RSC Advances

PAPER

Check for updates

Cite this: RSC Adv., 2023, 13, 13511

Stereoselective synthesis of $(E)-\alpha,\beta$ -unsaturated esters: triethylamine-catalyzed allylic rearrangement of enol phosphates[†]

Yulong Zhang, Huichuang Guo, Qian Wu, Xiaojing Bi, (1)* Enxue Shi (1)* and Junhua Xiao (1)*

 α,β -Unsaturated esters are key structural motifs widely distributed in various biologically active molecules, and their Z/E-stereoselective synthesis has always been considered highly attractive in organic synthesis. Herein, we present a >99% (E)-stereoselective one-pot synthetic approach towards β -phosphoroxylated α,β -unsaturated esters *via* a mild trimethylamine-catalyzed 1,3-hydrogen migration of the corresponding unconjugated intermediates derived from the solvent-free Perkow reaction between low-cost 4chloroacetoacetates and phosphites. Versatile β,β -disubstituted (E)- α,β -unsaturated esters were thus afforded with full (E)-stereoretentivity by cleavage of the phosphoenol linkage *via* Negishi crosscoupling. Moreover, a stereoretentive (E)-rich mixture of a α,β -unsaturated ester derived from 2chloroacetoacetate was obtained and both isomers were easily afforded in one operation.

Received 12th April 2023 Accepted 27th April 2023 DOI: 10.1039/d3ra02430j

rsc.li/rsc-advances

α,β-Unsaturated carbonyl motifs, such as the relevant esters, amides, and aldehydes, are widely distributed in biologically active molecules as key structural components (Fig. 1).¹⁻⁴ Generally, the (*Z*) and (*E*)-isomers of those molecules possess very different living activities.⁵ Moreover, ubiquitous α,βunsaturated esters are also widely employed as useful intermediates for enantioselective hydrogenation,⁶ allylic substitution,⁷ conjugate addition,⁸ and especially for the stereoselective generation of acyclic substituted alkenes in either (*Z*) or (*E*)isomeric forms.⁹

Whilst numerous methods have been developed towards α , β unsaturated esters,¹⁰⁻¹³ configuration-retentive transition-metal catalyzed (TMC) cross-coupling of alkenyl (pseudo)halides is universally recognized as one of the most practical methodologies.¹⁴ Among the known non-classical pseudohalides,¹⁵ diethylphosphoroxyl (DEP) functionality has been proved as a good leaving group in many organic reactions and the corresponding enol phosphates (EPs), possessing high stability and accessibility, were found to participate in various organic transformations.¹⁶ Particularly, EPs have been utilized in many types of TMC coupling reactions including Suzuki-Miyaura, Stille, Negishi, and Heck reactions by cleavage of the enollinkage affording highly substituted alkenes.¹⁷ However, the EPs-involved (*Z*) and (*E*)-stereocomplementary synthetic method towards α , β -unsaturated esters with sufficient substrate generality is still quite limited at present. The latest impressive approach was reported by Tanabe group, which employed Nmethylimidazole (NMI)-promoted phosphorylation of βketoesters to obtain (Z) and (E)- α , β -unsaturated esters, but which suffers from pre-activation of the unstable diphenyl phosphorochloridate (DPPCl) and usage of strong metallic tertbutoxide bases.¹⁸ Based on our recent progress in regioselective solvent-free synthesis of EPs,¹⁹ we envisioned that phosphoroxylated (Z) and/or (E)- α , β -unsaturated esters may act as the universal synthon of α,β -unsaturated esters and should be facilely obtained from the commercially available and low-cost chloroacetoacetates and phosphites via a simple metal-free Perkow reaction. Herein, we wish to present a stereoselective one-pot synthetic approach towards β -phosphoroxylated (*E*)- α , β unsaturated esters, which are subsequently converted into the corresponding disubstituted α,β-unsaturated esters by Negishi cross-coupling (Scheme 1).

Fig. 1 Selected bioactive α , β -unsaturated carbonyl motifs.

<sup>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
E-mail: junhua@pku.edu.cn; exshi@sina.com; xiaojingbimail@yeah.net
† Electronic supplementary information (ESI) available: Full experimental details
and analytical data. CCDC 2250165. For ESI and crystallographic data in CIF or
other electronic format see DOI: https://doi.org/10.1039/d3ra02430j</sup>

Tanabe' work

Scheme 1 *E*-Stereoselective synthesis of α , β -unsaturated esters from enol phosphates.

Scheme 2 Perkow reaction of phosphite with chloroacetoacetate.

Since both 2-chloroacetoacetates and 4-chloroacetoacetates are capable of undergoing Perkow reaction with phosphites, we then took them together for comparison. Solvent-free Perkow reaction conditions were initially selected in view of high regioselectivity.¹⁹ As shown in Scheme 2, reaction between $(EtO)_3P$ and 2-chloroacetoacetate **2a** gave a mixture of (E) and (Z)-isomers of β -phosphoroxylated α , β -unsaturated ester **4a** in ratio of 2.6:1, whereas reaction between $(EtO)_3P$ and 4-chloroacetoacetate **3a** gave the β -phosphoroxylated allylic ester **5a** as the only product. In other words, only moderate E/Z-stereoselectivity can be achieved if using 2-chloroacetoacetate, while no conjugated EP product can be obtained if using 4-chloroacetoacetate. However, according to Seeman's report that bases, such as NaH, are supposed to be able to promote 1,3-hydrogen relocation of allyl compounds, we then suspect that the unconjugated EP product **5a** may be able to be transformed into the conjugated one in a stereoselective way.²⁰

Inspired by the above idea, we then turned to examine the possibility of the base-promoted 1,3-hydrogen rearrangement of **5a**. As shown in Table 1, among the eight kinds of bases examined, including inorganic *t*-BuOK, CH₃ONa, NaOH, NaH,

$EtO \stackrel{0}{\xrightarrow{\mu}} O = t \xrightarrow{base} EtO \stackrel{0}{\xrightarrow{\mu}} O = t \xrightarrow{base} EtO \stackrel{0}{\xrightarrow{\mu}} O = t \xrightarrow{conditions} 4a$							
Entry	Base	Load (x eq.)	Solvent	$T(^{\mathrm{o}}\mathrm{C})$	Time (h)	$\operatorname{Yield}^{b}(\%)$	E/Z (4a) ^c
1	<i>t</i> -BuOK	1.2	THF	rt	24	0	_
2	CH ₃ ONa	1.2	THF	rt	24	0	
3	NaOH	1.2	THF	rt	24	0	
4	NaH	1.2	THF	rt	24	0	—
5	K_2CO_3	1.2	THF	rt	24	0	—
6	Et_3N	1.2	THF	rt	24	90	>99:1
7	Pyridine	1.2	THF	rt	24	0	—
8	(<i>i</i> -Pr) ₂ NEt	1.2	THF	rt	24	20	>99:1
9	Et ₃ N	1.2	CH_3CN	rt	4	92	>99:1
10	Et_3N	1.2	DCM	rt	20	90	>99:1
11	Et_3N	1.2	CH_3OH	rt	22	83	>99:1
12	Et_3N	1.2	DMF	rt	24	75	>99:1
13	Et_3N	0.5	CH_3CN	rt	7	92	>99:1
14	Et ₃ N	0.1	CH ₃ CN	rt	12	92	>99:1
15	Et ₃ N	0.05	CH ₃ CN	rt	20	93	>99:1
16	Et ₃ N	0.1	CH ₃ CN	0	24	95	>99:1
17	Et_3N	0.1	CH ₃ CN	80	4	90	>99:1

 Table 1
 Optimization of base-promoted 1,3-hydrogen rearrangement of unconjugated β -phosphoroxylated allylic ester 5a a

^a Reaction conditions: 5a (1.0 equiv.), base (x equiv.), solvent (3 ml). ^b Isolated yields. ^c Determined by NMR.

Paper

K₂CO₃, and organic Et₃N, Pyridine (*i*-Pr)₂NEt, only Et₃N and (*i*-Pr)₂NEt exhibited the supposed promoting abilities, affording the desired product E-4a, but encouragely both in >99% (E)stereoselectivity. Though only 20% yield was obtained by 1.2 equivalent (i-Pr)₂NEt after 24 h reaction in THF at room temperature (Table 1, entry 8), while up to 90% yield was acquired by using Et₃N (Table 1, entry 6). The following screening of solvents demonstrated that acetonitrile seemed to the best choice that the reaction could be accomplished in only 4 h and gave a higher yield of 92% (Table 1, entry 10). Further investigation about the loadage of Et₃N showed that only 0.1 equivalent Et₃N was sufficient to promote the rearrangement effectively, affording the comparative yield though with a few longer time of 12 h (Table 1, entry 14). Less loadage of Et₃N and lower temperature both led to much longer reaction times (Table 1, entry 15&16). Though the reaction time could be shortened to 4 h at a higher temperature of 80 °C (Table 1, entry 17), we finally preferred the more benign room temperature for the following preparations.

Considering the convenience of experimental operation, we then turned into the possibility of one-pot manipulation. It was found that product *E*-4a was afforded in 92% yield if using the crude intermediate 5a directly for the subsequent rearrangement reaction. Therefore, a mild *E*-stereoselective one-pot synthetic approach of β -phosphoroxylated α , β -unsaturated esters was thus established: 3 (1.0 eq.) and P(m)-reagents (1.0 eq.) react 1 h at 40 °C neatly, then added triethylamine (0.1 eq.) and acetonitrile (3 mL), and further react about 12 h at room temperature.

Having identified the optimal reaction conditions, we next set out to examine the scope of this new mild one-pot enol phosphorylation procedure (Table 2). As for the different *O*-alkyl

^{*a*} Reaction conditions: 1 (1.0 mmol), 3 (1.0 mmol), Et₃N (0.1 mmol), CH₃CN (3.0 mL). ^{*b*} Isolated yields.

4-chloroacetoacetate substrates, all the common P(III)-reagents possessing P–O, P–C, and/or P–N bonds gave the corresponding EPs in high yields. During the preparation of compounds **4e** and **4f**, the rearrangement reactions were found much accelerated probably due to the higher reactivities of phosphonite and phosphinite compared to phosphites. To demonstrate the practical utility, the reaction towards product **4a** was performed at the 50 mmol scale and 92% yield was obtained. The stereoscopic (*E*)-configuration of solid product **4f** was further confirmed by single crystal X-ray analysis.

With the *E*-stereospecific β -phosphoroxylated α , β -unsaturated esters in hand, we then investigated their stereoretentive Negishi cross-coupling to prepare the corresponding *E*-stereo-defined disubstituted α , β -unsaturated esters. Among the typical catalysts screened including Pd(PPh₃)₄, Ni(acac)₂ and Pd(dppb) Cl₂, the latter demonstrated the best performance in this Negishi reaction with only 0.02 equivalent loading by refluxing in acetonitrile. Various aromatic ArZnCl nucleophiles containing electron-donating and/or electron-withdrawing substituents at *ortho, meta*, and/or *para* positions were all tolerated well, affording the desired products in good to excellent yields (80–

Table 3 Scope of (E)- α , β -unsaturated esters *via* a stereoretentive Negishi cross-coupling reaction of **4a**^{*a,b*}

^{*a*} Reaction conditions: 4a (1.0 mmol), ArMgBr (1.5 mmol), ZnCl₂ (1.5 mmol), Pd(dppb)Cl₂ (0.02 mmol), CH₃CN (5.0 mL), reflux about 3 h. ^{*b*} Isolated yields.

96%) without generating any stereochemical integrity (Table 3, **6a–6m**). Disubstituted, condensed and hetero aromatic organometallic substrates also gave 85–92% yields of the products (Table 3, **6n–6r**). However, it's regrettable that alkyl organozinc reagents was found unreactive under such conditions.

Furthermore, under the above optimal Negishi crosscoupling reaction conditions, both (*Z*) and (*E*) isomers of α , β unsaturated esters **6a** could be easily achieved, just by one operation, directly from the (*Z*) and (*E*) mixture of **4a** in 22% and 70% yields respectively (Scheme 3).

According to the Cram's mechanistic interpretation for the allylic rearrangements, an intra-molecular pathway of the Et₃N-promoted stereoselective 1,3-hydrogen rearrangement of the EPs **5a** was proposed because that the degree of the observed intramolecularity depended strongly on the base and solvent used.²¹ As shown in Scheme 4, triethylamine firstly removes the proton from the α -carbon position of ester **5a**, resulting in a coplanar anionic allylic system by three carbon atoms. The hydrogen atom of the H–Et₃N ammonium then bonds to both terminal carbon atoms to form the intermediate **Int**, collapse of which would then give the thermodynamically favourable conjugated α , β -unsaturated ester product *E*-**4a**.

In summary, a mild and environmental trimethylaminecatalyzed *E*-stereoselective 1,3-hydrogen allylic rearrangement of enol phosphates was firstly developed to afford versatile β phosphoroxylated (*E*)- α , β -unsaturated esters which can be then efficiently converted into the corresponding β , β -disubstituted (*E*)- α , β -unsaturated esters in high yields by a 100% stereoretentive Negishi cross-coupling reaction. Moreover, both (*Z*) and (*E*)- α , β -unsaturated esters were able to be achieved in one manipulation when just employing 2-chloroacetoacetate instead of 4-chloroacetoacetate for the solvent and metal-free Perkow reaction.

It is interesting to note that more structure-diverse α , β unsaturated esters should be easily obtained by derivation reactions at the allylic position of α , β -unsaturated esters and/or by utilizing 2-substituted 4-chloroacetoacetates as the starting materials.

Scheme 3 Preparation of (Z) and (E) isomers of 6a in one operation.

Scheme 4 Proposed (E)-stereospecific allylic rearrangement mechanism.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- (a) C. X. Zhuo and A. Furstner, J. Am. Chem. Soc., 2018, 140, 10514; (b) D. Romo, N. S. Choi, S. Li, I. Buchler, Z. Shi and J. O. Liu, J. Am. Chem. Soc., 2004, 126, 10582; (c) S. D. Marco, A. Cammas, J. Pelletier and I. E. Gallouzi, Nat. Commun., 2012, 3, 8963; (d) S. K. Naineni, J. Liang, B. Nagar and J. Pelletier, Cell Chem. Biol., 2021, 28, 825.
- 2 (a) J. K. Nunnery, N. Engene, T. Byrum, T. F. Murray and W. H. Gerwick, *J. Org. Chem.*, 2012, 77, 4198; (b)
 S. Sekharan and K. Morokuma, *J. Am. Chem. Soc.*, 2011, 133, 19052; (c) E. A. Zhukovsky, P. R. Robinson and D. D. Oprian, *Science*, 1990, 251, 558.
- 3 M. Kiser and K. Golczak, Chem. Rev., 2014, 114, 194.
- 4 (a) P. Guo, Y. Zhang, L. Zhang and Q. Xia, J. Biol. Chem., 2021,
 297, 101234; (b) Y. Ando, K. Matsumoto, K. Misaki, G. Mano,
 T. Shinada and S. G. Goto, Gen. Comp. Endocrinol., 2020, 289,
 113394; (c) M. Nouzova, C. Rivera-Pérez and F. G. Noriega,
 Curr. Opin. Insect. Sci., 2018, 29, 49; (d) K. Li, Q. Jia and
 S. Li, Insect Sci., 2019, 26, 600.
- 5 (a) D. A. Evans, P. J. Coleman, L. C. Dias and A. N. Tyler, Angew. Chem., Int. Ed. Engl., 1997, 36, 2744; (b) D. A. Evans, D. M. Fitch, T. E. Smith and V. Cee, J. Am. Chem. Soc., 2000, 122, 10033; (c) D. A. Evans, P. H. Carter, E. M. Carreira, A. B. Charette, J. A. Prunet and M. Lautens, J. Am. Chem. Soc., 1999, 121, 7540; (d) I. Fleming, A. Barbero and D. Walter, Chem. Rev., 1997, 97, 2063.
- 6 (a) E. Negishi, Q. Hu, Z. Huang, M. Qian and G. Wang, *Aldrichimica Acta*, 2005, 38, 71; (b) J. Li, A. S. Grillo and M. D. Burke, *Acc. Chem. Res.*, 2015, 48, 2297; (c) V. Hornillos, M. Giannerini, C. Vila, M. F. Mastral and B. L. Feringa, *Chem. Sci.*, 2015, 6, 1394.
- 7 (a) K. Murakami and H. Yorimitsu, *Beilstein J. Org. Chem.*, 2013, 9, 278; (b) M. G. Suero, E. D. Bayle, B. S. L. Collins and M. J. Gaunt, *J. Am. Chem. Soc.*, 2013, 135, 5332; (c) F. Xue, J. Zhao, T. S. A. Hor and T. Hayashi, *J. Am. Chem. Soc.*, 2015, 137, 3189; (d) S. Wang and C. Xi, *Org. Lett.*, 2018, 20, 4131.
- 8 (a) F. Guibe, *Tetrahedron*, 1998, 54, 2967; (b) F. Guibe, *Tetrahedron*, 1997, 53, 13509; (c) S. Escoubet, S. Gastaldi and M. Bertrand, *Eur. J. Org. Chem.*, 2005, 3855.
- 9 (a) F. W. Sum and L. Weiler, *Can. J. Chem.*, 1979, 57, 1431; (b)
 M. Ide and M. Nakata, *Synlett*, 2001, 1511.
- 10 (a) A. B. Flynn and W. W. Ogilvie, *Chem. Rev.*, 2007, 107, 4698; (b) P. Polak, H. Vanova, D. Dvorak and T. Tobrman, *Tetrahedron Lett.*, 2016, 57, 3684; (c) B. E. Maryanoff and A. B. Reitz, *Chem. Rev.*, 1989, 89, 863; (d) Y. Ashida and Y. Tanabe, *Chem. Rec.*, 2020, 20, 1.
- 11 (a) C. Gürtler and S. L. Buckwald, *Chem. Eur. J.*, 1999, 5, 3107; (b) M. Shindo, Y. Sato, T. Yoshikawa, R. Koretsune and K. Shishido, *J. Org. Chem.*, 2004, **69**, 3912.
- 12 (a) A. B. Lemay, K. S. Vulic and W. W. Oglivie, *J. Org. Chem.*, 2006, 71, 3615; (b) J. S. Mercier, A. B. Flynn and W. W. Ogilvie, *Tetrahedron*, 2008, 64, 5472.

- 13 (a) Y. Yamamoto, N. Kirai and Y. Harada, *Chem. Commun.*, 2008, 2010; (b) N. Kirai and Y. Yamamoto, *Org. Synth.*, 2010, 87, 53; (c) Z. He, S. Kirchberg, R. Froehlich and A. Studer, *Angew. Chem., Int. Ed.*, 2012, 124, 3759.
- 14 (a) J. M. Baxter, D. Steinhuebel, M. Palucki and I. W. Davies, Org. Lett., 2005, 7, 215; (b) A. Klapars, K. R. Campos, C. Chen and R. P. Volante, Org. Lett., 2005, 7, 1185; (c) H. Nakatsuji, K. Ueno, T. Misaki and Y. Tanabe, Org. Lett., 2008, 10, 2131; (d) H. Nakatsuji, H. Nishikado, K. Ueno and Y. Tanabe, Org. Lett., 2009, 11, 4258.
- 15 Y. Ashida, K. Nakata, D. Yoshitake, Y. Sato, Y. Miyazaki and Y. Tanabe, *Asian J. Org. Chem.*, 2020, **9**, 604.
- 16 (a) A. L. Hansen, J. P. Ebran, M. Ahlquist, P. O. Norrby and T. Skrydstrup, Angew. Chem., Int. Ed., 2006, 45, 3349; (b)
 T. Hayashi, T. Fujiwa, Y. Okamoto, Y. Katsuro and M. Kumada, Synthesis, 1981, 1001; (c) K. C. Nicolaou,
 G. Q. Shi, G. P. Grtner and Z. Yang, J. Am. Chem. Soc., 1997, 119, 5467; (d) A. S. E. Karlstrçm, K. Itami and
 J. E. Bckvall, J. Org. Chem., 1999, 64, 1745; (e) J. Wu and
 Z. Yang, J. Org. Chem., 2001, 66, 7875; (f) J. P. Ebran,
 A. L. Hansen, T. M. Gøgsig and T. Skrydstrup, J. Am. Chem.

Soc., 2007, **129**, 6931; (g) A. L. Hansen, J.-P. Ebran, T. M. Gøgsig and T. Skrydstrup, *J. Org. Chem.*, 2007, **72**, 6464; (*h*) W. You, Y. Li and M. K. Brown, *Org. Lett.*, 2013, **15**, 1610.

- 17 (a) T. M. Gøgsig, A. T. Lindhardt and T. Skrydstrup, Org. Lett., 2009, 11, 4886; (b) J. Jiang, R. DeVita, G. Doss, M. Goulet and M. Wyvratt, J. Am. Chem. Soc., 1999, 121, 593; (c) A. L. Hansen, J. P. Ebran, T. M. Gøgsig and T. Skrydstrup, Chem. Commun., 2006, 39, 4137; (d) J. W. Coe, Org. Lett., 2000, 2, 4205.
- 18 H. Nakatsuji, Y. Ashida, H. Hori, Y. Sato, M. Taira and Y. Tanabe, *Org. Biomol. Chem.*, 2015, **13**, 8205.
- 19 (a) Y. Cao, Z. Gao, J. Li, X. Bi, L. Yuan, C. Pei, Y. Guo and E. Shi, *RSC Adv.*, 2020, 10, 29493; (b) H. Guo, Y. Zhang, Z. Li, P. Zhao, N. Li and E. Shi, *RSC Adv.*, 2022, 12, 14844.
- 20 S. G. Alcock, J. E. Baldwin, R. Bohlmann, L. M. Harwood and J. Seeman, *J. Org. Chem.*, 1985, **50**, 3526.
- 21 (a) M. Hassam, A. Taher, G. E. Arnott, I. R. Green and W. A. L. van Otterlo, *Chem. Rev.*, 2015, **115**, 5462; (b) D. J. Cram and R. T. Uyeda, *J. Am. Chem. Soc.*, 1964, **86**, 5466.