microbes and their multicellular eukaryotic hosts constitute a highly integrated

system—termed the holobiont [1]—which undergoes dynamic changes through time as it inte-

grates and responds to signals from the environment.

Dwelling at the interface between host epithelia and the external environment, commensal

microbes actively modulate development, nutrient absorption, and disease onset in the host.

Host metabolism is significantly modulated by commensal microbes, and the gut microbial

composition significantly affects blood metabolite composition [2].

Microbial communities differ among epithelia, reaching the highest complexity and taxo-

nomic diversity in the oral cavity and in the gastrointestinal tract [3, 4]. Environmental factors,

such as diet, drug use, and social environment, shape the composition of epithelia-associated

microbiota [5–7], and environmental heterogeneity—rather than host genetics—can explain

much of the interindividual differences in microbiota composition in humans [8]. The assem-

bly of specific host-associated communities, however, is also dictated by the host cell composi-

tion and activity, by the molecular components of the mucus layer, by the gut peristaltic

contractility [9], and by epithelial integrity [10]. In primates, recent evidence supports that

host phylogenetic relatedness and gut physiology are overall better predictors of microbiota

composition than diet [11]. Together, the microbiota is a dynamic community, subject to

changes in conjunction with host evolution and through the lifetime of individual hosts.

Microbiota changes through time

Just as the composition of the microbiota varies within and between tissues [12], microbial con-

sortia do also vary through time within individual tissues. Microbial composition in the gut of

newborns is dramatically shaped by diet and varies depending on whether the infant is fed with

maternal milk [13] or formula [14]. Drug administration and antibiotic use importantly shape

the host gut microbiota, leading to significant community shifts and increased abundance of

otherwise rare microbial taxa [15]. Although individual gut microbiota are largely unstable in

the first years of life, they become more stable during adulthood [13, 16] and undergo dramatic

changes in richness and composition upon onset of disease and frailty [17, 18]. The onset of spe-

cific diseases, such as cancer, obesity, diabetes, or inflammatory bowel disease (IBD), is associ-

ated with specific microbial signatures [19, 20]. Studies in humans and laboratory model

organisms, such as flies, fish, and mice, have additionally shown that the composition of the gut

microbiota dramatically changes during aging and is associated with host health and life span

[17, 21–24]. In mice, e.g., lipopolysaccharide (LPS) from gut microbiota can accelerate age-

dependent inflammation (“inflammaging”) [25], and mice lacking Toll-Like receptor 4 (TLR4),

which is the LPS receptor, are protected from age-dependent inflammation [26], showing that a

microbial-specific substrate induces aging-specific phenotypes. Inflammaging can be further
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exacerbated in germ-free mice by gut microbiota transfers from aged donor mice [27], showing

a direct causal relation between age-specific microbial communities and host aging.

Using deep learning to analyze human microbiome data helped build a human microbiome

aging clock, which predicts host age with an accuracy of about 4 years [28]. While during adult-

hood microbial composition contributes to cellular and tissue homeostasis [29, 30], age-depen-

dent changes in the microbial composition may contribute to increasing frailty and disease

onset in later life. The causes leading to the changes in microbiota composition and function

during host aging are still poorly understood and possibly include direct or indirect microbial

selection by the host and microbe–microbe interactions, as well as microbial evolution.

Host aging induces shifts to the microbial niche

As they age, organisms accumulate molecular damage (e.g., in DNA and proteins) [31, 32], dys-

functional organelles [33], and senescent cells [34] and undergo compositional changes in the

extracellular compartment [35, 36]. Together, these molecular and functional changes lead to

organ and systemic decline, which ultimately results in death. Constantly exposed to a changing

environment, the microbiota dynamically respond by altering both metabolic function and

individual bacterial species composition. The immune system of the host plays a key role in

shaping commensal microbial communities by selectively eliminating pathogens and allowing

commensals to thrive. During aging, progressive or sudden immune dysfunction and general-

ized inflammation lead to improper surveillance at the interface between the host and the

microbiota, which can result in dysbiosis—an imbalance in bacterial community composition

[37]. In humans, young-associated microbiota are enriched with bacterial taxa shown to have

immune-modulatory functions, such as Clostridiales and Bifidobacterium, whereas old-associ-

ated bacterial communities are enriched with pathobionts—e.g., Enterobacteriaceae—and,

overall, have a higher representation of Proteobacteria [23, 38]. Here, we argue that the shifting

host environment occurring in the time scale of host life is compatible with inter- and intraspe-

cies microbial competition and with the evolution of novel bacterial strains that could become

overrepresented in older hosts, leading to emergence of pathogenic strains that may contribute

to age-dependent host decline (Fig 1). Age-dependent immune decline could therefore enable

the evolution of bacterial strains responsible for elderly-specific bacterial infections.

Evolution in commensal bacteria

Studies in both germ-free and conventionally raised laboratory mice, which carry a taxonomi-

cally complex microbial community, have shown that bacteria in the gut acquire several advan-

tageous mutations, de facto evolving [39] both in short (months) and long (years) time scales

[40]. Changes in mutation rates, emergence of novel individual gene variants, and widespread

horizontal gene transfer are essential for microbial adaptations, enabling evolution of drug (e.g.,

antibiotics) resistance and dynamic response to dietary changes [41]. Experiments in mice colo-

nized with Escherichia coli have shown clonal interference and parallel phenotypic evolution in

the gut, occurring from the emergence of several adaptive genetic variants that reach intermedi-

ate frequencies, rather than reaching fixation (i.e., maximum frequency), within individual bac-

terial species. The coexistence of several strains carrying adaptive variants, each at intermediate

frequencies (also known as soft sweeps), sustains genetic diversity within bacterial species of the

microbiota [39]. Microbial adaptation in the gut in response to specific selective regimes, such

as antibiotics, shows convergent evolution at the gene-variant and functional level [40]. In

humans, gut commensal microbes undergo local adaptation and bona fide evolution of new

strains via nucleotide substitution and recombination in short time scales, whereas ecological

dynamics—consisting in species replacement—are the dominant mechanisms over longer time
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scales, e.g., decades [42]. Multiple independent lineages of Bacteroides fragilis, each carrying

independent small and large-scale genetic variants, are detected in healthy humans [43], show-

ing unique within-individual evolutionary trajectories of commensal microbes.

Microbial evolution during host aging

Although we are now starting to understand how bacterial taxonomic composition and diver-

sity change during different stages of individual life—including during the aging process—we

still know very little about whether bacterial evolution plays an important functional role that

can impact host phenotypes and ultimately fitness. We have limited understanding on whether

the changes in taxonomic composition of host microbiota occurring through host life in

healthy individuals are uniquely due to ecological processes (e.g., species replacement) or

whether they are, at least in part, due to bacterial evolution. We still do not know whether bac-

terial evolution participates in the changes in microbiota composition that occur upon the

onset of aging-associated diseases. If bacterial evolution does affect host phenotypes, e.g., by

Fig 1. The gut microbiota undergoes dynamic changes during host aging. Changes in host intestinal cell composition and architecture occurring during aging are

matched by a decrease in the microbiota taxonomic diversity. Age-related decrease in taxonomic diversity in the commensal community leads to larger population size

for a few age-associated microbial species, increasing the chances for the evolution of novel potentially pathogenic microbial strains. OTU, Operational Taxonomic Unit.

This figure was generated wtih Biorender.

https://doi.org/10.1371/journal.ppat.1007727.g001
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enabling specific bacterial taxa to escape immune surveillance or by modulating antibacterial

responses, do bacterial strains keep evolving across multiple hosts, or is bacterial evolution

always local and ends with host death? Studying bacterial evolution within individual host-

associated microbiota and throughout the time scale of individual host life presents several

technical challenges, but it is becoming ever more accessible due to the increased throughput,

accuracy, and resolution reached in genome sequencing and analysis [44]. Furthermore, the

integration of multi-omics approaches, which combine genomics and metabolomics of gut

microbiota, enables accurate identification and phenotyping of commensal bacteria associated

with a broad set of host physiological states [45]. Experimental work done in nematode worms

has shown that the resident microbiota can foster mutualism (i.e., reciprocal benefit) with the

host by evolving novel defense mechanisms that serve the purpose of excluding potential path-

ogens [46]. However, it is not clear whether evolution of novel microbe-mediated microbial

exclusion also contributes to the community shifts in microbial composition observed during

host aging. Screening a library of mutant E. coli for effects on nematode worm survival and

aging has shown that a set of mutant strains beneficially affect host mitochondrial unfolded

protein responses via the secretion of the polysaccharide colanic acid, resulting in increased

worm life span [47]. Similar to the way experimenters test sets of different mutants under labo-

ratory conditions, ongoing microbial evolution in healthy hosts leads to the continuous emer-

gence and extinction of bacterial strains that may have either anti- or pro-longevity effects.

However, while experimental nematodes are generally fed a specific E. coli strain (OP50) [48],

complex microbiota likely mask the impact on host fitness of individual bacterial strains

emerging within specific bacterial species. For a bacterial strain to impact host physiology and

fitness, it is necessary to first succeed among competing strains, including the ancestral strain,

and then become a functionally relevant member of the microbiota. It is therefore likely that

novel strains may have higher chances to succeed in simple microbial communities, character-

ized by lower taxonomic complexity. Since during aging and frailty the overall microbial taxo-

nomic diversity declines, it may indeed become more likely for new strains within dominant

taxa to sweep to high frequency and affect the host.

Aging modulation via young-associated gut microbes

Whether microbial evolution in the time scale of individual life affects homeostatic processes

within the host is still an open question. Experimental research provides us with important

insights into how manipulating the microbiota can significantly affect host health. Combining

a specific diet with genetically engineered E. coli that bind colorectal cancer cells, it was

recently possible to achieve cancer prevention and regression in a mouse model of colorectal

cancer [49]. Genetically engineering microbes could indeed be a therapeutic strategy to com-

pensate for genetic and metabolic deficiencies and potentially improve host health [50]. Com-

mensal microbes have been proposed as a therapeutic target for cancer immunotherapy [51]

and could be even targeted for interventions aimed at counteracting the metabolic dysfunc-

tions occurring during aging. Recent work in model organisms indicates that host-associated

bacteria have the potential to beneficially modulate host health, aging, and life span [18, 23,

52]. Commensal microbes do play a key role in several phenotypic and metabolic changes

associated with aging. For instance, the age-dependent onset of insulin resistance has recently

been associated with the action of commensal microbes with the host immune system [18].

Work with the naturally short-lived African turquoise killifish (Nothobranchius furzeri) [53,

54] has shown that acute transfer of gut microbes from young donor individuals to middle-age

recipients, after antibiotic treatment, is sufficient to significantly extend life span and delay

behavioral aging [23]. Metabolic and cellular changes occurring during aging, coupled with
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immune senescence and inflammaging [55], generate new metabolic and cellular niches,

which could lead to competition and potentially create novel selective constraints for the evo-

lution of new strains within dominant bacterial taxa.

Conclusion

The interactions between the host and its commensal microbes reach homeostatic balance

during youth and adulthood, resisting insults from several external factors, including patho-

gens. Perturbations to this homeostatic balance can derive from changes in the environment,

in diet, and from exposure to drugs such as antibiotics. However, challenges to the host–

microbiota balance can also derive from intrinsic factors within the host, i.e., from the vast

constellation of alterations that occur during the aging process, including cellular senescence,

inflammation, and cancer. On the other hand, microbe–microbe interactions within the host

could in principle also lead to host–microbiota disbalance, which could in turn contribute to

host aging. Whether the microbiota adapt to the physiological changes occurring during host

aging, or whether they actively participate to host dysfunction, remains an important open

question. Understanding host–microbiota dynamics during host aging will critically inform

future therapeutic interventions. If the microbiota exacerbate the cellular, tissue, and systemic

changes that occur during host aging, then targeting the microbiota could, in theory, help ther-

apeutically relieve some of the aging-related pathologies but would, in principle, not impact

systemic aging. On the other hand, if the microbiota causally participate in triggering host

aging, then interventions that target the microbiota could result in systemic, preventative, and

bona fide anti-aging interventions.
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