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Genetic analysis of over half a million people
characterises C-reactive protein loci
Saredo Said1, Raha Pazoki 1,2,3,4, Ville Karhunen1,5,6, Urmo Võsa 7, Symen Ligthart8, Barbara Bodinier 1,

Fotios Koskeridis 9, Paul Welsh10, Behrooz Z. Alizadeh11, Daniel I. Chasman12,13, Naveed Sattar 10,

Marc Chadeau-Hyam 1,14, Evangelos Evangelou 1,9, Marjo-Riitta Jarvelin 1,5, Paul Elliott 1,14,15,16,

Ioanna Tzoulaki 1,9,14,15,17 & Abbas Dehghan 1,14,15,17✉

Chronic low-grade inflammation is linked to a multitude of chronic diseases. We report the

largest genome-wide association study (GWAS) on C-reactive protein (CRP), a marker of

systemic inflammation, in UK Biobank participants (N= 427,367, European descent) and the

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium

(total N= 575,531 European descent). We identify 266 independent loci, of which 211 are not

previously reported. Gene-set analysis highlighted 42 gene sets associated with CRP levels

(p≤ 3.2 ×10−6) and tissue expression analysis indicated a strong association of CRP related

genes with liver and whole blood gene expression. Phenome-wide association study identified

27 clinical outcomes associated with genetically determined CRP and subsequent Mendelian

randomisation analyses supported a causal association with schizophrenia, chronic airway

obstruction and prostate cancer. Our findings identified genetic loci and functional properties

of chronic low-grade inflammation and provided evidence for causal associations with a range

of diseases.
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Chronic inflammation is the prolonged inflammatory
response to stimulating agents, injury or dysregulated
acute inflammation1. Chronic low-grade inflammation is

associated with numerous complex disorders including; several
cancers, cardiovascular disease (CVD), respiratory disease, auto-
immune diseases and endocrine-metabolic conditions2–7. How-
ever, the potential molecular pathways linking chronic low-grade
inflammation with chronic diseases are poorly understood.

C-reactive protein (CRP), an acute phase protein pre-
dominantly produced by the liver8–11, has been widely studied as
a marker of systemic inflammation. Environmental and genetic
factors contribute substantially to serum CRP levels. Previous
genetic association studies have identified 58 distinctive loci
explaining ~7% of the variation of CRP levels using data from
~200,000 Europeans12. Still, the genetic architecture of this
complex trait is not well characterised. Unravelling the under-
lying genetic components of circulating CRP levels can elucidate
mechanisms of involvement of CRP in disease processes and
highlight potential therapeutic targets for modulating
inflammation.

Here, we report the largest genome-wide association study
(GWAS) on CRP levels, using data from the UK Biobank (UKB)
and the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortia12. We conducted an array of
post-GWAS analyses to elucidate the functional characteristics of
the findings and highlight potential underlying pathways. Lastly,
we perform a phenome-wide association study (PheWAS) to
agnostically investigate clinical consequences of chronic inflam-
mation and complement that with Mendelian Randomisation
(MR) analyses to assess causal relations.

Results
Genetic loci associated with CRP levels in UKB. The study
design is illustrated in Fig. 1, and the detailed characteristics of
the subjects, exclusion criteria and phenotype source are
described in Supplementary Tables 1–4. After exclusions
(“methods”), 427,367 UKB participants contributed to the
GWAS analysis which identified 49,164 SNPs associated

with CRP levels (at genome wide significance (GWS) of
p < 5 × 10−8). Out of these, we mapped 293 independent loci by
using the Functional Mapping and Annotation of GWAS
(FUMA)13 platform. The variance explained by these inde-
pendent variants within the UKB GWAS loci was 16.3%. We
replicated all 57 previously reported loci12 (HLA region
excluded) (Supplementary Table 5).

UKB and CHARGE GWAS meta-analysis. We meta-analysed
UKB GWAS results with summary statistics from published
CHARGE GWAS meta-analysis and identified 48,912 genetic
variants associated with CRP at GWS level (Fig. 2). The LDSC
intercept was 1.15 (SE= 0.02) in UKB GWAS, consequently,
genomic control was applied. A second genomic control was
applied to the meta-analysis result reducing the intercept to one
and LDSC ratio < 0. The GWS SNPs mapped to 266 distinct loci
(Supplementary Data 1), 211 have not been previously reported,
and 55 are previously reported loci. The top three not previously
identified loci associated with CRP included, rs11868378 at the
RP11-806H10.4 locus (β=−0.033, p < 5.74 × 10−34), rs55707100
at the MAP1A locus (β= 0.069, p < 5.79 × 10−28) and rs6073958
within the PCIF1;PLTP locus (β= 0.028, p= 5.87 × 10−28)
(Table 1). The UKB-CHARGE CRP meta-analysis results were
used for all subsequent downstream analyses.

Credible set analysis of CRP associated loci. Fine mapping for
likely causal variants within the CRP associated genomic loci
identified 95% credible sets of variants (the smallest number of
variants which posterior probability sum to at least 95% prob-
ability) using a Bayesian framework. There was 91 (34%) loci with
<10 variants within the 95% credible set. In 23 (9%) loci the 95%
credible set comprised of one variant and 12 (5%) other loci
included two variants. The top three loci with the largest number
of variants within the 95% credible set were LATS1;KATNA1 with
362, RANBP17 with 288 and PYGB with 279 variants (Supple-
mentary Data 2).

UKB

Post QC N =427,367

CHARGE-1KG CRP 
GWAS

Meta-analysis summary data

N=148,164

Ligthart et al. 2018

Study cohort GWAS and replica�on

UKB & CHARGE meta-analysis

Secondary analyses

Replica�on of 
known loci

UKB CRP GWAS

N=575,531

266 independent loci

A LDSC cross-trait analysis

85 gene�cally correlated traits

B Func�onal annota�on & 
pathway analysis

42 enriched pathways (FUMA) 
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MR analysesD

Three causal rela�onships across 
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Fig. 1 Schematic overview of the study. UKB=UK BioBank, QC= quality control, 1KG= 1000 genomes, CHARGE= Cohorts for Heart and Aging
Research in Genomic Epidemiology consortia, LDSC= LD score regression, FUMA= Functional Mapping and Annotation of GWAS, DEPICT= data-driven
Expression Prioritised Integration for Complex Traits, GRS= genetic risk score, MR=Mendelian randomisation.
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Functional annotation and pathway enrichment. We applied a
range of functional annotation analyses to leverage the CRP
GWAS results using FUMA-MAGMA and DEPICT. Our FUMA
ANNOVAR results found that 82.5% of significant SNPs
(p < 5 × 10−8) and SNPs in LD with the significant SNPs are
located within intronic and intergenic regions (Fig. 3a). MAGMA
gene-based analysis annotated SNPs to 19,122 protein coding
genes, of which there were 1475 genes associated with CRP at
Bonferroni significance (p ≤ 2.61 × 10−6) (Supplementary Fig. 1,
Supplementary Data 3). The top five genes from the gene-based
analysis were NECTIN2 (alias PVRL2) (p= 8.40 × 10−162),
PDE4B (p= 3.90 × 10−159), OASL (p= 1.49 × 10−154), IL6R
(p= 1.16 × 10−148) and APOE (p= 5.32 × 10−147). In total, the
gene mapping results from FUMA (consisting of positional
mapping, eQTL mapping and chromatin interaction mapping)
and MAGMA gene-based analysis had a combined 1062 unique

mapped genes demonstrating that CRP levels are associated with
an overarching range of functional genes (Supplementary Data 4).

We conducted gene-set analysis using MAGMA and DEPICT.
MAGMA tested 15,478 gene sets, and prioritised 42 after
Bonferroni correction (p ≤ 3.23 × 10−6) and 255 at false discovery
rate (FDR) < 0.05 (Fig. 3b and Supplementary Table 6). The
prioritised gene-sets are involved in regulation of DNA expres-
sion, metabolites or immune and inflammatory response
(Supplementary Table 6). DEPICT tested 10,968 gene sets,
prioritised 169 gene-sets at Bonferroni significance (p ≤ 0.05/
10,968= 4.56 × 10−6) and 1387 at FDR < 0.05 (Supplementary
Data 5). Further clustering identified 138 groups of gene sets
which correlated and clustered in three sets, the larger two
clusters mainly consisting of immune and DNA regulation
pathways and the smaller cluster of metabolic pathways
(Supplementary Fig. 2). When we combined the FUMA and

Fig. 2 Circle Manhattan plot. Genome wide significant hits at p < 5 × 10−8 are presented for CHARGE CRP meta-GWAS (inner circle), UKB CRP GWAS
(middle circle) and meta-analysis of UKB-CHARGE (outer circle). Labelled genes are the sentinel SNPs of each 266 loci nearest genes.
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DEPICT pathway analysis full summary results, 478 matched, of
which, nuclear receptor transcription pathway, recycling of bile
acids and salts, and cytokine signalling in immune systems were
FDR significant in both. Some gene-sets of interest from the
pathway enrichment include circadian pathway (p= 3 × 10−6,
Supplementary Table 6), haemopoietic or lymphoid organ
development, hemopoieses, extramedullary haematopoiesis and
abnormal haematopoiesis (p= 7.35 × 10−8, 9.80 × 10−8,
4.39 × 10−9, 6.24 × 10−5 respectively, Supplementary Data 5).

We found that the prioritised genes were enriched for
expression in the liver (p= 3.04 × 10−6) and whole blood
(p= 4.24 × 10−4) using MAGMA and in precursor cells B
lymphoid (p= 8.21 × 10−7), synovial fluid (p= 1.46 × 10−5), liver
(p= 2.11 × 10−5) and blood (p= 2.66 × 10−5) using DEPICT
(Supplementary Tables 7–8, Fig. 3b,c and Supplementary Fig. 3).

Analysis of genetic relationships between CRP and other traits
and diseases. SNP-based heritability estimate for CRP in the
UKB-CHARGE meta-analysis was 13%. We identified significant
genetic correlation between CRP and 85 traits (p ≤ 0.05/
192= 2.6 × 10−4), though, many of the traits were related (Sup-
plementary Data 6). We found moderate genetic correlations
(rg~0.5) for four phenotypes, including leptin, phenylalanine,
triglycerides in small high-density lipoprotein-HDL, and

glycoproteins. Figure 4 depicts the unique Bonferroni significant
traits in three broad groups including metabolites, chronic/
complex diseases, and risk factors.

Using PheWAS, a weighted genetic risk score (GRS) based on
UKB-CHARGE meta-analysis results was associated with 27
different outcomes at FDR < 0.05, of which, 12 were also
Bonferroni significant (p < 0.05/1,118= 4.47 × 10−5) (Fig. 5, Sup-
plementary Table 9). We identified no phenome-wide significant
clinical outcomes associated with a weighted GRS based only on
cis-acting SNPs at CRP gene (Supplementary Fig. 4).

We assessed the causal role of genetically raised CRP on
outcomes that were significant in PheWAS (n= 27) or were
investigated in recent studies14 (n= 11). Results are interpreted
as per 1 standard deviation (SD) increase in genetically raised
natural log CRP levels. The 27 PheWAS clinical outcomes were
initially assessed using MR outcome estimates obtained from the
UKB PheWAS (MR-UKB). Then was assessed using MR outcome
estimates obtained from published GWAS summary statistics
with non-UKB sample populations for the available PheWAS
identified outcomes (MR-rep). Firstly, MR -UKB using UKB-
PheWAS result for SNP-outcome identified 17 (out of 27) IVW
Bonferroni significant outcomes, six displayed consistent effect
direction across all methods of which, degeneration of macular
and posterior pole of retina and macular degeneration (senile) of
retina sensitivity test had p < 0.05 (Supplementary Data 7). To
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replicate our findings, we conducted MR-rep (Supplementary
Data 8, Supplementary Fig. 5). Of the 22 tested outcomes (since
GWAS summary data were not identified for five of the 27
clinical outcomes), chronic obstructive pulmonary disease
(COPD) (chronic airway obstruction) had a Bonferroni sig-
nificant IVW MR estimate (β= 0.330, p= 7.94 × 10−4). Clinical
outcome that reached nominal significance with consistent effect
direction but did not have IVW significant estimates in MR-UKB
were, hyperlipidaemia (β= 0.323, p= 0.008) and disorders of
lipoprotein metabolism (β= 0.14, p= 0.042).

To assess further outcomes that are of interest to chronic
inflammation but may have been underpowered in PheWAS we
conducted Two-sample MR analyses using published GWAS’s
(Supplementary Table 4). We used CRP associated sentinel
variants as genetic instruments (trans-CRP IVs) in the MR
analyses and conducted sensitivity analyses with variants at the
CRP locus (cis-CRP IVs) (Supplementary Fig. 6, Supplementary
Data 9–10). MR IVW analysis confirmed that genetically elevated
CRP levels (per 1-unit difference in natural log-transformed CRP)
are associated with a reduced risk of schizophrenia (β=−0.120,
p= 4.14 × 10−4), with consistent results across sensitivity tests. A
positive association of genetically elevated CRP levels on breast
cancer was identified with IVW (β= 0.061, p= 3.56 × 10−3), with
concordant direction of effect across MR methods. Major
depressive disorder (MDD) had a positive IVW association close
to the Bonferroni threshold (β= 0.069; p= 5.27 × 10−3) with
concordant sensitivity tests. MR-PRESSO identified at least one
outlying variant for all outcomes except MDD and stroke.
However, the exclusion of the pleiotropic variant did not notably
affect the result. The analyses using cis-acting CRP IVs which
survived the Bonferroni threshold was prostate cancer
(β=−0.104, p= 0.002). Outcomes at nominal significance
included; schizophrenia (β=−0.130, p= 0.005), type 1 diabetes
(β= 0.274, p= 0.015) and autism spectrum disorder (β= 0.118,
p= 0.045). The Bonferroni significant MR results with supported
sensitivity analyses are displayed in Fig. 6. Lastly, bidirectional MR
did not provide evidence for reverse causality between schizo-
phrenia, breast cancer, prostate cancer and COPD (as exposures)
and CRP levels (as outcome) (Supplementary Table 10).

Discussion
Taking advantage of data from > 500,000 individuals, we have
expanded the number of genomic loci associated with circulating
CRP levels from 58 to 266 and have improved the percentage of
variance explained from ~7%12 to 16.3%. Further, our GWAS
replicated 57 loci that were previously reported to associate with
CRP12,15–17. Moreover, we report 85 traits genetically correlated
with serum CRP and highlight 42 biological pathways under-
pinning CRP regulation. Through MR analysis we were able to
provide evidence for a causal effect of low-grade chronic
inflammation as measured by genetically elevated serum CRP on
lower risk of schizophrenia and prostate cancer, and a higher risk
of COPD.

In observational studies, CRP concentrations have an inverse
linear relationship with pulmonary function18, and a positive
association with COPD and mortality in COPD patients19,20.
COPD is characterised by chronic inflammation21. Smoking is a
major causal factor for COPD which induces an inflammatory
response driven by CRP, IL-6 and TNF-alpha and persists even
after smoking cessation22. However, raised CRP levels are also
reported in COPD patients independent of smoking status, pro-
posing CRP as a marker of systemic inflammation that occurs in
these patients23,24. Using PheWAS analysis in the UKB, we
identified a potentially causal association between genetically
elevated CRP and risk of chronic airway obstruction. This finding
was validated with subsequent two-sample MR analyses using
data from GWAS consortia. Previously, analyses by Daul et al.
were too underpowered (with partial r2 of CRP instrument from
0.4 to 1.8%) to find an association between genetic variants in
CRP gene and COPD25. Our results suggest the dysregulated
chronic low-grade inflammation may mediate development of
COPD or its progression.

The MR analyses is in agreement with prior reports on the
protective causal role of increased CRP levels on the risk of
schizophrenia12,26–28. Observational studies have reported a
higher risk of schizophrenia with higher circulatory levels of CRP
in younger age29, which suggest a possible role of acquiring
infections in younger age in the development of schizophrenia
later in life. In addition, neonatal studies have shown low levels of
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acute phase proteins such as CRP relate to increased risk30 and
development31 of schizophrenia28. Although the exact underlying
mechanism is not known, one possibility is that a genetic profile
for stronger immune responses (i.e. higher genetic score for
inflammation), may lead to a lower chance for infection in
childhood, which is thought to be related to the risk of schizo-
phrenia in adulthood.

We identified an inverse potential causal association between
genetically elevated CRP levels and risk of prostate cancer.
Observational studies have shown increased circulating CRP
levels associated with the increased risk of prostate cancer32;
however, the causality has not been established33,34. One may
speculate that an inflammatory response inhibits early stages of
oncogenesis for example by complement factor activation, which
is regulated by CRP, promotes cancer cell death35. A genetically
strong inflammatory response may play a proactive role against
prostate cancer over the course of life.

Our study highlights haematopoiesis association with elevated
CRP, which has not been previously reported36. The pathway
analyses highlighted haematopoiesis pathways and tissue
enrichment analyses highlighted whole blood, haematopoietic
system, lymphoid progenitor/precursor cells and bone marrow
cells. This demonstrates the identified genetic paths for CRP
production affect the maturation of blood cells via series of

different CRP related mapped genes, such as CSF2, TNF (alias
TNF-alpha) and IL137,38. Also, CRP regulation and haemato-
poietic development may share pathways potentially through
cytokines such as IL1 and TNF-alpha39,40, yet, these results need
a detailed examination for their basic and clinical meanings.

The strength of our study includes the large sample size of the
UKB and the inclusion of CHARGE summary data which allowed
us to replicate the findings and substantially extend the discovery
panel. Several limitations are worth mentioning. Our discovery
panel mainly consisted of participants of European ancestry;
caution is needed when extending the findings to other ethnic
groups. Although BMI influences chronic low-grade inflamma-
tion, it was not adjusted for in the study as previous GWAS12

addressed this and saw the vast majority of variants associate with
CRP levels independently of BMI, there was also the concern of
introducing collider bias41,42 in the following MR analyses. We
did not investigate rare variants (MAF < 0.01) in our GWAS.

In conclusion, this large-scale effort more than tripled the
number of known loci associated with CRP levels and provide a
comprehensive picture of the genetic architecture of chronic
inflammation. The loci provided insights into the biology of
serum CRP through functional annotation and pathway analysis,
such as the possible role of CRP in haematopoiesis. Finally,
support for potential causality of low-grade chronic inflammation
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marked by CRP on risk of schizophrenia, chronic airway
obstruction and prostate cancer highlights avenues of disease
prevention through modulation of inflammation.

Methods
Our research complies with all relevant ethical regulations. The UKB has ethics
approval from the North West Multi-Centre Research Ethics Committee (11/NW/
0382). Ethical approval was covered by the UKB and informed consent was
obtained from participants. Data for this work was obtained under approved data
request application ID 13436. Additional ethical approval was not required for the
present study.

Study design and study sample. The study design is depicted in Fig. 1. We used
data from participants of European descent in UKB to conduct GWAS. Further, we
performed one-stage meta-analysis using our UKB GWAS result and summary
statistics from a GWAS meta-analysis conducted by the CHARGE consortium
using 1000 Genomes imputed data from 49 studies (see Supplementary Table 1
presented the baseline characteristics for UKB participants. Baseline characteristics
for the studies that contributed to the CHARGE meta-analysis have been described
elsewhere12). The genomic positions used throughout this study was human
genome assembly GRCh37 (hg19) from Genome Reference Consortium.

GWAS on CRP levels in UKB population. We performed Linear Mixed Model
(LMM) regression using BOLT-LMM version 2.343 on CRP levels in UKB. This
model accounts for cryptic relatedness within the sample. We used an additive
genetic model, for all 8.9 million measured and imputed genetic variants. The
model was adjusted for age, sex, UKB array (UKB vs UK BiLEVE to account for the
different genotyping chips44) and 40 genetic principal components.

Serum CRP levels (mg/l was measured by immunoturbidimetry- a high
sensitivity method on a Beckman Coulter AU5800 (ISO 17025:2005 accredited)45.
CRP levels were transformed using natural log and the resulting range included was
from −2.53 to 4.38, excluding individuals with extreme values ±4 SD from the
mean. Individuals on immune modulating drugs, with auto-immune related
diseases/disorders, which constituted 1.8% of the sample, were removed
(Supplementary Table 2). We filtered variants with minor allele frequency
(MAF) < 0.01 and imputation quality <0.1. The variance explained was calculated
for the variants within the lead loci of the CRP UKB GWAS results using the

formula12 [Eq. 1]:

∑ ½ð2 ´ MAFið1�MAFiÞ Bi
2Þ=varðln CRPÞ� ð1Þ

Where ∑ is the sum, MAFi is the MAF of associated variant i, ßi is the absolute
effect estimate of the corresponding variant i on natural log CRP and var is the
variance of natural log CRP levels obtained from AIRWAVE study46 (project AH-
INT-052).

Replication of previously reported sentinel SNPs. We looked up loci previously
reported in CRP GWAS12 in our UKB GWAS. For every locus, SNP with smallest p
value in the former GWAS was examined as a representative of that locus. We
considered the finding as replicated when the sentinel SNP has a p < 0.01; and a
concordant effect direction (Fig. 1).

UKB and CHARGE GWAS meta-analysis. We conducted fixed-effects inverse
variance-weighted meta-analysis of UKB GWAS summary statistics (N= 427,367)
and CHARGE GWAS summary statistics (N= 148,164) using METAL47. Variants
from the human leukocyte antigen (HLA) region (chr6: 25Mb-35Mb, hg19) in both
UKB and CHARGE GWAS were excluded, as SNPs from the HLA region can lead
to inflated test statistics and have been associated with multiple immunological
traits48. Genomic control was applied to the UKB GWAS summary statistics prior
to meta-analysis, while genomic control was already applied to CHARGE study,
and then a final genomic control was applied to the meta-analysis results using the
linkage disequilibrium (LD) score (LDSC) calculated genomic inflation factor. We
determined independent genomic risk loci using Functional Mapping and Anno-
tation of GWAS (FUMA)13 online platform (https://fuma.ctglab.nl/). FUMA
clumps genome wide significant SNPs (p < 5 × 10−8) at specified r2 threshold to
identify the independent and lead SNPs. In this instance we set r2 to 0.1 for
independent and lead SNP definitions, making the number of SNPs identical.
Independent associated SNPs residing in distinct LD blocks that physically overlap
within a 500 kb window were merged into one locus. The sentinel SNP of each
locus is the independent SNP with the smallest p value. The LD structures were
based on the 1000 Genomes Project Phase 3 reference panel49 on European
reference population and PLINK (v1.950) was used to compute the r2.

Credible set analysis. Fine-mapping was carried out on the CRP associated
genomic loci to identify likely causal variants. Credible set analysis51,52 using the
Bayesian framework was implemented. The posterior probability for variants to be

Coronary artery disease

Prostate cancer

Chronic airway obstruction 

Schizophrenia

−0.25 0.00 0.25 0.50 0.75
MR Estimate

Method

IVW

MR Egger

Wmod

Wmed

Fig. 6 Two-sample Mendelian Randomisation results. Schizophrenia, chronic airway obstruction and prostate cancer survived Bonferroni threshold with
consistent effect direction across sensitivity tests, many of which are also nominally significant. Coronary artery disease is presented here as a disease of
interest. The size of the point represents the precision of the estimate (1/SE). The points are the beta estimates from the MR analyses and the error bars
are the 95% confidence intervals.
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causal was obtained by calculating the Bayes factors, which was then used to
generate the 95% credible sets. The resulting variants of each loci are the smallest
list of variants which cumulatively have a ≥ 95% probability of including causal
variants.

LD score regression. To provide a more accurate estimate of genetic inflation
compared with effects attributable to true polygenicity and calculate SNP herit-
ability, we applied LDSC regression using the LD-hub tool53. The genomic inflation
factor obtained from the LDSC regression was used to correct for genomic inflation
of the GWAS. LDSC analysis performs regression of GWAS meta-analysis sum-
mary statistics (using χ2 statistics) on the LD scores across the genome. When an
LDSC intercept equals to one, this suggests no evidence of confounding bias, and
an intercept larger than one suggests cryptic relatedness or population stratification
as contributors to the genomic inflation reported. The proportion of inflation of the
mean χ2 that the LDSC intercept ascribes to potential causes other than polygenic
heritability is measured by the ratio (intercept−1/(mean χ2)−1)54. We utilised the
European 1000 Genomes reference panel-based LD score file available in LD-hub.

To determine the genetic correlation of CRP with other phenotypic outcomes,
we performed cross-trait LDSC analysis using publicly available GWAS summary
statistics54 against the UKB-CHARGE CRP meta-analysis. In brief, the genetic
covariance between two traits (e.g. CRP, LDL) is estimated by regressing the
product of the z-score from the two studies against the LD-score, the slope of
which is then multiplied by the number of tested SNPs55.

Functional downstream analysis. To conduct in silico downstream functional
analysis of the UKB-CHARGE CRP meta-analysis results, we used FUMA13,
Multi-marker Analysis of GenoMic Annotation (MAGMA v1.6)56 and Data-driven
Expression Prioritised Integration for Complex Traits (DEPICT)57. First, we per-
formed functional annotation with FUMA of all genome-wide significant SNPs and
SNPs in LD with them (r2 ≥ 0.6) using Annotate Variation (ANNOVAR) enrich-
ment test (gene-based annotation), which annotates the functional consequence of
SNPs on Ensemble (v92) protein coding genes (e.g. intron and exon)58. Func-
tionally annotated SNPs were subsequently mapped to genes using three strategies:
positional mapping (physical distance), expression quantitative trait loci (eQTL)
mapping (eQTL association) and chromatin interaction described further in sup-
plementary information. Furthermore, MAGMA was used to perform gene-based,
gene-set and gene-property (tissue gene expression) analysis of the full GWAS
meta-analysis summary results. In brief, gene-based analysis computes gene-based
p values association statistics for SNPs that are mapped to protein coding genes.
The gene-based p values are then used to compute gene-set p values in gene-set
analysis. The SNPs mapped genes are tested for statistical overrepresentation in the
predefined gene-sets. Gene-property analysis was conducted using eQTL gene
expression data to identify tissue specificity of CRP. Multiple testing was corrected
by using Bonferroni correction for gene-based and tissue-expression, and FDR for
gene-set MAGMA analysis. In addition, DEPICT57 was conducted and its results
were compared to FUMA results from MAGMA gene-based analysis and gene-
property tissue enrichment analysis. DEPICT was used to predict gene functions to
prioritise the most likely causal genes at associated loci, identify enriched pathways
and specific tissues/cells where genes of the associated loci are expressed. The
methods used for the downstream pathway analysis are described further in sup-
plementary information.

PheWAS. To explore effects of chronic inflammation as measured by CRP levels,
we conducted PheWAS59 with subsequent MR analyses to asses causality of
identified phenotypes. The phenotypic (including patient hospital records, cancer
registry data, and death registry data defined as ICD codes from electronic medical
records) and genotypic data (259 CRP associated sentinel SNPs) were extracted
from the UKB database. Using the PheWAS (version 0.99.5-3) R package60, a total
of 1118 hierarchical phecodes were directly matched to the ICD-9/10 codes, after
filtering phecodes with <200 cases61, and patients that had similar or overlapping
phenotypes from the corresponding control group were excluded. The minimum
code count for a recorded event to be considered a case was one. We excluded non-
White and related participants, adjusted for age, sex, BMI, and the first 15 principal
components in the PheWAS logistic regression analyses. The genotypic data was
constructed as a GRS for assessment in PheWAS by the summation of CRP-
increasing alleles for each SNP, weighted by the beta coefficients of the SNP on
circulating CRP levels from our meta-analyses. The weighted GRS was standar-
dised by subtracting the GRS from the mean then divided by the SD. As the
phenotypes are not completely independent in the phecode system, we utilised
FDR (q < 0.05) as the overall determinant of significance accounting for multiple
tests. A subsequent PheWAS was run utilising individual SNP genotypes and a
subset of FDR significant phenotypes identified in the initial PheWAS to obtain
individual estimates for MR. To assess pleiotropy of the CRP gene locus (±50 kb),
using the same method above we calculated the weighted GRS of 29 independent
(clumping window of 10,000 kb and an r2 threshold of 0.1) CRP SNPs and ran
PheWAS.

MR analyses. We applied two-sample MR analyses to assess the causal role of CRP
on two sets of clinical outcomes: (1). The 27 clinical outcomes highlighted in

PheWAS (FDR significant). For this set of outcomes, we initially used data from
UKB (MR-UKB) (significance threshold p < 0.05/27= 0.0019). Later we tried to
replicate these results by using summary statistics form the largest published
GWAS (MR-rep), using 245 trans-acting genetic variants (summary statistics
available for 22 of 27 outcomes, significance threshold p < 0.05/22= 0.0023). The
published GWAS used are shown in Supplementary Table 3. (2) The 11 clinical
outcomes that were suggested by the literature to be causally affected by CRP, using
cis- and trans-acting CRP genetic variants (significance threshold p < 0.05/
11= 0.0045). Details of published GWAS used are shown in Supplementary
Table 4.

We used fixed-effects inverse-variance weighted (IVW) MR62 as the main MR
analysis method. Since IVW method is susceptible to heterogeneity, we conducted
additional sensitivity MR analyses. Random-effects IVW (IVW-RE) MR was used
as it allows heterogeneity in the estimates from individual genetic variants63,64.
Sensitivity MR methods including weighted mode (W-mod), weighted median (W-
med) and MR-Egger were used to investigate the degree of horizontal pleiotropy, a
key violation to IV assumptions. MR-Egger allows an additional test for directional
pleiotropy, with an assumption of INstrument Strengths being Independent of
Direct Effects (InSIDE)65. Weighted median (W-med) MR gives a consistent causal
estimate if at least half of the weight for the analysis comes from variants that are
valid instruments66. Weighted mode (W-mod) MR provides a consistent estimate
of the causal effect if a weighted plurality of the genetic variants are valid
instruments67. Finally, MR-PRESSO can detect horizontal pleiotropy, test level of
distortion between causal estimates from IVW and outlier corrected
(p_distortion < 0.05); outlier-corrected IVW estimates are obtained by excluding
pleiotropic variants from the analysis. This method requires that at least 50% of the
variants are valid instruments and that the InSIDE assumption holds68.

SNPs that were in the vicinity of the CRP gene (50 kb downstream APCS-
nearest gene upstream of CRP and 50 kb downstream of CRP was selected to
capture lead variants in CRP locus) were selected as cis-acting variants (cis-CRP
associated IVs) for sensitivity analysis in MR minimising the possibility of
horizontal pleiotropy. After extracting the summary statistics for each outcome,
effect estimates were aligned to have the same effective allele for exposure and
outcome and were then clumped in a window of 10,000 kb and an r2 threshold
of 0.1.

We assessed evidence of reverse causality for the reported outcomes with
Bonferroni significant IVW MR and consistent sensitivity test results. Firstly, the
exposure IVs for schizophrenia, breast cancer, prostate cancer and COPD were
obtained from published GWAS summary statistics available through
TwoSampleMR R package (Two-sample MR ID: ieu-b-42, ieu-a-1126, ieu-b-85,
finn-a-J10_COPD, respectively). COPD exposure variants were selected at lowered
p value threshold 1 × 10−5 due to low number of genome wide significant SNPs.
Our CRP summary statistics was used for the association of IVs with CRP and was
harmonised to the reported effect allele of the exposures. To assess reverse causality
MR IVW and sensitivity methods were applied as described above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary statistics of the CHARGE CRP GWAS used in this study is publicly
available from the IEU open GWAS project accession code ieu-b-35 (Trait: C-Reactive
protein level - IEU Open GWAS project (mrcieu.ac.uk)). The derived CRP GWAS meta-
analysis summary statistics generated in this study have been deposited in the GWAS
catalogue under accession code GCST90029070 (https://www.ebi.ac.uk/gwas/studies/
GCST90029070). Human genome assembly GRCh37 (hg19) from Genome Reference
Consortium https://www.sanger.ac.uk/data/genome-reference-consortium/).
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