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Abstract

Introduction

Autoinflammatory and autoimmune disorders are characterized by aberrant changes in

innate and adaptive immunity that may lead from an initial inflammatory state to an organ

specific damage. These disorders possess heterogeneity in terms of affected organs and

clinical phenotypes. However, despite the differences in etiology and phenotypic variations,

they share genetic associations, treatment responses and clinical manifestations. The

mechanisms involved in their initiation and development remain poorly understood, however

the existence of some clear similarities between autoimmune and autoinflammatory disor-

ders indicates variable degrees of interaction between immune-related mechanisms.

Methods

Our study aims at contributing to a holistic, pathway-centered view on the inflammatory

condition of autoimmune and autoinflammatory diseases. We have evaluated similarities

and specificities of pathway activity changes in twelve autoimmune and autoinflammatory

disorders by performing meta-analysis of publicly available gene expression datasets gen-

erated from peripheral blood mononuclear cells, using a bioinformatics pipeline that inte-

grates Self Organizing Maps and Pathway Signal Flow algorithms along with KEGG

pathway topologies.

Results and conclusions

The results reveal that clinically divergent disease groups share common pathway perturba-

tion profiles. We identified pathways, similarly perturbed in all the studied diseases, such as

PI3K-Akt, Toll-like receptor, and NF-kappa B signaling, that serve as integrators of signals

guiding immune cell polarization, migration, growth, survival and differentiation. Further, two

clusters of diseases were identified based on specifically dysregulated pathways: one
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gathering mostly autoimmune and the other mainly autoinflammatory diseases. Cluster sep-

aration was driven not only by apparent involvement of pathways implicated in adaptive

immunity in one case, and inflammation in the other, but also by processes not explicitly

related to immune response, but rather representing various events related to the formation

of specific pathophysiological environment. Thus, our data suggest that while all of the stud-

ied diseases are affected by activation of common inflammatory processes, disease-spe-

cific variations in their relative balance are also identified.

Introduction

Epidemiological studies provide increasing evidence for the rise in prevalence of immune-

related disorders including autoimmune and allergic diseases in Western countries [1–3]. It is

predicted that the incidence of chronic inflammatory disorders, particularly autoimmune dis-

eases, such as type 1 diabetes, Crohn’s disease, rheumatoid arthritis and multiple sclerosis, will

grow even more rapidly during the next several decades [1,4,5]. Moreover, chronic inflamma-

tion is being recognized as an important trigger and contributor to the development and pro-

gression of various other human complex diseases, such as certain cancers, atherosclerosis,

strokes and ischemic heart diseases, and even psychiatric disorders (schizophrenia and post-

traumatic stress disorder) [6–10].Therefore, understanding the molecular mechanisms under-

lying the development of inflammatory disorders will have significant impact on public health.

Autoimmune diseases(AI) are characterized by dysfunction of the immune system leading

to loss of immune tolerance against self-tissues, by the presence of autoreactive T and B cells,

and by a complex pathogenesis of multifactorial etiology, whereas genetics and environmental

factors together are responsible for disease onset [11,12].There are more than 80 such condi-

tions affecting susceptible human subjects [13]. Autoimmune conditions may be systemic (tar-

geting multiple organs and tissues), as is the case of lupus, or tissue specific, as is the case of

multiple sclerosis (against myelin) or type 1 diabetes (against pancreatic beta cells). The simul-

taneous presence of several autoimmune diseases is observed in some cases, pointing at the

possibility of a shared origin and/or mechanisms [14].

Autoinflammatory diseases (AIF) are a relatively new and expanding group of self-directed

inflammatory disorders, clinically described as periodic fever syndromes but also with epi-

sodes of acute inexplicable inflammation involving the innate immune system [15,16]. They

are characterized by inflammatory episodes at disease-prone sites, in the absence of autoreac-

tive T cells and high autoantibody titers [17,18]. Despite the differences in primary players,

they share common characteristics with AI diseases, such as self-tissue directed inflammation

in the absence of an obvious infectious trigger or injury. While in AIFs the innate immune sys-

tem directly causes tissue inflammation, in AIs the innate immune system activates the adap-

tive system and this later activates the inflammatory process [15]. The autoinflammatory

syndromes include a subset of hereditary conditions characterized by recurrent episodes of

fever and self-resolving attacks of systemic inflammation without microbial infection or auto-

immunity. There are several AIF associated with genetic mutations affecting the innate

immune system, the primary defense system against foreign antigens [19]. Such genetic muta-

tions have been identified affecting genes encoding for the tumor necrosis factor receptor

(TNFR1) as is the case for the autosomal dominant TNF receptor associated syndrome

(TRAPS) [20] or the gene encoding for mevalonate kinase (MVK) responsible for the HIDS

syndrome. Mutations of the MVK gene are responsible for an increase of mevalonic acid
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concentrations, elevated levels of IgD in the serum and also an increased secretion of IL-1β
[21,22]. Similarly several autoinflammatory syndromes are related with the gene encoding for

pyrin [22]. The PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a

dominantly inherited autoinflammatory condition is associated with mutations in the gene

encoding for proline serine threonine phosphatase-interacting protein (PSTPIP1) that inter-

acts with pyrin [23]. Pyrin and PSTPIP1 proteins are associated with the cytoskeleton in mye-

loid/monocytes and their interaction contributes to increased IL-1β production, NFkB

activation and apoptosis [24]. Finally the connection between pyrin and autoinflammation is

observed in the Cryopyrin-Associated Periodic Syndromes (CAPS) in which mutations of

genes encoding for the components of the proteins involved in the inflammasome (NLRP3)

are implicated [25–27].The phenotypic heterogeneity characteristic of AI and AIF diseases,

does not necessarily reflect fundamental genetic or mechanistic differences between these

groups. Indeed, while some gene variants and SNPs are specific to a particular disease [11,28],

others predispose an individual to the development of multiple disorders, which indicates that

shared mutations may affect genes or pathways implicated in the pathogeneses of several dis-

eases [29,30]. Moreover, while the mechanisms and causes of development may differ in vari-

ous diseases, the downstream effects occurring after the disease onset may be similar. This

similarity can potentially underlie responsiveness of different types of diseases to the same type

of treatment (e.g. glucocorticoids) [31–33] indicating the presence of shared drug targets.

However, the global picture of molecular mechanisms underlying the similarities and specifici-

ties of chronic inflammatory disorders is not completely understood and is addressed in this

study, using gene expression data to compare activation patterns of selected pathways in a sub-

set of AI and AIF diseases.

Luckily, the advances in high-throughput biological data measurements, explosive growth

of data in various public repositories and development of new bioinformatics algorithms for

data analysis, already provide an opportunity to address the above mentioned issues from a

systems biology viewpoint. Previously, we had developed a bioinformatics pipeline for path-

way perturbation based analysis and similarity/specificity assessment of disease groups, and

have applied it to a number of lung diseases [34]. The obtained results had confirmed the

validity of our methodology, as well as had led us to draw new conclusions on pathological

characteristics of lung diseases. In the present work, we have used our approach for global

assessment of similarities and specificities of downstream molecular events of chronic inflam-

mation through evaluation of pathway activity changes in autoimmune and autoinflammatory

disorders.

We have combined several publicly available datasets for autoimmune and autoinflamma-

tory diseases in an attempt to uncover their common and specific pathobiological features.

Our goal was to include as many conditions as possible, while in the meantime minimizing

heterogeneity of microarray platforms and source tissue used for transcriptome measurement.

These criteria left us with four monogenic autoinflammatory, four polygenic autoinflamma-

tory disorders sharing characteristics with autoinflammation and autoimmunity, and four

polygenic autoimmune conditions (Table 1). Monogenic autoimmune disorders were not

included in our study, as to our knowledge, respective transcriptome data meeting our selec-

tion criteria were not available. Even though the apparent heterogeneity of the disorders

selected in our study presented a challenge for identification of common mechanisms, the

existing similarities and, in particular, the common inflammatory component of these disor-

ders, remained intriguing and encouraged us to undertake a comparative gene expression

analysis of a large set of existing transcriptome data.

Our study offers a systems biology approach for comparative analysis of gene expression

data from cohorts carrying apparent divergent diseases with common immune related
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manifestations. Despite the limitations discussed below, such studies may contribute to identi-

fication of common pathways in autoimmunity and autoinflammation, and have the potential

to facilitate development of new experimental strategies for understanding the molecular

mechanisms underlying the interplay between those processes.

Material and methods

Data sources

We have used data deposited at Gene Expression Omnibus (GEO), which is the largest reposi-

tory for microarray gene expression studies [35]. The search was performed with keywords

“autoinflammation”, “autoimmunity” and limited to human samples. We were aimed at selec-

tion of the most similar study designs (sample source tissue type, availability of controls) and

microarray platforms. Thus, only datasets derived from peripheral blood mononuclear cells

(PBMCs), as the most frequent sample source; and Affymetrix platforms, as the most prevalent

ones, were chosen.

Our selection resulted in eight microarray datasets containing gene expression profiles of

PBMC samples from patients with autoimmune and (or) autoinflammatory diseases, as well as

healthy subjects. All of the platforms were Affymetrix microarrays, of which five were Human

Genome U133 Plus 2.0, four were Human Genome U133A 2.0, two were Human Genome

133A, while only one was from Human Exome 1.0 ST Array platforms (Table 1). Data on Sjö-

gren’s Syndrome was the only dataset in our analysis that was not derived from Human

Genome U133 series platforms, since there were no alternative datasets for this condition in

Table 1. Description of the samples and datasets included in the study.

Disease Type* Abbrev. GEO Acc. Number of

Cases

Number of

Controls

Array Platform

Type 1 Diabetes AI T1D GSE55100 12 10 Affymetrix Human Genome U133 Plus

2.0 Array

Multiple sclerosis AI MS GSE21942 12 15 Affymetrix Human Genome U133 Plus

2.0 Array

Systemic lupus erythematosus AI SLE GSE50772 61 20 Affymetrix Human Genome U133 Plus

2.0 Array

Sjögren’s syndrome AI SS GSE48378 11 16 Affymetrix Human Exon 1.0 ST Array

Cryopyrin associated periodic syndrome AIF CAPS GSE43553 23 20 Affymetrix Human Genome U133A 2.0

Array

Hyper IgD Syndrome (HIDS) (mutations in

MVK gene)

AIF MVK GSE43553 8 20 Affymetrix Human Genome U133A 2.0

Array

PAPA Syndrome (mutations in PSTPIP1

gene)

AIF PSTPIP1 GSE43553 6 20 Affymetrix Human Genome U133A 2.0

Array

TNF receptor associated periodic

syndrome

AIF TRAPS GSE43553 29 20 Affymetrix Human Genome U133A 2.0

Array

Behcet’s disease PAIF BD GSE17114 15 14 Affymetrix Human Genome U133 Plus

2.0 Array

Crohn’s disease PAIF CD GSE3365 59 42 AffymetrixHuman Genome U133A

Array

Ulcerative colitis PAIF UC GSE3365 26 42 Affymetrix Human Genome U133A

Array

Juvenile Idiopathic Arthritis PAIF JIA GSE67596 22 15 Affymetrix Human Genome U133 Plus

2.0 Array

* AI—autoimmunity, AIF—monogenic autoinflammation, PAIF—polygenic autoinflammation (20, 21)

https://doi.org/10.1371/journal.pone.0187572.t001
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GEO at the time of conducting this study. The effect of possible systematic biases introduced

by biological and technical variation in our dataset collection is addressed below.

Only untreated samples were included in the analyses. Dataset accessions, descriptions and

sample counts are presented in Table 1. For detailed information on subject characteristics,

disease stage, sample preparation and scan protocol and low level data processing, the reader is

referred to the GEO database pages under sample accessions provided in Table 1.

Dataset preprocessing

Raw Affymetrix CEL files have been downloaded for all the datasets, except for GSE3365 (gene

expression in Crohn’s disease and Ulcerative colitis), for which no raw data were available.

Probe signal intensity conversions, RMA normalization and chip annotation were performed

using the “affy” package for R [36]. The GSE48378 exon array dataset (gene expression in Sjö-

gren’s syndrome) was preprocessed using the “oligo” package [37], since “affy” is not intended

for analysis of Affymetrix Human Exon arrays. The GSE3365 dataset was annotated based on

platform information provided by GEO (GPL96: Affymetrix Human Genome U133A Array),

and preprocessed using Affymetrix MAS5 algorithm.

All the genes with known Entrez IDs were annotated, and expression values for multiple

probes of the same gene were averaged. The mean gene expression values of the controls

within each dataset were used as reference to calculate the log fold changes (logFC) for each

gene. The logFC values were then anti-logged to linear scale FC values.

Pathway signal flow calculation

Pathway signal flow analysis was performed as described previously [38]. Briefly, 168 signaling

and metabolic pathway maps were obtained from the KEGG pathways database, with the

exclusion of disease and drug response pathways. The KEGG pathways are represented as

graphs, where nodes are gene groups with similar functions and edges are interactions between

them. The interactions are classified into “activation” and “inhibition” types. Each pathway

has more than one input node, and more than one output (sink) node. The network of interac-

tions that end with a single sink node is called a pathway branch. Note that each pathway may

have many branches ending in specific sink nodes, where each may be associated with a differ-

ent biological event or outcome. Thus, it is reasonable to evaluate activities of pathway

branches individually [38].

The Pathway Signal Flow (PSF) algorithm for calculation of the activity values of pathway

branches is described in detail in [39–41]. In short, PSF first assigns gene expression fold

change (FC) values of the member genes to pathway nodes, and then sequentially updates the

target node values for each source-target interaction: starting from the input nodes and finish-

ing at the sinks. The target node values are updated depending on the type of interaction: ‘acti-

vation’ means that the greater the FC value at the source is, the greater the FC value at the

target will be; whilst ‘inhibition’ has the opposite effect. In the end, the PSF algorithm returns

the PSF values of the sink nodes for each pathway branch. The PSF values estimate the pathway

activity fold change compared to the controls. Thus, values less than 1, are indicative for de-

activation, while values greater than one for activation of the respective pathway branch.

We have evaluated in total 1825 sinks for the 168 pathways analyzed. Thus, each dataset is

described with a vector of 1825 PSF values. Each sink is described by a profile of PSF values

across all samples.

To estimate the possible systematic effect of biological and technical variation, we have sub-

stantially extended our analyses based on additional datasets (S1 File). We have demonstrated

that there is a high correlation between PSF values obtained from datasets under abovementioned
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condition variations. PSF analysis minimizes the systematic bias introduced by variation in

experimental procedures, since PSF considers relative fold change values of gene expression in

disease versus control.

Pathway signal flow-self organizing maps analysis (PSF-SOM)

The PSF profiles described above were clustered and visualized with the Self Organizing Maps

(SOM) algorithm, implemented in the R package “oposSOM” [42,43]. This algorithm was ini-

tially intended for application to gene expression data, but has also been applied for analysis of

PSF values (PSF-SOM) [38]. The PSF-SOM algorithm takes as input the sample-wise PSF pro-

files of the 1825 sink nodes, and aggregates the similar profiles into meta-profiles, or meta-

sinks. It arranges the meta-sinks on a two-dimensional grid in a way that correlated meta-

sinks are located close to each other. In our analysis, we have obtained a 35x35 grid of meta-

sinks. Using the meta-sink locations on the grid, we can then obtain a SOM portrait for each

sample, where the mean PSF values of the meta-sinks are visualized with blue-green-to-red

color scale (Fig 1). In other words, all the SOM portraits have the same arrangement of meta-

sinks, but the PSF values differ based on the sample. Clusters of co-regulated meta-sinks are

then detected as so-called spots in the SOM portraits using a detection threshold described in

[42].

Fig 1. Disease specific SOM portraits. PSF profiles for each disease were mapped on a 35x35 SOM grid, and visualized as 2D maps, where

colors indicate the actual state of pathway sink dysregulations. Red to green color gradient indicates up-regulation, while blue to green one

indicates down-regulation.

https://doi.org/10.1371/journal.pone.0187572.g001
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Spot based disease similarity assessment

The similarity between diseases was assessed based on the number of shared spots between dis-

ease pairs. For this, we have constructed a graph object, with nodes representing the individual

SOM-portraits of each disease, and edges connecting the disease pairs that share the highest

number of spots: in case of ties, more than one edge was introduced. Community search

within this graph was performed with the walktrap algorithm implemented in the R “igraph”

package [44].

Functional annotation of sinks

Functional annotation of sink dysregulation was assessed using overrepresentation approach

implemented in the WebGestalt web-tool [45,46]. The pathway sink genes were tested against

Gene ontology (GO) database. The minimum number of genes in a category was set to 5, and

the significance threshold to p<0.05 after Benjamini & Hochberg multiple test correction. In

order to achieve higher level of outlook on the biological processes conveyed by GO terms we

performed semantic-similarity based summarization and removal of redundant terms using

the REVIGO tool [47].

Results and discussion

PSF-SOM disease portraits

The SOM method transforms the multidimensional PSF data into a series of two-dimensional

images, called "portraits", which visualize the activities of the pathway sink nodes in each stud-

ied disease (Fig 1). These PSF-activity portraits show blue and red spot like regions corre-

sponding to down- and up-regulated sink nodes, respectively. It should be noted that the

portraits depict changes in pathway activities compared to the healthy state.

At-a-glance examination of the spot distribution across disease portraits revealed consider-

able similarities, though some differences were observed as well: almost all the diseases were

characterized by the presence of upregulated spot areas at the lower left corner, except for

MVK. In addition, MS had a characteristic red spot in upper right corner, while MVK, CAPS,

MS and to lesser extent PAPA (PSTPIP1) were characterized by the presence of an additional

spot near the bottom right corner of corresponding SOM portraits. Finally, it should be noted

that three monogenic autoinflammatory diseases (CAPS, TRAPS, MVK), as well as JIA and

MS, and to lesser extent UC and CD, contained an additional upregulated spot near the lower

left corner of their SOM portraits. In order to proceed with comparative analysis and func-

tional annotation, all the up- and down-regulated spots from the averaged portraits of each

disease were transferred into a single summary map for an overview (Fig 2). We have identi-

fied seven spot clusters assigned with capital letters A-G, each showing a specific profile of

PSF-values in the studied diseases (Fig 2). The full report of PSF-SOM is available at [48].

It should be noted that oposSOM scales data individually, before drawing the expression

portraits, but applies spot detection thresholds on the global summary map, using all of the

datasets at once (Fig 2). Hence, there may be inconsistency between visual perception of spot

presence on the individual SOM portraits (Fig 1), and their threshold-based detection results

(Fig 2) [42,43].

Disease similarity assessment

To assess similarities between the PSF portraits we have created a graph object where the

nodes represent the diseases, and the edges connect the disease portraits sharing the highest
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number of spots. Based on a walktrap community detection search on this graph structure, we

have identified two clusters or communities of highly similar diseases (Fig 3).

Cluster 1 contains four polygenic autoimmune diseases studied i.e. T1D, BD, SS and MS, as

well as one autoinflammatory syndrome, the PAPA (PSTPIP1). This cluster is characterized by

up-regulated spots D and F and collects mostly autoimmune diseases, which have been shown

to largely share symptoms and clinical manifestations. Several published case reports docu-

mented that primary SS manifestations can mimic those of MS [49–51]. Moreover, SS fre-

quently accompanies diabetes in humans [52] and in the T1D animal model of Non-Obese

Diabetic (NOD) mouse [53]. Studies in the NOD mice have identified that T1D resistance

genes in specific chromosomal loci (Idd3 and Idd5) protected the organism from inflammation

and also of dysfunction of the salivary glands [53]. This indicates that possibly a general mech-

anism exists for maintaining a self-tolerant anti-inflammatory state and it affects more than

one AI disease [54]. MS shares similarities with neurological manifestations of BD [55]. BD in

turn has been reported to accompany T1D [56,57].

Notably, despite the fact that PAPA is an autoinflammatory syndrome and mutations in

PSTPIP1 are thought to be linked to inflammasome activation and IL-1β oveproduction,

PAPA lacks spot C and clusters with autoimmune diseases. The observed difference between

Fig 2. Global landscape of pathway dysregulations in diseases. The summary SOM portrait with spots transferred from individual disease

portraits. The seven spots detected in the SOM portraits are assigned the letters A-G (in the center of figure). PSF-activity profile barplots (left and

right panels) represent the mean PSF-signal for a given spot across the diseases. If that value passes the defined threshold the spot is marked with

a “+” sign for up-regulation and “-” sign for downregulation. Bar coloring indicates the relation of diseases to similarity clusters (see Fig 3).

https://doi.org/10.1371/journal.pone.0187572.g002
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PAPA and other autoinflammatory disorders has also been reported in the literature. So,

patients with PAPA syndrome are less responsive to anti-inflammatory treatment targeted

against IL-1β and TNF alpha signaling [58]. Moreover, it has been shown that in a mouse

model of PAPA, PSTPIP1 did not regulate inflammasome activation, suggesting alternative

effects of PSTPIP1 mutations in PAPA [59]. Furthermore, spot C collects sinks related to

“actin filament-based movement”, while mutations in PSTPIP1 lead to impaired podosome

(actin-containing adhesive and invasive structure) formation [60]. All in all, this result indi-

cates that PAPA, being an autoinflammatory syndrome, has specificities in molecular events

that distinguish it from other autoinflammatory disorders.

Based on unexpected clustering of PAPA with autoimmune disorders, and the observed dif-

ference between autoinflammatory diseases described by inflammasome activation, we have

looked into PSF signals of NOD-like receptor signaling pathway in all the studied conditions,

since it collects inflammasome related signaling events. The results show expected clustering

of MVK, PAPA, TRAPS and CAPS that were separate from other diseases (S2 File). This in

turn indicates that the specificities observed for PAPA syndrome are not related to inflamma-

some formation, but rather to dysregulation of other pathways.

Cluster 2 collects CD, CAPS, UC, JIA, TRAPS and MVK and is specifically characterized

by up-regulated spots C and D (Fig 3). This cluster is more homogeneous, and consists of

monogenic (MVK, CAPS, TRAPS) and polygenic (JIA, CD, UC) autoinflammatory disorders

[32,61].

Fig 3. The spot-similarity graph of the diseases. The nodes represent the diseases; the edges connect the disease portraits sharing the highest

number of spots. The portraits are provided as thumbnails to each node. The graph is divided into the pink and the blue clusters using the walktrap

community search algorithm, implemented in R package “igraph” [44].

https://doi.org/10.1371/journal.pone.0187572.g003
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Surprisingly, SLE, being an autoimmune disorder, also fell into this cluster. The systemic

inflammatory nature of SLE whereas the immune system attacks healthy tissues in several

parts of the body may explain the shared spots with the other autoinflammatory syndromes in

the cluster [62]. Recent findings indicate that SLE shares molecular signatures with type I

interferon-mediated monogenic autoinflammatory disorders [63]. Moreover, there is an indi-

cation on the emerging role of the inflammasome in SLE pathogenesis [64]. Recent studies by

Shin et al [65] and Zhang et al [66] demonstrated that anti-self dsDNA antibodies in mono-

cytes can induce the activation of NLRP3 inflammasome, leading to production of IL-1β. The

latter in turn induces Th17 cell response in SLE. Another study by Kahlenberg et al [67] has

found that caspase 1, the central enzyme involved in inflammasome activation, is essential for

development of SLE in a mouse model of inducible lupus.

The obtained results suggest that regardless of the disease initiation event, the downstream

pathway activity profiles share considerable similarities that can be attributed to chronic

inflammation, which is an essential pathological event implicated in all the studied diseases.

Although this is not surprising, a formal demonstration of shared inflammation-related path-

ways between these diseases suggests that the observed pathway dysregulations may create

conditions for the development of comorbid syndromes.

Functional context of dysregulated sinks and pathways

For functional annotation of pathway sinks associated with the spots of the summary map, we

have performed GO term enrichment analysis using the WebGestalt and REVIGO programs

[46,47]. According to the results, all spots were enriched with GO terms related to various aspects

of immune response (Fig 4). The obtained results confirm the redundancy of main pathological

events leading to development of chronic inflammation, which is indicated by the presence of

spot D in all the diseases (except for MVK). Meanwhile, we have also observed some degree of

specificity driven by the presence of specific spots, each accumulating distinct sets of processes

that were unique for each disease cluster. Spot F relevant to the disease cluster 1 (autoimmunity)

shows enrichment of GO terms associated with immune response, while spot C, which is unique

to the disease cluster 2 (autoinflammation) is enriched with terms associated with inflammation.

Two other spots, B and E, seem to serve as supporting nodes that are either amplifiers (as,

for example, in the case of CAPS or MS) or provide alternative mechanisms for immune

response activation (as in the case of MVK). The complete list of GO terms associated with the

pathway sinks and the enrichment p values can be found in the S3 File.

In total, 131 from 168 signaling and metabolic pathways with at least one significantly dys-

regulated sink in at least one disease were detected in the spots indicating that almost all path-

ways were dysregulated in the studied diseases (the complete list of pathway sinks is available

in the S4 File). In other words, characterization of these diseases in terms of dysregulation of

specific pathways seems inappropriate. Moreover, we have observed a large overlap of path-

ways in different spots (on average, 3 spots share sinks for a given pathway), suggesting an

important role of pathway branching and the diversity of functional events associated with a

single pathway (see S5 File). We have also noted that the proportion of affected branches in

different pathways is markedly variable. The top pathways characterized with the highest pro-

portion of dysregulated sinks are presented in the Table 2. Interestingly, pathway branches of

top dysregulated pathways are not spread across all the spots, but are mainly concentrated in

the spots C, D, E and F (Fig 5). All these pathways are directly linked to chronic inflammation,

indicating their central role in the etiology of the studied diseases, as expected.

In contrast to the above mentioned pathways, PI3K signaling and Axon guidance pathways

had dysregulated branches in all the spots. The PI3K-Akt signaling pathway essentially serves
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Table 2. Top pathways with dysregulated sinks.

Pathway Dysregulated/

Total sinks

Affected spots (% of

dysregulated sinks in

node)

Functional impact References

HIF-1 signaling

pathway

31/33 A(3), E(3.5), F(90), G(3.5) links hypoxia with inflammation; switch that modulates the

immune system response by regulating metabolism and

apoptosis depending on the microenvironment.

[96]

NF-kappa B

signaling pathway

26/28 A(4), B(15), D(73), G(8) a major inflammatory signal transduction route; participates in

immunodeficiency, autoimmunity and autoinflammation,

characterized by inflammation of several organs; non-canonical

branch is associated with multi-organ autoinflammation

[97–101]

Toll-like receptor

signaling pathway

18/19 D(94), E(6) part of innate immune response toward various pathogens;

recognizes endogenous agents which are released upon cell

damage and necrosis; a link between innate and acquired

immunity and is implicated in the development of both

autoimmunity and autoinflammation

([102–106]

ErbB signaling

pathway

16/16 C(25), D(44), G(31) implicated in cancer development; expression of receptors for this

pathway has been reported on lymphocytes; activation leads to

downstream activation of calcium, PI3K-Akt, mTOR signaling

[107–109]

Fc gamma R-

mediated

phagocytosis

13/14 A(8), D(15), E(62), F(15) able to triggering both activating and inhibiting signals, leads to

initiation or inhibition of a range of inflammation related events,

including release of cytokines

[110]

GnRH signaling

pathway

9/9 B(22), D(22), E(56) Expression of GnRH and its receptors is detected in lymphocytes;

leads to increased IL-2R; affects c-jun and ELK dependent gene

expression and activation of arachidonic acid metabolism

[111,112]

https://doi.org/10.1371/journal.pone.0187572.t002

Fig 4. Functional annotation of biological processes associated with spots and their contribution to diseases. The pink (left)

and blue (right) background indicate the two clusters of disease obtained by spot-similarity analysis. The sinks in each spot were

annotated with Webgestalt and REVIGO programs to reveal associated GO term and summarize them with non-redundant descriptors.

https://doi.org/10.1371/journal.pone.0187572.g004
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as an integrator of signals from different pathways and controls the number of key aspects of

inflammatory response, such as cell movement, growth, survival and differentiation [68,69].

Furthermore, it is known that the PI3K pathway mediates interactions between polarizing sig-

nals and glucose metabolism, as well as respiratory burst in immune cells [70].

The axon guidance pathway is implicated in formation of neuronal networks [71]. How-

ever, this pathway frequently appears in lists of pathways dysregulated in immune system

related conditions [72–74]. It includes mitogen activating kinases and genes encoding proteins

involved in cytoskeleton rearrangement (KEGG Pathway ID hsa04360); both essential for

PBMCs to react to stimuli [75]. Moreover, it has also been demonstrated that the axon guid-

ance genes are involved in T-cell dependent B-cell maturation [76].

Along with the expected dysregulations of immune system signal transduction pathways,

our analysis points out to massive dysregulations in metabolic pathways, including energy

metabolism, metabolism of biomolecules, vitamins and xenobiotics. Our results are in line

with previous observations on inflammation-related metabolic changes analyzed with GWAS

and metabolomics approaches [77,78]. These data demonstrate that the mechanisms of the

studied diseases expand far beyond the immune system dysregulations and affect pathways

that regulate the basic cell functions. It should be noted, that in contrast to immune system

related pathways, dysregulations in metabolic pathways were concentrated in specific spots: 28

out of 43 metabolic pathway dysregulations were spot specific (see S5 File), compared to 4 out

of 14 immune system pathways.

In order to evaluate the relevance of the observed pathway deregulations in disease context,

we have also evaluated the impact of treatment and disease outcome on pathway activation

profiles in the studied diseases (S6 File). Strong association was observed between the known

disease-drug gene sets and the spot-related pathway sink nodes identified in our analyses. The

results suggest that the output nodes associated with identified pathway perturbations in this

study may eventually serve as drug targets. Finally, we have also shown that the pathways com-

monly perturbed in PBMCs and in target tissues of organ-specific autoimmune disorders are

partly resolved after disease treatment or during disease remission stages.

Dysregulated pathway-infrastructure in autoimmune and

autoinflammatory diseases

Considering that in both AI and AIF diseases the common characteristics lie in self-directed

inflammation and disturbed homeostasis of canonical cytokine cascades, a comparative

Fig 5. Sink distribution of top dysregulated pathways in spots. The pathways with the highest

proportions of dysregulated sinks are represented in the graph. The proportion of dysregulated sinks in each

spot is depicted in the heights of respective bars. Each pathway is indicated with corresponding color.

https://doi.org/10.1371/journal.pone.0187572.g005
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analysis of the pathways involved could lead to transition to a systems level understanding of

the observed phenomena. The results of previous studies based on analysis of genetic varia-

tions using genome-wide scans, gene expression analysis data and response to similar drugs,

have already suggested that chronic inflammatory diseases share common mechanisms or

pathways [32,79,80]. However, such studies are usually limited in the examined diseases, as

well as in their attempt to obtain a general image of the mechanisms involved.

Here we have employed a systematic approach that demonstrates the universality of path-

way dysregulations in autoimmune and autoinflammatory disorders, as well as uncovers novel

aspects of similarity in the pathomechanisms of these diseases that were not reported previously.

The results of this study clearly suggest that there is no single mechanism governing the devel-

opment of the studied conditions. On one hand, the picture is rather complex and conditioned

by a big number of variables. On the other hand, our pathway activity based disease clustering

showed that diseases characterized by highly divergent clinical manifestations largely share the

underlying pathomechanisms, at least at pathway activation levels. In some cases, disease link-

age in the obtained clusters was supported by previous observations, and in others, the obtained

results were novel. For example, we have addressed in our study the specifics of pathway dysre-

gulation in PAPA [81] and HIDS (MVK) syndromes [82]. Previous studies have clearly impli-

cated NLRP3 and pyrin inflammasomes in activating caspase-1 and IL-1β production in both

syndromes [83–85]. Interestingly, while HIDS, in contrast to other autoinflammatory diseases,

is caused by mutations in a metabolizing enzyme (MVK) [21,85,86], it was later demonstrated

that mutations in the MVK gene disrupt the action of mevalonate kinase (MVK) resulting in a

cascade of processes that involve pyrin inflammasome activation and enhanced IL-1β secretion

[83,87]. This may partially explain the difference in spot enrichment observed in this disease.

However, less is known about dysregulation states of other pathways involved in pathogenesis

of these disorders. Our data suggest that PAPA is characterized by pathway activation patterns

close to that of autoimmune diseases (Fig 3, cluster 1), while HIDS clusters with the classical

autoinflammatory syndromes (Fig 3, cluster 2). Our analysis allowed us to move beyond the tra-

ditional gene-centered approach of description of molecular pathomechanisms, and to summa-

rize the diseases at a systems biology level. Compared to the popular Gene Set Enrichment

Analysis, PSF-SOM was able to mine far more functional information [38], providing a global

picture of self-directed inflammatory syndromes and generate novel hypothesis for data valida-

tion to be undertaken in additional studies.

Advantages and limitations of PSF-SOM analysis of PBMC

Our aim in this study was to compare diseases that share self-inflammatory phenotypes with-

out prior restriction for taking in consideration genetic determinants specific to each disease.

Therefore the most appropriate approach was the comparative analysis of existing microarray

transcriptome data by our PSF-SOM method, allowing to tackle quantitative variations in

pathways rather than in single genes. We appreciate that utilization of RNA sequencing data

would further improve the analysis results, as it has a number of advantages over microarrays

and even more valuable results could be obtained with the use of single cell transcriptome

data. Unfortunately, current availability of RNA sequencing data for cell subpopulations is lim-

ited, and it is impossible to collect homogeneous data in terms of sequencing platform and

sample types for all the studied diseases. Single cell data are even scarcer and still possess tech-

nological and algorithmic challenges [88]. However, our approach is technology independent

and makes it possible to replicate the study once such data is available.

In our analysis we have considered only PBMC. While this choice offers data homogeneity,

together with the facility of a non-invasive and easily obtainable tissue, it may reveal inflammatory-
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related and/or other unrelated processes, reflecting a steady state of the corresponding organism

including influences from a disease-unrelated environmental status. However, taking into consid-

eration the concept of an immunological continuum, whereas tissue perturbations at the target

sites of inflammation, rather than the immune system per se, are the key to disease expression,

such perturbations may be reflected in the peripheral blood. Previous reports of transcriptome

analysis in the peripheral blood have demonstrated that it is a well suited surrogate tissue, reflecting

distal organismal perturbations and providing a large sensitive pool of gene transcripts with quan-

titative fluctuations detectable as gene expression modifications [89].

In order to show if the processes identified in PBMC at least to some extent reflect the pro-

cesses activated in the target tissues, we have performed additional analysis to explore the over-

lap of pathway activities between PBMCs and target tissues for organ-specific autoimmune

disorders, namely, diabetes type 1, multiple sclerosis, Crohn’s disease and ulcerative colitis,

where immune responses are directed against antigens present in a particular organ (S7 File).

We have found that the activated pathways in PBMCs and in target tissues considerably over-

lap (34–59%, depending on the disease). This suggests that the processes identified in PBMC

show common features with the disease characteristics of the tissue lesions.

It is worth pointing out that the results of this study should be interpreted with some degree

of caution. The difference in the number of samples for each condition may lead to uneven

variation of pathway activity values across datasets, which may bias the interpretation of the

results. Another issue concerns the fact that according to the dataset descriptions available in

the GEO, the samples were collected at different stages of disease progression, and not at the

stage of initiation, thus making it perhaps more difficult to identify disease-specific determi-

nants. Indeed, the initiating factors of each disease can be easier identified at the early stages,

while those can be masked at later stages of the disease. This could lead to clustering of diseases

otherwise being of different molecular origin. Nevertheless, the difficulty of collecting human

tissues at early disease time points, due to the absence of early phenotypic landmarks and/or

known early markers, renders such studies not feasible for the moment. A few studies have

addressed this issue in both AI and AIF disorders [90–92]. One promising approach for the

identification of non-invasive biomarkers is the exploration of microRNAs easily accessible in

many body fluids [93].

Summary and conclusions

The data presented in this report support the notion that diseases could be distinguished by

pathways of the adaptive or innate immune responses, with the majority of conditions con-

necting by variable degrees of interaction between these two systems [94,95]. Our previous

study on lung diseases using a similar systems biology approach has resulted in clear separa-

tion between cancer and other chronic lung diseases, each group characterized by a specific set

of dysregulated pathways [38]. The separation we observed in that study was attributed to a

distinct set of pathomechanisms implicated in cancers (cell proliferation, metabolism) and

other lung diseases (immune/inflammatory response and fibrotic tissue remodelling) [38].

Here we have limited our scope to study only immune-system related diseases, and expected

to get higher degree of interrelatedness at the level of pathway activity perturbations, compared

to the previous study.

Overall, our study offers a systems biology approach addressing the complexity and redun-

dancy of the immune system mechanisms implicated in the inflammatory origin of the patho-

genesis of the studied diseases. Identification of pathways shared between different diseases,

has the potential to generate novel hypotheses and elaborate methods to subvert the immune

dysfunction by modulating networks through regulation of one gene or miRNAs. Moreover, it
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may contribute to our understanding of similarities and differences in responses to similar

treatment depending on specific patterns of pathway alterations. The selection of pathway

level resolution provides a more aggregated level of information, as compared to single gene

level analysis. We believe that both gene- and pathway- level analyses are important, one com-

plementing the other.

Supporting information

S1 File. Analysis for batch effects and platform independence in PSF calculations.

(DOCX)

S2 File. Analysis of inflammasome activation.

(DOCX)

S3 File. GO term enrichment.

(XLSX)

S4 File. Sink-spot association.

(XLSX)

S5 File. Distribution of pathway sinks across spots.

(XLSX)

S6 File. Treatment effect on pathway activation profiles.

(DOCX)

S7 File. Analysis of pathway activation profile overlaps between tissue specific and sys-

temic response.

(DOCX)

Author Contributions

Conceptualization: Arsen Arakelyan, Hans Binder.

Formal analysis: Arsen Arakelyan, Lilit Nersisyan, David Poghosyan, Lusine Khondkaryan,

Anna Hakobyan, Evie Melanitou.

Funding acquisition: Arsen Arakelyan, Hans Binder.

Investigation: Lilit Nersisyan, Evie Melanitou.

Methodology: Arsen Arakelyan, Evie Melanitou, Hans Binder.

Project administration: Arsen Arakelyan.

Software: Arsen Arakelyan, Lilit Nersisyan, Anna Hakobyan, Henry Löffler-Wirth, Hans
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