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Abstract: A novel deoxyuridine (dU) benzothiazolium (BZ) derivative, referred to as dU-BZ, is
reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine
building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium
dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is
characteristic of using UV light to excite common fluorphores, better discriminate from native
autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement
of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum
yields in 99% glycerol/1% methanol (v/v) solution as a function of temperature (293–343 K), together
with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in
glycerol/methanol solutions (ranging from 4.8 to 950 cP) were determined. Both fluorescence
quantum yields and lifetimes increased with increased viscosity, consistent with results predicted
by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as
a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.

Keywords: microviscosity sensor; far-red fluorescent probe; bioimaging; nucleosides; Sonogashira
coupling; molecular rotor

1. Introduction

Information, such as physiological composition, can be reflected by microenvironments in cellular
compartments [1]. For example, an increase in mitochondrial membrane viscosity was discovered
after exposure to β-amyloid, which is essentially involved in Alzheimer1s disease [2]. Mechanical
methods [3,4] have been universally applied to measure the viscosity of bulk liquids. However,
viscosity on the microscopic scale may differ largely. It is a significant challenge to use techniques to
measure microviscosity on the order of micrometers so that intracellular viscosity can be probed.

One method to monitor viscosity changes at the single cell level is the use of fluorescence imaging
with molecular rotors [5,6]. Molecular rotors are fluorophores whose fluorescence intensity is affected
by intramolecular rotation that can be greatly affected by the viscosity of its surrounding environment.
This can be accomplished via an intramolecular charge transfer (ICT) mechanism by molecular twisting
in the excited state. Two excited states, a local excited (LE) state and twisted intramolecular charge
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transfer (TICT) state, are involved [7], and de-excitation to the ground state can occur from both states.
With intramolecular twisting at in the excited state, different molecular conformations lead to an energy
gap between the LE state and TICT state, then non-radiative deactivation can occur from the LE state to
a dark, non-emissive TICT state. This energy gap leads to different intensities of radiative decay from
two excited states to the ground state. In viscous media, the rate constant of non-radiative relaxation
is reduced, the radiative decay of the LE state occurs, and the quenched emission by de-excitation
from TICT state is recovered, resulting in a higher fluorescence quantum yield and longer fluorescence
lifetime [8].

Molecular rotors have been proposed over the decades for measurement of local viscosity by
tracking the changes in fluorescence quantum yields [6,9]. A challenge in this approach is separating
influences on fluorescence intensity caused by viscosity from other factors, such as local concentration
of fluorophores and specific solvent effects. A ratiometric approach was applied to address this
problem [5,10–12]. By conjugating the molecular rotor to a fluorescent label whose quantum yield is
not affected by viscosity, the concentration can be determined in different viscous environments [13,14].
An alternative method to determine viscosity by molecular rotors is the application of fluorescence
lifetime imaging microscopy, since the fluorescence lifetime of a molecular rotor does not change with
the concentration of the fluorophore, but changes with fluorescence quantum yield as a function of
viscosity [15,16]. In addition, conjugation of molecular rotors to another fluorophore can be omitted,
which, in general, simplifies the synthesis and leaves the possibility for further functionalization of the
probe’s structure.

Our interest is the design and synthesis of biocompatible probes emitting in the far-red region
for bioimaging [17–19], including cyanine dyes. Augmenting the properties of organic fluorophores
with biomolecules, especially nucleosides, are quite interesting [20–23]. Conjugation of fluorophores
as side chains to DNA nucleosides is favorable because modified nucleosides can be paired with the
complementary strand without radically altering the structure [24]. Additionally, requirements such
as reduced toxicity and enhanced hydrophilicity can be fulfilled by modifying the compound with
biocompatible nucleoside building blocks. Live cell uptake studies suggest that nucleoside-modified
fluorophores can function as biological probes [25]. Usually carried out by Sonogashira coupling to
conjugate nucleosides and fluorophores, our aim was to introduce an acetylene linker to join them,
and this linker can avoid steric hindrance that often accompanies direct coupling [26]. A squaraine
and deoxyuridine-based viscosity sensor, dU-SQ, was reported by our group, exhibiting a 300-fold
fluorescence increase [25]. Optimizing reaction conditions for Sonagashira coupling has been carefully
studied, and by utilizing amberlite IRA-67, a milder base when compared to some conventional
bases such as DIPEA and TEA, much cleaner reactions were realized. Although this great increase in
fluorescence intensity was due to not only TICT but also affected by aggregation of squaraine dyes, this
new compound supported that intercellular viscosity is dependent on microtubules (MTs) crosslinking
and density, and cell images were captured during different stages of mitosis.

Herein, to circumvent complications related to aggregation, we report a newly designed
molecular rotor dU-BZ, formed via Sonogashira coupling to covalently link a cyanine chromophore
to deoxyuridine through an acetylene moiety. Linear absorption, emission spectra, and fluorescence
quantum yields of dU-BZ in glycerol/methanol solutions were obtained, and a 30-fold fluorescence
enhancement was realized in a purely viscosity-dependent manner (no aggregation effects were
observed such as those reported previously). Far-red excitation and emission ensures lower risks of
photodamage and phototoxicity, should help generate signals less convoluted with autofluorescence,
and may facilitate deep tissue imaging. In vitro fluorescence microscopy was conducted to demonstrate
that the potential of this new compound as a microviscosity probe at the cellular level.
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2. Results

2.1. Synthesis of dU-BZ

The synthesis of molecular rotor dU-BZ is illustrated in Scheme 1. Intermediate compound 3 was
synthesized according to the literature [25], and the resulting NMR matched the reported data. Next,
compound 4 was synthesized by condensation of intermediate 3 with dimethylaminobenzaldehyde
via a Knoevenagel reaction; acetic anhydride was employed as both base and solvent.

The following procedure was used for the conjugation of a deoxyuridine analog and
alkynylbenzothiazolium 4 through a triple bond. Rather than directly using deoxyuridine, a modified
form, idoxuridine, was exploited not only due to the iodo group provided for conjugation, but also
its structure may be incorporated into DNA/RNA strands for future study. Hydroxyl groups of
idoxuridine are all unprotected in order to avoid possible low overall yield. Although protected
hydroxyl groups possess enhanced water solubility when compared to unprotected ones, in
consideration of the overall yield of the reaction, protected nucleosides were not pursued.

dU-BZ was obtained via Sonogashira coupling between (+)-5-iodo-21-deoxyuridine and alkyne 4
in 21% yield after purification by column chromatography. After conjugation with the deoxyuridine
analog, dU-BZ exhibited enhanced water solubility when compared to 4. The 1H-NMR, 13C-NMR,
and HR-MS spectra were in good accordance with the chemical structure as expected.
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Scheme 1. Synthetic route of molecular rotor dU-BZ. The arrow on the dU-BZ structure indicates the
major molecular rotation that contributes to the fluorescence on-off feature.

2.2. Linear Photophsical Characterization of dU-BZ by Varying Temperature

The fluorescence quantum yields (Φf) of dU-BZ were measured in 99% glycerol/1% methanol
(v/v) solution at various temperatures, ranging from 343 to 293 K, with viscosity ranging from
50.6 to 1412 cP (Table 1). According to Figure 1a,b, no significant shifts were observed in absorption
and emission spectra, but an increase in the fluorescence intensity was obtained with decreasing
temperature when excited at 551 nm, and Φf increased from 0.04 to 0.34.
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Table 1. Fluorescence quantum yield (Φf) of dU-BZ and viscosity (η) as a function of temperature (T)
in 99% glycerol/1% methanol (v/v) solution.

Temperature (T)/K Viscosity (η)/cP Fluorescence Quantum Yield (Φf)

343 50.6 0.04 ˘ 4 ˆ 10´3

333 81.3 0.07 ˘ 7 ˆ 10´3

323 142 0.10 ˘ 1 ˆ 10´2

313 284 0.17 ˘ 2 ˆ 10´2

303 612 0.24 ˘ 2 ˆ 10´2

293 1412 0.34 ˘ 3 ˆ 10´2
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Figure 1. Absorption (a) and emission (b) spectra of dU-BZ recorded as a function of temperature in
99% glycerol/1% methanol (v/v) solution. Excitation wavelength = 544 nm.

2.3. Linear Photophysical Characterization of dU-BZ as A Function of Viscosity

At the same concentration, there was no obvious change observed in the absorption spectra for
dU-BZ by varying the ratio of glycerol and methanol in solution. However, without any changes in
shape of the emission spectrum or the peak emission wavelength, a 30-fold increase in fluorescence
intensity appeared at 608 nm by increasing the viscosity from 1.8 cP to 950 cP (Figure 2).
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Figure 2. Absorption (a) and emission (b) spectra of dU-BZ obtained as a function of viscosity in
glycerol/methanol (v/v) solutions; percentage indicated is the glycerol content of the solution.

2.4. Fluoresence Lifetime of dU-BZ in Glycerol/Methanol Solutions, Radiative, and Non-Radiative Rate Constants

Figure 3 shows the fluorescence lifetime decay of dU-BZ with decreasing viscosity in
glycerol/methanol solutions. As a function of viscosity, the fluorescence lifetime varied markedly
from 0.19 ns at 58 cP to 1.07 ns at 950 cP.
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2.5. In Vitro Bioimaging of dU-BZ

Highly viscous, up to 400 cP, intra- and intercellular environments [15] have been reported.
The in vitro fluorescence enhancement using dU-BZ was explored, and, indeed, after incubation with
3T3 cells (mouse embryonic fibroblast cells) for 30 min, dU-BZ appeared to readily enter the cells, and
remarkably clear fluorescence images were obtained (Figure 4, Hoechst stained cell nuclei as reference).
These results suggest that dU-BZ can, potentially, be utilized to visualize viscous regions at the cellular
level, providing motivation for further studies with this promising new probe.
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Figure 4. 3T3 cells were incubated with dU-BZ (15 µM, 30 min). DIC image (A) indicates healthy
morphology of 3T3 cells. Overlay image of dU-BZ fluorescence and DIC (B) indicates effective uptake
of dU-BZ (Texas Red filter cube (Ex 562/40 nm, DM 593 nm, Em 624/40 nm). (C) shows overlay image
of Hoechst (blue filter cube, Ex 377/50 nm, DM 409 nm, Em 460/50 nm), and dU-BZ fluorescence.
Scale bar is 10 µm.

3. Discussion

Free-volume concepts [27] can be described by the fluorescence quantum yield, Φf, viscosity, η,
and temperature, T [9]:

Φf “ B pη{Tqx, (1)

where B = (kr/knr0)¨ (T/A)x, knr0 is the free-rotor reorientation rate, A is a constant, and x is
a medium-dependent constant ranging between 0 and 1. When Φf is linearly related to η/T (x = 1),
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the bulk viscosity of solvent can accurately indicate the friction experienced by the molecular rotor.
Normally, faster rotational diffusion is expected because the fluorophore can occupy a certain free
volume within the solvent, in which case x < 1. A plot of log Φf verses log (η/T) yields a straight line
with the exponent x as its slope via Equation (2):

log Φf “ x log pη{Tq ` x log B, (2)

As shown in Figure 5, linear behavior was observed when plotting log Φf vs. log (η/T). The slope
of this plot provided the exponent x, 0.57˘ 0.04, in the range from 0 to 1, with a R2 value of 0.98. Due to
increased viscosity and decreased free volume, a decreased non-radiative rate constant is expected,
and this prediction will be described in the following experiments.

The Förster-Hoffmann equation [28] can be used to describe Φf, and fluorescent lifetime, τf, of
molecular rotors as a function of η:

Φf “ zηα, (3)

where:
Φf “ kr{pkr ` knrq, (4)

τf “ 1{pkr ` knrq, (5)

then:
τf “ zkr

´1ηα, (6)

where z and α are constants, the value of 2/3 for α is predicted by Förster and Hoffmann, and kr and
knr are radiative and non-radiative rate constants. [29] According to Equation (6), a straight line with
a slope of α will be yielded after plotting log τf verses log η, since:

log τf “ α logη ` log pz{krq, (7)
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Figure 5. Plot of log Φf vs. log (η/T) for dU-BZ in 99% glycerol/1% methanol (v/v) solution.

One should note that Equation (3) can only be applied over a limited range of viscosities.
According to the Förster-Hoffmann theory, Φf is solvent-independent at low viscosities, whereas
at relatively high viscosities, a strong dependence on viscosity of Φf is expected, since radiative
processes predominate over non-radiative relaxation. This very range of viscosities is determined
by the properties of the particular molecular rotor and the mechanism of viscosity-dependent
photophysical behavior.

Measured values, Φf and τf, were used to calculate the rate constants via Equations (2) and (3).
Plotted in Figure 6, with viscosity increasing from 58 cP to 950 cP (Table 2), Φf shows significantly
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increased values as expected. It is worth noting that kr remained constant but knr decreased largely
as a function of viscosity. These data suggest that the main contribution to the increase of Φf
is via suppression of the non-radiative process. In a highly viscous environment, because of the
intramolecular rotation hindrance, the torsion angle between the benzothiazole and aminobenzene
rings is close to zero, which yields the most stable conformation of the molecule in the LE state. At the
same time, non-radiative relaxation to the TICT state, which has a conformation angle value close to
90˝, is deactivated, and radiative decay from LE state to ground state starts to take place instead of
de-excitation from the TICT state.

Table 2. Fluorescence quantum yield (φf), fluorescence lifetime (τf) *, radiative (kr) and non-radiative
(knr) rate constants of dU-BZ as a function of viscosities (η) in glycerol/methanol solutions.

% Glycerol Viscosity (η)/cP Fluorescence
Quantum Yield (Φf)

Fluorescence
Lifetime (τf)/ns * kr/ns´1 knr/ns´1

95 950 0.26 ˘ 2.5 ˆ 10´2 1.07 0.243 0.692
90 630 0.19 ˘ 2 ˆ 10´2 0.87 0.218 0.931
85 350 0.13 ˘ 1.5 ˆ 10´2 0.59 0.220 1.475
80 250 0.11 ˘ 1 ˆ 10´2 0.57 0.193 1.561
75 170 0.07 ˘ 7 ˆ 10´3 0.40 0.175 2.325
70 130 0.06 ˘ 6 ˆ 10´3 0.30 0.200 3.133
65 70 0.06 ˘ 6 ˆ 10´3 0.28 0.179 3.393
60 58 0.03 ˘ 3 ˆ 10´3 0.19 0.158 5.105
50 28 0.02 ˘ 2 ˆ 10´3 0.10 0.200 9.800
40 13 0.015 ˘ 1.5 ˆ 10´3 0.06 0.250 16.417
30 7.7 0.010 ˘ 1 ˆ 10´3 0.05 0.200 19.800
20 4.8 0.008 ˘ 8 ˆ 10´4 0.04 0.200 24.800
10 1.8 0.006 ˘ 6 ˆ 10´4 0.05 0.120 19.880

* The lifetime resolution of the experimental system is ca. 80 ps, with measured lifetimes <0.10 ns estimates only.
Lifetimes are ˘ 0.10 ns.
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Figure 6. Fluorescence quantum yield (Φf), radiative (kr), and non-radiative (knr) rate constants of
dU-BZ obtained as a function of viscosity (η) in glycerol/methanol solutions.

From Equation (7), a straight line was obtained in the plot of log τf vs. log η and, as expected,
linear behavior was obtained (Figure 7) with a slope, α, of 0.59 ˘ 0.04, consistent with the value
predicted by the Förster-Hoffmann equation, and a R2 value of 0.96 for dU-BZ. It was also found that
plots below 58 cP fit in the same straight line, but lifetime values lower than 0.2 ns were not reliable
due to the resolution of the experimental system (Table 2). Only plots from 58 cP to 950 cP are shown
in the figure.
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4. Materials and Methods

4.1. Synthesis

Synthetic reagents and solvents were used as received from commercial suppliers.
5-Bromo-2-methylbenzothiazole was purchased from TCI America (Portland, OR, USA). Iodoethane
and (+)-5-iodo-21-deoxyuridine were purchased from Alfa Aesar (Ward Hill, MA, USA). 1H- and
13C-NMR spectra were recorded on a Bruker Avance III 400 NMR spectrometer at 400 and 101 MHz,
respectively (Billerica, MA, USA). High-resolution mass spectrometry analysis was performed in the
Department of Chemistry, University of Florida. Uncorrected melting points were determined using
a Laboratory Devices mel-temp.

2-Methyl-5-((trimethylsilyl)ethynyl)benzothiazole (1). Under an argon atmosphere 5-bromo-2-
methylbenzothiazole (1.5 g, 6.30 mmol), bis(triphenylphosphine)palladium(II) dichloride (442 mg,
0.63 mmol), copper iodide (144 mg, 0.75 mmol) were mixed in 30 mL of degassed acetonitrile and
triethyl amine solution (1:1, v/v). trimethylsilylacetylene (4.50 mL) was added before stirring at room
temperature for 10 min. Pyridine (3 mL) was added, and the resulting mixture was first stirred at
room temperature for 30 min, then at 50 ˝C for 18 h. After being cooled to room temperature, solvent
was removed under reduced pressure and the solid residue was purified by column chromatography
(silica gel, degrade elution hexanes/ethyl acetate from 10:1 to 7:1), resulting in 1.50 g of white solid
(93% yield), m.p.: 126–127.5 ˝C. 1H-NMR (400 MHz, CDCl3) δ: 8.02 (d, J = 1 Hz, 1H), 7.72 (d, J = 8.3 Hz,
1H), 7.43 (dd, J = 8.3, 1.5 Hz, 1H), 2.82 (s, 3H), 0.28 (s, 9H). 13C-NMR (101 Hz, CDCl3) δ: 167.91, 153.25,
138.06, 128.31, 125.83, 121.04, 104.77, 94.38, 20.21 ppm. HR-MS (ESI) theoretical [M + H]+ = 246.0767,
found [M + H]+ = 246.0777.

5-Ethynyl-2-methylbenzothiazole (2). 2-Methyl-6-((trimethylsilyl)ethynyl)benzothiazole (1 g, 4.07 mmol)
was dissolved in 15 mL of dichloromethane, and 15 mL of methanol/NaOH solution (3%, w/w)
was added dropwise. The mixture was allowed to stir at room temperature for 2 h, followed
by the removing the organic solvent in vacuo. The solid residue was further purified by column
chromatography (silica gel, hexanes/ethyl acetate 10:1), affording 0.54 g of pale yellow crystal (77%
yield), m.p.: 66–67 ˝C. 1H-NMR (400 MHz, CDCl3) δ: 8.07 (d, J = 1.5 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H),
7.45 (dd, J = 8.1, 1.7 Hz, 1H), 3.12 (s, 1H), 2.82 (s, 3H). 13C-NMR (101 Hz, CDCl3) δ: 168.12, 153.21, 136.39,
128.26, 126.09, 126.08, 121.33, 119.79, 83.38, 21.08 ppm. HR-MS (ESI) theoretical [M + H]+ = 174.0372,
found [M + H]+ = 174.0378.

5-Ethynyl-3-ethyl-2-methylbenzothiazolium iodide (3). 5-Ethynyl-2-methylbenzothiazole (1 g, 5.78 mmol)
was mixed with 2 mL of iodoethane in 1.5 mL of degassed acetonitrile. The mixture was heated in
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a microwave reactor (CEM, discover) at 150 ˝C for 20 min. Precipitate was collected by filtration and
washed with diethyl ether to afford 1.06 g of grey powder, (91% yield), m.p.: 267 ˝C (dec.). 1H-NMR
(400 MHz, DMSO-d6) δ: 8.54 (d, J = 1.1 Hz, 1H), 8.43 (dd, J = 8.5, 1.5 Hz, 1H), 7.86 (dd, J = 8.4, 1.3 Hz,
1H), 4.78 (q, J = 7.2 Hz, 2H), 4.60 (s, 1H), 3.21 (s, 3H), 1.44 (m, 3H). 13C-NMR (101 Hz, DMSO-d6) δ:
178.89, 141.14, 131.39, 130.18, 125.65, 123.20, 120.19, 84.29, 82.36, 45.36, 17.47, 13.74 ppm. HR-MS (ESI)
theoretical [M]+ = 202.0685, found [M]+ = 202.0692.

2-(4-(Dimethylamino)styryl)-3-ethyl-5-ethynylbenzothiazolium iodide (4). 5-eEhynyl-3-ethyl-2-
methylbenzothiazolium iodide (1.5 g, 7.42 mmol) and 2-methyl-N-benzaldehyde (1.33 g, 8.90 mmol)
were mixed with 126 mL of acetic anhydride. The mixture was refluxed at 150 ˝C for 20 min and then
the hot solution was poured into 200 mL of warm KI solution. After cooling to room temperature,
precipitate was filtered and washed with water and a large amount of diethyl ether, yielding 1.81 g of
purple solid (73% yield), m.p.: 256 ˝C (dec.). 1H-NMR (400 MHz, DMSO-d6) δ: ppm 1.37–1.44 (m, 3H)
3.04 (s, 1H) 3.13 (s, 6H) 4.54 (s, 1H) 4.78–4.85 (m, 2H) 6.86 (d, J = 9.05 Hz, 2H) 7.59 (d, J = 15.16 Hz, 1H)
7.73 (d, J = 8.31 Hz, 1H) 7.94 (d, J = 9.05 Hz, 2H) 8.11 (d, J = 14.92 Hz, 1H) 8.27–8.31 (m, 2H). 13C-NMR
(101 MHz, DMSO-d6) δ 14.62, 40.54, 44.29, 83.01, 84.10, 100.30, 106.04, 112.74, 119.21, 122.23, 123.03,
125.12, 128.64, 134.07, 141.85, 152.08, 154.50, 172.35. HR-MS (ESI) theoretical [M]+ = 333.1420, found
[M]+ = 333.1416.

Synthesis of dU-BZ (5). Under an argon atmosphere a mixture of 5-iodo-21-deoxyuridine (425 mg,
1.2 mmol), 4 (1.2 g, 3.60 mmol), Pd(PPh3)4 (139 mg, 0.12 mmol), CuI (47 mg, 0.24 mmol), and 550 mg of
Amberlite IRA-67 in 11.3 mL of degassed DMF was stirred at 55 ˝C for 48 h. The Amberlite IRA-67
beads were excluded by filtration first, and to the DMF solution diethyl ether was added, the resulting
precipitate was collected by filtration. Further purification was carried out by column chromatography
(silica gel, dichloromethane/methanol 10:1), resulting in 141 mg of purple solid (21% yield), m.p.:
249 ˝C (dec.). 1H-NMR (400 MHz, DMSO-d6) δ: ppm 1.38–1.45 (m, 3H) 2.20 (d, J = 6.11 Hz, 2H) 3.13
(s, 6H) 3.84 (q, J = 3.18 Hz, 1H) 4.25–4.31 (m, 1H) 4.80–4.90 (m, 2H) 5.23–5.37 (m, 2H) 6.14 (t, J = 6.36
Hz, 1H) 6.86 (d, J = 9.05 Hz, 2H) 7.62 (d, J = 15.16 Hz, 1H) 7.73 (dd, J = 8.44, 1.34 Hz, 1H) 7.95 (d,
J = 9.05 Hz, 2H) 8.12 (d, J = 15.16 Hz, 1H) 8.23 (s, 1H) 8.32 (d, J = 8.31 Hz, 1H) 8.50 (s, 1H) 11.78 (br. s.,
1H). 13C-NMR (101 MHz, DMSO-d6) δ 14.62, 31.15, 51.96, 61.57, 70.65, 85.15, 85.83, 88.37, 88.43, 98.29,
106.15, 112.82, 118.24, 122.31, 123.83, 125.13, 128.22, 128.95, 129.31, 130.83, 134.07,150.18, 152.04, 154.53,
158.08, 172.37. HR-MS (ESI) theoretical [M]+ = 559.2010, found [M]+ = 559.2006.

4.2. Viscosity Values

Viscosities of pure glycerol at different temperature were employed to approximate the viscosity
of 99% glycerol/1% methanol solution. Reported values [30] were directly used as viscosities of
solutions with glycerol percentages ranging from 10% to 95%.

4.3. Linear Photophysical Characterization

The linear absorption spectra were obtained using an Agilent 8453 UV´VIS spectrophotometer
(Agilent, Santa Clara, CA, USA) in 10 mm path length quartz cuvettes in solvents with different
glycerol/methanol ratios, with molar concentration C = 1 ˆ 10´5 M. The steady-state fluorescence
was measured with a PTI QuantaMaster spectrofluorimeter using 10 mm spectrofluorometric quartz
cuvettes with C = 1 ˆ 10´6 M. The correction for the spectral response of the PTI detection system
was performed for all fluorescence spectra. The fluorescence quantum yields, Φf, were obtained
by a standard method [31] relative to cresyl violet in methanol. Fluorescence lifetimes, τf, were
measured using a PicoQuant PicoHarp 300 time-correlated single photon-counting system with time
resolution « 80 ps, a Coherent Mira 900 fs laser system was used for excitation, linearly polarized at
the magic angle.
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4.4. In Vitro Bioimaging

3T3 cells (ATCC®, Manassas, VA, USA) were seeded on poly-D-lysine coated coverslips at
a concentration of 5 ˆ 104 cells/mL and incubated for 48 h. A dU-BZ stock solution in DMSO
(dimethyl sulfoxide) was then diluted to 15 µM with DMEM medium (Cellgro®, Mediatech, Menassas,
VA, USA) and added to the cells. Cells were co-incubated with diluted dU-BZ for 30 min and then fixed
with 4% formaldehyde. NaBH4 was added twice at 1 mg/mL for 5 min to reduce auto-fluorescence.
Cells were then permeabilized with 0.1% Triton-X. 1% BSA was applied to block non-specific binding.
Hoechst 33258 (Invitrogen™, Carlsbad, CA, USA) was added in to cell for 5 min to visualize cell nuclei.
Coverslips were then washed with PBS (phosphate-buffered saline, Cellgro®) and mounted on slides
with ProLong Gold® (Invitrogen™) antifade reagent (Invitrogen™).

Cells were imaged with an IX70 DSU microscope (Olympus, New York, NY, USA). A Texas Red
filter cube (562/40 ex., 593, 624/40 em.) was employed to excite dU-BZ and collect the fluorescence in
the optimized wavelength range.

5. Conclusions

A new deoxyribonucleoside-modified cyanine dye was prepared and characterized. Far-red
absorption and emission of this new dye are potentially favorable for in vitro and in vivo imaging
to better discriminate the fluorescence signal from autofluorescence and facilitate deep tissue
imaging. Viscosity-dependent studies, including fluorescence quantum yields, fluorescence lifetimes,
and non-radiative rate constants were determined, and results were in accordance with that
predicted by theory for molecular rotors. An impressive 30-fold enhancement in fluorescence
intensity in homogenous glycerol/methanol solutions was obtained in a viscosity-dependent manner.
Correspondingly, fluorescence lifetimes increased from 0.19 to 1.07 ns with increasing viscosity from
58 to 950 cP. Subsequent in vitro investigation suggested that dU-BZ may be capable of functioning as
a microviscosity sensor at cellular and subcellular levels. Our results qualitatively support that the dye
can readily enter cells and exhibit a modulated fluorescence response in an in vitro environment as
a function of viscosity, which demonstrates the potential of this new compound as a microviscosity
probe at the cellular level. Other factors and quantitative analysis may be considered in future studies.

The new probe, with absorption in the red and emission in the far-red, and viscosity-dependent
fluorescence without confounding aggregation or polarity effects, as reported for previous probes [25],
is promising for cell culture studies to study the dynamics of cell mitosis where various stages of mitosis
are characterized by accompanying changes in viscosity. Red excitation is much less phototoxic than
short wavelength visible or UV, thus, should provide valuable information. Additionally, this probe
may be useful in the study of mucociliary transport and the dynamics of mucus formation important in
various respiratory diseases, such as asthma and cystic fibrosis, in which alterations of the viscoelastic
properties of mucus exerts a significant influence on organ function and disease development [29].
Probing the viscosity of mucus not only in cell culture, but also in vivo, via bronchoscopy, is particularly
intriguing due to the ready accessibility of the lung surface with a red-absorbing and far-red emitting
probe. To translate the use of this probe in vivo, two-photon excitation may be possible with excitation
at ca. 1000 nm, an aspect that may be the subject of future studies as deep tissue imaging of up to
1.6 mm has been reported with two-photon fluorescent probes in muscle tissue vasculature [32]. Thus,
the newly designed deoxyribonucleoside-modified cyanine dye is a promising candidate as a far-red
viscosity sensor for bioimaging.
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