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A B S T R A C T

It was recently suggested that in brain disorders neuronal alterations does not occur randomly, but tend to form
patterns that resemble those of cerebral connectivity. Following this hypothesis, we studied the network formed
by co-altered brain regions in patients with chronic pain. We used a meta-analytical network approach in order
to: i) find out whether the neuronal alterations distribute randomly across the brain; ii) find out (in the case of a
non-random pattern of distribution) whether a disease-specific pattern of brain co-alterations can be identified
and characterized in terms of altered areas (nodes) and propagation links between them (edges); iii) verify
whether the co-alteration pattern overlaps with the pattern of functional connectivity; iv) describe the topolo-
gical properties of the co-alteration network and identify the highly connected nodes that are supposed to have a
pre-eminent role in the diffusion timing of neuronal alterations across the brain. Our results indicate that: i) gray
matter (GM) alterations do not occur randomly; ii) a symptom-related pattern of structural co-alterations can be
identified for chronic pain; iii) this co-alteration pattern resembles the pattern of brain functional connectivity;
iv) within the co-alteration network a set of highly connected nodes can be identified.

This study provides further support to the hypothesis that neuronal alterations may spread according to the
logic of a network-like diffusion suggesting that this type of distribution may also apply to chronic pain.

1. Introduction

Chronic pain is a severe and disabling condition (frequently asso-
ciated with physical and psychological comorbidities) that negatively
impacts on the quality of life (Dominick et al., 2012; Gatchel, 2004; van
Hecke et al., 2013; Walker et al., 2014). The International Association
for the Study of Pain (IASP) defines chronic pain as the “pain persisting
over the healing phase of an injury” (Loeser and Treede, 2008). Typi-
cally, this condition is considered to be chronic when persisting or re-
curring repeatedly for> 3 to 6 months (Jacobsen and Mariano, 2001;
Merskey and Bogduk, 1994).

Chronic pain has been found to be related considerably to functional

and structural reorganization in the nervous system (Apkarian, 2011;
Apkarian et al., 2013; Apkarian et al., 2011; Baliki et al., 2014; Baliki
et al., 2011; Cauda et al., 2014a; Farmer et al., 2012; Hashmi et al.,
2013; May, 2008); this may partly explain why patients continue to
experience pain even after nociceptive inputs are no longer present.

A number of studies suggest that chronic pain is associated with
regional gray matter (GM) alterations within the brain (Apkarian et al.,
2004; Baliki et al., 2011; Geha et al., 2008; Maeda et al., 2013;
Obermann et al., 2013; Riederer et al., 2012; Rodriguez-Raecke et al.,
2009; Schmidt-Wilcke et al., 2005; Seminowicz et al., 2010, 2011; Tu
et al., 2010; Ung et al., 2014; Unrath et al., 2007; Wood et al., 2009;
Yang et al., 2013), as well as with regional white matter (WM)
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abnormalities (Ceko et al., 2013; Chen et al., 2011; Ellingson et al.,
2013; Farmer et al., 2015; Gerstner et al., 2011; Khan et al., 2014;
Lieberman et al., 2014; Luchtmann et al., 2014; Mansour et al., 2013;
Moayedi et al., 2012; Woodworth et al., 2015) and functional or
structural connectivity changes within large-scale brain networks
(Baliki and Apkarian, 2015; Baliki et al., 2011, 2014; Cauda et al.,
2014a). Regional GM alterations (i.e., decreased or increased morpho-
metric values in GM volume, concentration, or density) affecting var-
ious brain regions have been repeatedly reported in patients with
chronic pain and meta-analytic approaches have proved to be helpful in
identifying reproducible trends among studies (Cauda et al., 2014a;
Smallwood et al., 2013).

For instance, Smallwood et al. (2013) found that GM decreased
morphometric values are not only present in regions traditionally
considered to be involved in pain processing (Iannetti and Mouraux,
2010; Isnard et al., 2011; Mazzola et al., 2006, 2009; Melzack, 1999) –
i.e., insula, anterior cingulate cortex (ACC), and thalamus – but also in
areas that do not seem to be specifically involved in pain processing
(Cauda et al., 2014b, 2014c) – e.g., superior temporal gyrus (STG),
inferior frontal gyrus (IFG), and superior frontal gyrus (SFG). Another
recent meta-analytic study (Cauda et al., 2014a) supports these find-
ings, as it identifies in patients with chronic pain the prefrontal cortex,
the anterior insula, the cingulate cortex, the basal ganglia, the tha-
lamus, the periaqueductal gray (PAG), the post and pre-central gyri and
the inferior parietal lobule as common sites of GM alterations. In-
triguingly, when considered under the perspective of functional brain
networks, the spatial patterns of GM alterations appear to encompass a
core set of networks (i.e., the salience, the attentional and the default
mode networks), which is commonly targeted in all the chronic pain
conditions (Cauda et al., 2014a).

The network analysis employed by the aforementioned studies is a
statistical approach that has already been used successfully to study
both the structural and the functional connectivity changes associated
with various clinical conditions (Crossley et al., 2014; Deco and
Kringelbach, 2014; Filippi et al., 2013; Fornito and Bullmore, 2015;
Fornito et al., 2015; Stam, 2014).

It is well-recognized that chronic pain can lead to structural brain
alterations, which are mainly associated with regional GM volumetric
decrease. GM alteration distribution is rather difficult to investigate,
mainly because there is a lack of methods specifically devoted to the
computation as well as the identification of a GM co-alteration pattern,
that is, a type of connectivity that, instead of looking for the trans-
mission of information, looks for the distribution of GM alterations.
Recently, however, a study by Cauda et al. (2015) has proposed a
methodology capable of identifying the neural alterations' distribution
across the brain. Authors have shown that, at least for some psychiatric
disorders, it is possible to define a morphometric co-alteration network
and infer a hierarchy of brain structures within the GM alterations'
patterns.

The present study follows the same line of research and aims at
investigating the co-alteration pattern across the brain of patients with
chronic pain by applying the method already developed by Cauda et al.
(2015). In particular, we used a meta-analytic approach and a network-
based analysis in order to address the following issues: i) do neuronal
alterations occur randomly across the brain in patients with chronic
pain?; ii) if the answer to the previous question is negative, can we
identify a co-alteration pattern in terms of co-altered brain areas
(nodes) and distribution links between them (edges)?; iii) does this co-
alteration pattern overlaps with the pattern of functional connectivity
formed by the same nodes?; iv) on the basis of the topological prop-
erties of the GM co-alteration network and the comparison between the
co-alteration and functional networks, may the nodes with a high de-
gree value play a pivotal role in the neuronal alterations' distribution?

2. Materials and methods

2.1. Search and selection of studies

We accepted the definition of meta-analysis of the Cochrane
Collaboration (Green et al., 2008) and conducted a systematic search on
PubMed database in order to identify all the voxel-based morphometry
(VBM) studies reporting regional GM decreased or increased values in
patients suffering from chronic pain. We used a search strategy based
on the following combination of terms: “VBM” OR “Voxel Based Mor-
phometry” AND “chronic pain” OR each disorder indicated by the
American Chronic Pain Association (ACPA) as part of the spectrum of
chronic pain (http://www.theacpa.org/7/Conditions.aspx). After-
wards, we examined the reference lists of the identified papers,
searching for studies not found in the online database with our search
strategy (for more information about the search strategy, see the Sup-
plementary Material, Fig. S1).

The retrieved papers were further analysed in order to ascertain that
they met the following inclusion criteria: (1) to be an original study; (2)
to report GM changes (increased or decreased morphometric values) in
patients with chronic pain by means of a between-group comparison
with healthy controls; (3) to report the location of GM changes in
Talairach/Tournoux or in Montreal Neurological Institute (MNI) co-
ordinate system; (4) to use a well-specified VBM analysis; (5) to perform
a whole-brain analysis (i.e., field of view not confined to a restricted
region of cortex). We also checked that the duration of pain in all the
patient groups was> of 3 months. We included the results of studies
reporting both modulated and unmodulated VBM data. Modulation is a
step in the VBM processing algorithm that adjusts for volume changes
induced by normalization (i.e., the normalized GM segments are mul-
tiplied with the Jacobian determinant from the deformation matrix).
GM values for Jacobian modulated images indicate regional volume
changes. Conversely, if the data are unmodulated, GM values indicate
regional brain density/concentration changes. As a large majority of the
studies included in our meta-analysis report modulated data, we will
henceforth refer to the GM volumetric changes simply as “GM increase”
or “GM decrease”. In order to ensure the quality of data selection we
followed the “PRISMA Statement” international guidelines (Liberati
et al., 2009; Moher et al., 2009). For more information about the se-
lection procedure, see the Supplementary Material, Fig. S1 (PRISMA
Flow Diagram).

We used the BrainMap database (Fox and Lancaster, 2002; Fox
et al., 2005; Laird et al., 2005c) in order to extract the coordinates from
all the original studies in standard Talairach space. The VBM studies
that were not already included on the BrainMap database at the time of
the search (22 papers) were added so that all the original studies used in
our meta-analysis (51 papers) are now available on BrainMap (see
Supplementary Material, Fig. S1) and the reported coordinates of GM
alteration can be extracted in standard stereotaxic space. In order to
convert the coordinates from MNI to Talairach space, BrainMap uses
the Lancaster transform (Lancaster et al., 2007) that ensures the quality
of coordinates transformation.

On the basis of the aforementioned inclusion criteria, we identified
55 eligible VBM studies (51 papers) published before 31 January 2014,
with a total of 2493 subjects: 1197 patients with chronic pain (mean
age ± SD 45.70 ± 1.63) and 1296 healthy controls (mean age ± SD
44.35 ± 1.66). GM decrease was reported in 47 studies (1036 patients,
316 foci) while GM increase was reported in 27 studies (584 patients,
142 foci). For a complete list of the papers, see the Supplementary
Material, Table S1.

Among the 55 studies included in our meta-analysis, 16 studies (11
with voxel-level and 5 with cluster-level correction) reported results
with an initial correction for multiple comparisons, whereas 39 studies
reported an initial whole-brain uncorrected threshold (generally,
p < 0.001). In this second case, 12 studies reported a cluster-level
correction (RFT, SVC, Monte Carlo simulation, FWE with p < 0.05); 5
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studies reported a cluster extent threshold derived from a priori in-
formation about the size of the small anatomical structures involved in
pain processing; 9 studies reported a minimum cluster extent threshold;
and 13 studies reported no cluster-level correction or cluster extent
threshold. Overall, 28 studies reported results corrected for multiple
comparison and 27 studies reported uncorrected results. More detailed
information about the statistical analysis performed by the studies in-
cluded in our meta-analysis may be found in the Supplementary
Materials, Table S4.

We used tables to collect the data regarding patients' characteristics,
MRI acquisition, VBM algorithm and the number of reported foci of GM
alteration. We also checked the information regarding the clinical
condition, comorbidity, and medication of the experimental group, as
well as the overlap in terms of age and sex between the group of pa-
tients and the group of controls. For a complete list of demographic,
clinical and technical details of the studies included in our meta-ana-
lysis see the Supplementary Material, Tables S2 and S3.

2.2. Anatomical likelihood estimation analysis

To derive the nodes for the subsequent analysis we first employed
the anatomical likelihood estimation (ALE) analysis (Laird et al., 2009;
Laird et al., 2005b; Turkeltaub et al., 2002) to estimate consistent GM
alterations across studies. Two separate analyses were carried out in
order to identify the brain regions presenting values of GM decrease
and increase, respectively. Coordinates in the Talairach space were
used as inputs to perform the ALE analysis.

ALE is a quantitative voxel-based meta-analytical method that al-
lows to estimate consistent areas of activation or morphological al-
teration across studies (Laird et al., 2005b). Bearing in mind that there
is variability between studies due both to small sample sizes (between-
subject variance) and to different normalization strategies (between-
template variance), we applied an algorithm capable of estimating the
spatial uncertainty for each focus by considering the possible differ-
ences related to sample amplitude and normalization procedures. This
method allowed us to calculate the above chance clustering between
experiments (random effect analysis) rather than between foci (fixed
effect analysis) (Eickhoff et al., 2012; Eickhoff et al., 2009).

Modeled anatomical effect maps were computed for all the studies
included in the meta-analysis. Each focus was modeled as the center of
a 3D Gaussian probability distribution. We subdivided the Talairach
space in 2 mm3 volumes and applied the following probability function
(product of the three one-dimensional probability densities):
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where d is the Euclidean distance between the voxels and the focus
taken into account and σ is the standard deviation of the one-dimen-
sional distribution.

The standard deviation σ was obtained through the full width at half
maximum (FWHM):
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In meta-analytic studies, the FWHM is used to model the spatial
uncertainty of the reported foci (coordinates) of activation or mor-
phological alteration. We used the quantitative uncertainty model
proposed by Eickhoff et al. (2009) to calculate the FWHM for the
Gaussian probability distributions:
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This model takes into account the random effect and provides a
quantitative estimate of between-subjects and between-template

variability.
By adding these Gaussian functions, we obtained a statistical map

where the likelihood of morphometric alteration is estimated for each
voxel as determined by the whole set of studies. This map was thre-
sholded by using a permutation test (Laird et al., 2005a; Lancaster
et al., 2007; Lancaster et al., 2000). We are aware of the recent in-
dications about correction for multiple comparison in ALE calculations
(Eickhoff et al., 2016, 2017) but since at this step our analysis used the
ALE only to derive the peaks with the 25% strongest brain alterations,
to avoid an excessive false negatives rate, we employed a more liberal
correction for multiple comparison: the false discovery rate (FDR) with
a q < 0.05 and a minimum cluster size of k > 100 mm3.

The final output of the ALE analysis is a thresholded statistical map
of morphological alteration where each voxel has an associated value
comprised between 0 and 1 indicating the likelihood that the voxel
presents anatomical alteration.

2.3. Co-alteration network analysis

Separate network analyses were conducted for both GM increase
and GM decrease.

2.3.1. Nodes creation
A customized MATLAB® routine was developed to individuate the

peak coordinates of GM alterations and to create spherical ROIs cen-
tered on these coordinates. The node creation is obtained from the ALE
map using a peak detection algorithm that returns the set of local
maxima. A local peak is supposed to be a voxel whose ALE value is
larger than the its neighboring voxels. Subsequently we selected the
voxels with a peak value higher than a given threshold, which took into
account the 75 percentiles of the peak values distribution (i.e., only the
25% of peaks exhibiting the highest ALE values were selected). Then we
calculated the distance between each peak and obtained a distance
matrix for each peak, in which all peaks within a distance of 10 mm
from other peaks were excluded to avoid overlaps between ROIs.
Around each of these peaks we designed a spherical ROI (diameter of
10 mm), which was used for the subsequent analysis.

2.3.2. Two-mode matrix
The previously selected ROIs (or nodes) were used to build a two-

mode matrix. In the two-mode matrix the rows are constituted by the
experiments/studies and the columns by the nodes. Individual entries
report whether or not a node is altered in a given study. In case the
node is altered, the matrix value is set to 1, otherwise to 0.

We created a co-alteration matrix using the previously defined set of
nodes with a radius of 10 mm as template. In a N × M matrix each row
represents an experiment, while each column represents a node. As in
Crossley et al. (2013), for each experiment we considered a node as
altered if 20% or more of the modeled alteration map (MA), thre-
sholded at 0.001, overlapped with the node defined in the template.

2.3.3. Co-alteration matrix
The co-alteration matrix was calculated from the two-mode matrix

using the Jaccard Index (Jaccard, 1901) as a measure of co-alteration.
For each pair of nodes, the Jaccard Index was calculated as the number
of studies reporting alteration in both nodes (intersection: A∩B) di-
vided by the number of studies reporting alteration in either one of
them (union: A∪B):

= ∩
∪

J (Α, Β) Α Β
Α Β

We thus obtained a co-alteration matrix, which is a square matrix
(the nodes in the rows are the same as the nodes in the columns) with
individual entries (jab) reporting the corresponding Jaccard co-occur-
rence coefficients for each pair of nodes.

The Jaccard matrix was then probabilistically thresholded. The
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statistical correction for non-significant connections was based on the
method described by Toro et al. (2008). The co-alteration between pairs
of nodes is defined by their statistical dependence across studies. We
examined whether the morphometric alterations located in two brain
areas (nodes X and Y) are best modeled as independent or as dependent
events. For our purpose, the null hypothesis H0 states that the two re-
gions (nodes X and Y) are altered independently form each other, while
the alternative hypothesis H1 states that there is a co-alteration re-
lationship between them (i.e., nodes X and Y are altered dependently of
each other).

The likelihood of the null hypothesis is defined as:

= − −L(H ) B(k; n, p)B(m k; N n, p)0

where B refers to a binomial distribution in which n is the number of
contrast that activated the second region, m the number of contrast that
activated the first region, N the total number of contrast, p = m/N and
k the numbers of contrast that activated both regions.

The likelihood of the alternative hypothesis is defined as:

= − −L(H ) B(k; n, p )B(m k; N n, p )1 1 0

with

= − −p (m k)/(N n)0

and

=p k/n1

The likelihood-ratio test (λ = L(H1) / L(H0)) was used to evaluate
the likelihood of the alternative hypothesis H1 with respect to the null
hypothesis H0. The distribution was shaped by a function with one
freedom degree. Only connections that resulted significant at p < 0.01
(corrected for FDR) were maintained.

Subsequently, the Jackknife analysis was conducted to evaluate the
robustness of our findings. The Jackknife is a non-parametric method
that allows to estimate the sample distribution of a statistic (Fan and
Wang, 1996; Radua and Mataix-Cols, 2009; Radua et al., 2011; Shao
and Tu, 1995; Wu, 1986). Given a sample dataset of N elements, the
desired statistic is calculated by systematically leaving out an element
from the sample dataset. The operation is repeated for N separate
samples of size N–1, each sample representing the original sample da-
taset with an element not included.

The Jackknife analysis provided us the connections (co-occurrences)
that remain statistically significant when studies are excluded one at a
time, allowing us to rule out the possibility that some connections could
be derived from a small subset of studies. The co-alteration matrix so
obtained reports co-occurrences, indicating that there are brain areas
tending to be altered together.

2.3.4. Filtering the co-alteration matrix with functional connectivity data
Since several studies (Raj et al., 2012; Ravits, 2014; Seeley et al.,

2009; Zhou et al., 2012) suggested that neuronal alterations may pro-
pagate within the brain along the pathways of brain connectivity, to
minimize false positives we further analysed the co-alteration matrix so
as to isolate the pathways that are also expression of a verifiable
functional connectivity profile. We adopted this filtering strategy be-
cause our method for calculating the co-alteration pattern is new and
we preferred to be conservative in order to ensure that all the possibly
identifiable “co-alteration distribution pathways” actually represent
ascertainable functional connections, which can be confirmed by
functional connectome data.

Thus, in order to filter the co-alteration matrix, we use a set of resting
state data from 100 subjects. From the same set of nodes obtained from
the co-alteration matrix we calculate a functional connectivity matrix
using rs-fMRI data from 100 healthy subjects stored in the Human
Connectome Project (HCP) database (2015 Q4, 900-subject release). We
required and obtained the permission from the HCP to work with the
unrestricted HCP data (released to Dr. Tommaso Costa on 28 August

2013). As from the use term of the HCP connectome data, we also
obtained the authorization from the University of Turin ethical board
(24 September 2017).

The data are minimally preprocessed and ICA-FIX denoised and the
age range is 22–35. The matrix is obtained with the following steps: we
create a mask of spherical ROIs of 10 mm of diameter from the set of
nodes of the co-alteration matrix; the mask is used in a dual regression
that estimates for each subject an individual map of the ROI mask. More
specifically: we regressed the ROI mask on each subject dataset to ob-
tain a set of time courses as well as on the same dataset to obtain a
subject-specific set of spatial maps.

The final result is a set of 100 matrices, one for each subject, where
each column corresponds to a time series associated to a specific ROI.
From these matrices, we calculated the partial correlation (L-2 norm
Ridge Regression with sigma = 0.01) from each node and mediated
from all the partial correlation matrices to obtain a final group corre-
lation matrix. The resulting group functional connectivity matrix was
thresholded at p < 0.01(corrected for multiple correction) using a one
sample permutation test (5000 permutations) using the FSL randomize
program. The survived functional connections among the nodes were
used to constrain further analysis: in fact the resulting connections
between the nodes that failed to have functional features were elimi-
nated from the unfiltered co-alteration matrix, so as to ascertain that all
the remaining connections could effectively correspond to cerebral
connectivity pathways liable to be involved in the distribution of neu-
ronal alterations.

2.3.5. Correlation between the co-alteration matrix and the functional
connectivity matrix

In order to find out how much of the pattern of GM alterations'
distribution tends to overlap with the pattern of cerebral functional
connectivity, we used the Mantel test to calculated the correlation
(Spearman's rho – ρ) between the co-alteration matrix and the functional
connectivity matrix. The Mantel test (Mantel, 1967) is generally used to
calculate the correlation between two distance or similarity matrices
and its significance is evaluated through permutation procedures (e.g.,
Monte Carlo test). Because the elements in a distance matrix are not
independent of each other, we cannot simply calculate the correlation
coefficient between the two sets of n(n–1)/2 distances and test its sta-
tistical significance. To overcome this problem, a permutation test must
be used. In order to assess the significance of any apparent departure
from a zero correlation, the rows and columns of one of the two ma-
trices are randomly permuted 5000 times, and after each permutation
the correlation is recalculated. The significance of the observed corre-
lation is the proportion of the permutations that leads to a higher
correlation coefficient. The null hypothesis (H0) states that there is no
relation between the two matrices. If H0 is true, then permuting the
rows and columns of the matrix should be tantamount to produce a
larger or a smaller coefficient. We therefore used this test to calculate
the correlation between the two matrices. P value was obtained with
5000 permutations.

2.3.6. The co-alteration network and its topological analysis
The resulting filtered co-alteration matrix was used to construct the

co-alteration network and run further topological analyses. We used the
graph-theoretical analysis to investigate the regional topological prop-
erties of the co-alteration network and look for the degree centrality as
the main network measure. The degree of a node is defined as the
number of edges (connections) directly linked to it (Fig. 1).

3. Results

3.1. The distribution pattern of GM co-alterations

Very interestingly our results indicate that the morphological al-
terations related to chronic pain do not distribute randomly within the
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brain. The probability of a non-random pattern of alteration distribu-
tion was high for both GM decrease and GM increase.

The highest degree nodes of the co-alteration network were the
anterior and posterior insulae, the anterior cingulate cortex (ACC) and
posterior cingulate cortex (PCC), the secondary somatosensory cortex
(S2), and the pars opercularis of the inferior frontal gyrus (BA 44). The
insula and the cingulate cortex were identified by previous studies as
high degree nodes in functional (rs-fMRI) and structural (DTI) normal
brain networks (Crossley et al., 2014; Crossley et al., 2013). Our
functional connectivity analysis provided further evidence that these
nodes are key regions in both the normal functional connectivity net-
works and in the co-alteration network (see Fig. S2 of the Supplemen-
tary material).

3.2. ALE analysis

Significant clusters of GM alterations (to be used for the subsequent
ROIs creation step) are located in several cortical and subcortical areas,
including anterior and posterior cingulate cortex, anterior and posterior
insula, anterior prefrontal cortex (BA 10), dorsolateral prefrontal cortex
(DLPFC), thalamus, putamen, BA 44, S2, temporal cortex, premotor
cortex (BA 6). The results of ALE analysis are illustrated in Fig. 2.

3.3. Nodes of GM alterations

Using the peak detection algorithm previously described, we iden-
tified 44 nodes of GM decrease and 23 nodes of GM increase. The results
are illustrated in Fig. 3 and in the Supplementary Material (Tables S6
and S7). The Supplementary tables S6 and S7 summarize the

information regarding the nodes' coordinates in Talairach space and the
corresponding anatomical labels.

3.4. Comparison between GM co-alteration and functional connectivity
matrices

Our assumption that the distribution of the neuronal alterations
within the brain rely on the pathways of functional connectivity has
been verified: indeed the chronic pain-related morphological co-al-
terations distribute according to the functional connectivity patterns. In
fact, we found strong (and very significant) correlations between the co-
alteration matrix and the functional connectivity matrix (Fig. 4) for both
GM increase (ρ= 0.69, p < 3.6557e-07) and GM decrease (ρ = 0.23,
p < 2.9667e−06), thus confirming that a great part of the GM co-al-
teration pattern is overlapped to the pattern of resting state brain
functional connectivity.

The co-alteration matrices for GM decrease and GM increase were
calculated using the Jaccard index: 42 out of the initial 44 nodes
(95.45%) resulted connected in the GM decrease co-alteration matrix
(Table 1), while only 12 out of the initial 23 nodes (52.17%) resulted
connected in the GM increase co-alteration matrix (Table 2).

3.5. Characterization of the GM decrease co-alteration network

Figs. 6 and 8 illustrate the co-alteration network overlaid on ana-
tomical brain images. There is a network configuration with a core set
of high degree areas and long-range intra- and inter-hemispheric con-
nections. Our analysis revealed that within the co-alteration network
there are nodes characterized by high topological values (i.e., areas

Fig. 1. Workflow pipeline.
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having a degree that is much larger than the average) that may play a
centrality position in the alterations' distribution. The nodes with the
highest degree value were: the right anterior insula (13 connections),
the right ACC (11 connections), the right S2 (10 connections), and the
right posterior insula (9 connections). Also the right PCC, the right BA
44 and the left anterior insula resulted to have high degree values (8
connections).

All the network's highly-connected nodes resulted to be connected
to both ipsilateral and contralateral areas. For each of these nodes, the
number of corresponding intra- e inter-hemispheric connections (i.e.,
supposed pathways for the alteration spread) are illustrated in Fig. 5;
whereas the highest degree nodes with their nearest neighbors are

shown in Fig. 10.
As can be seen in Fig. 10, the highest degree areas of the co-al-

teration network tend to be highly interconnected, forming a pattern
that resembles the rich-club organization of the human connectome.
Furthermore, these nodes clearly appear to be lateralized on the right
side, located in the anterior and posterior insula, ACC, S2, BA 44, and
PCC of the right hemisphere. Fig. 9 illustrates the hierarchical organi-
zation of the nodes according to their degree.

3.6. Characterization of the GM increase co-alteration network

For GM increase, the network analysis revealed that there are only

Fig. 2. GM anatomical likelihood estimation results.
MRI alterations (i.e., gray matter increase/decrease) identified meta-analytically in chronic pain patients. The illustration summarizes the results of the anatomical likelihood estimation
(ALE) analysis of all the papers involved in this study. ALE maps were computed at a FDR corrected threshold of p < 0.05, with a minimum cluster size of k > 100 mm3. Colors from red
to yellow show gray matter increases, colors from blue to green show gray matter decreases. Images are shown using the right-left radiologic convention and standard Talairach space.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Spherical ROIs (nodes) representing regions of GM decrease (a) and GM increase (b).
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low degree nodes, being 2 the maximum number of connections per
node. This pattern of organization suggests that GM increase may be a
more local phenomenon (Figs. 7 and 8). All the identified pathways,
except one (rM1 – rV+), were inter-hemispheric, some of them con-
necting homologous brain sub-cortical structures (e.g., bilateral pul-
vinar, lateral globus pallidus, and putamen).

4. Discussion

Our results indicate that: i) in chronic pain, GM alterations do not
distribute randomly in the brain; ii) we can clearly identify a mor-
phological co-alteration pattern in the brain of patients with chronic
pain; iii) there is an important overlap between the co-alteration pat-
tern and the pattern of brain functional connectivity; iv) within the co-
alteration network it is possible to identify a core set of highly-con-
nected nodes (i.e., areas exhibiting a degree that is much greater than
the average), which are supposed to play a centrality position in the
distribution of neuronal alterations.

4.1. The distribution of neuronal alterations in chronic pain

Our study provides evidence that in the chronic pain condition
neuronal alterations distribute in a non-random fashion; on the con-
trary, they form patterns that strongly resemble those of brain con-
nectivity. Although network-based pattern of disease propagation was
previously shown for neurodegenerative brain disorders (Crossley et al.,
2014; Raj et al., 2012; Seeley et al., 2009; Zhou et al., 2012), this is the
first time that the same phenomenon has been suggested to be the case
also for chronic pain. Intriguingly, we observed a substantial overlap of
our co-alteration matrix with the pattern of cerebral functional con-
nectivity. In fact, we found a significant correlation between the co-
alteration matrix and the functional connectivity matrix for both GM in-
crease (ρ= 0.69, p < 3.6557e−07) and GM decrease (ρ = 0.23,
p < 2.9667e−06).

This result confirms that a great part of the GM co-alteration net-
work is related to the pattern of cerebral connectivity and, conse-
quently, that in chronic pain the distribution of neuronal alterations can
rely on functional pathways, which is consistent with recent studies

Fig. 4. Functional connectivity and co-alteration networks for a) GM decrease and b) GM increase.
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about the spread of neurodegenerative disorders across the brain
(Crossley et al., 2014; Zhou et al., 2012). In fact, recent evidence
concerning neurodegenerative disorders seems to support the hypoth-
esis according to which the neuronal/synaptic toxicity spreading across
the brain, as well as the associated activity-dependent dysregulation of
local misfolded proteins and metabolic levels, strongly depend on
structural, functional and metabolic cerebral connectivity patterns
(Iturria-Medina and Evans, 2015). Similarly, the nodal stress me-
chanism may play an important role in the distribution of neuronal
alterations in patients with chronic pain. Specifically, the higher degree
(i.e., highly-connected) areas might be particularly exposed to high
levels of stress, and consequently to structural alterations, due to their
intense functional activity (Buckner et al., 2009; Crossley et al., 2014;
Saxena and Caroni, 2011; Zhou et al., 2012).

In this study the nodes with the highest number of connections were
located in higher-order associative areas, such as the insula, the cin-
gulate cortex and the secondary somatosensory area. It has been pro-
posed that, due to the convergence of heteromodal activity, brain hubs
are the most active regions in “rest” (i.e., non-task) conditions and that
their intense connectivity-dependent neuronal activity may sig-
nificantly diffuse neurodegeneration across the brain (de Haan et al.,
2012; Iturria-Medina and Evans, 2015). This could explain the high
vulnerability of hub areas and their pivotal role in the neuronal al-
terations' distribution.

Interestingly, some high-degree nodes of the co-alteration network
seem to be preferentially targeted by chronic pain. This finding has
important implications for the persistence as well as development of the
neuronal alterations' pattern across the brain. In fact, when a highly
connected functional node is affected by the pathological condition, the
effect on the whole network functioning will be far more serious than
when a little connected functional node is affected. This is supposed to
be so because the altered highly connected node is an important station
for information exchange between a large number of functionally
connected areas, so that its disruption has a great impact on the whole
network (and specifically on the regions directly linked to the altered
highly connected node) and, thereby, facilitates the distribution of
morphological alterations.

The neurobiological basis of the GM morphological alterations de-
tectable with structural MRI (i.e. VBM) in patients with chronic pain
remains as yet unclear. These alterations may result from irreversible
mechanisms (i.e. neuronal degeneration/apoptosis), or from fast-ad-
justing, reversible processes, such as dendrite spine and synapse turn-
over (Agostini et al., 2013; Apkarian et al., 2004; Trachtenberg et al.,
2002).

It has been suggested that GM volumetric increases related to
chronic pain may reflect some kind of supraspinal inflammatory

Table 1
GM decrease (D) nodes that resulted connected within the “co-alteration matrix”.

Node ID Talairach coordinates Label Degree

x y z

D1 2.0 −24.0 −18.0 r Pons 2
D2 58.0 −40.0 −14.0 r BA 20 4
D3 −58.0 −28.0 −8.0 l BA 21 4
D4 28.0 20.0 −8.0 r BA 47 3
D5 20.0 8.0 −6.0 r Put 3
D6 −32.0 12.0 −6.0 l ant INS 8
D8 −36.0 34.0 −4.0 l BA 47 1
D9 −40.0 −8.0 −2.0 l ant INS 8
D10 −22.0 54.0 −2.0 l BA 10 2
D11 −12.0 −26.0 0.0 l Pulv 1
D12 −22.0 8.0 0.0 l Put 3
D13 2.0 56.0 0.0 r BA 10 (m) 5
D14 16.0 58.0 0.0 r BA 10(m) 5
D15 56.0 −10.0 4.0 r BA 22 3
D17 44.0 14.0 4.0 r ant INS 13
D18 −30.0 48.0 4.0 l BA 10 2
D19 10.0 −28.0 6.0 r Pulv 2
D20 −10.0 −18.0 6.0 l MD 2
D21 −48.0 −22.0 8.0 l BA 41 3
D22 40.0 −2.0 8.0 r post INS 9
D23 −10.0 −28.0 10.0 l Pulv 1
D25 60.0 −4.0 12.0 r S2(BA43) 10
D26 54.0 10.0 12.0 r BA 44 8
D27 −10.0 −20.0 16.0 l LDN 2
D28 −6.0 48.0 16.0 l DLPFC (BA9) 7
D29 58.0 −12.0 18.0 r S2 (BA43) 5
D30 6.0 58.0 20.0 r BA 10 (m) 3
D31 56.0 10.0 22.0 r BA 44 3
D32 −4.0 36.0 22.0 l ACC(BA32) 7
D33 −10.0 30.0 28.0 l ACC(BA32) 3
D34 2.0 30.0 30.0 r ACC (BA32) 11
D35 40.0 28.0 32.0 r DLPFC (BA9) 2
D36 −6.0 38.0 34.0 l BA 6 5
D37 10.0 −46.0 38.0 r PCC (BA31) 2
D38 −10.0 46.0 40.0 l BA 8 5
D39 10.0 −32.0 42.0 r PCC (BA31) 8
D40 10.0 −12.0 52.0 r BA 6 6
D41 34.0 −10.0 52.0 r BA 6 4
D42 16.0 −40.0 60.0 r S1(BA3) 4
D43 −18.0 0.0 62.0 l BA 6 6
D44 14.0 0.0 64.0 r BA 6 7

l: left; r: right; m: medial; BA: Brodmann Area; INS: insula; Put: Putamen; Pulv: pulvinar;
MD: medial dorsal nucleus of the thalamus; S2: secondary somatosensory cortex; LDN:
lateral dorsal nucleus of the thalamus; DLPFC: dorsolateral prefrontal cortex; ACC:
anterior cingulate cortex; PCC: posterior cingulated cortex; S1: primary somatosensory
cortex.

Table 2
GM increase (I) nodes that resulted connected within the “co-alteration matrix”.

Node ID Talairach coordinates Label Degree

x y z

I9 12.0 6.0 2.0 r lat GP 2
I10 8.0 −26.0 4.0 r Pulv 2
I11 −10.0 −24.0 4.0 l Pulv 1
I12 42.0 −74.0 6.0 r V+ 2
I15 −20.0 20.0 6.0 l Caud Body 2
I16 −26.0 −10.0 8.0 l Put 1
I17 28.0 −14.0 12.0 r Put 1
I18 16.0 4.0 12.0 r Caud Body 1
I20 −22.0 52.0 22.0 l BA 10 1
I21 −46.0 4.0 32.0 l DLPFC 1
I22 −38.0 −30.0 52.0 l S1 2
I23 38.0 −22.0 52.0 r M1 2

l: left; r: right; BA: Brodmann Area; lat: lateral; GP: globus pallidus; Pulv: pulvinar; V+:
associative visual areas; Caud Body: body of the caudate nucleus; Put: putamen; DLPFC:
dorsolateral prefrontal cortex; S1: primary somatosensory cortex; M1: primary motor
cortex.

Fig. 5. Highest degree areas in the co-alteration network. For each highly connected
node, the figure shows the total number of connections, the number of inter-hemispheric
connections, and the number of intra-hemispheric connections.
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mechanism (Schweinhardt et al., 2008; Pomares et al., 2017), or result
from an increased activity of certain neuronal populations with con-
sequent synaptic level changes, which resembles what occurs in
learning-related neuroplasticity (Draganski et al., 2011; Pomares et al.,
2017). On the other hand, regional GM volumetric decreases related to
chronic pain are commonly interpreted in terms of atrophy/neurode-
generation, though this interpretation is not yet fully accepted. Recent
evidence suggests that GM decreases can be partially restored with
successful therapeutic interventions, thus leading to the alleviation of
pain (Baliki and Apkarian, 2015; Ceko et al., 2015; Gwilym et al., 2010;
Rodriguez-Raecke et al., 2009, 2013; Seminowicz et al., 2011).
Erpelding et al. (2016) documented rapid treatment-induced GM
changes and functional connectivity changes within brain areas in-
volved in sensation, emotion, cognition and pain modulation in pe-
diatric patients with complex regional pain syndrome. However, there
are few chronic pain conditions that may be successfully relieved with
effective interventions, as was demonstrated, for example, for hip os-
teoarthritis (Rodriguez-Raecke et al., 2013). In particular, pain relief
after hip joint endoprosthetic surgery is accompanied by GM volume
normalization, suggesting that GM changes in chronic pain are not in-
dicative of irreversible damage or atrophy. Moreover, the study of
Rodriguez-Raecke et al. (2013) provides evidence that nociceptive in-
puts and disease-related motor impairments may induce processing
changes in brain regions, with structural consequences which seem to
be reversible. So, the successful treatment of pain relief may depend on
the local variations in synaptic density, while the persistence of chronic
pain may be associated with atrophic processes (Baliki et al., 2011;
Baliki and Apkarian, 2015).

However, an important aspect about the possibility of GM normal-
ization after pain relief is related to the timing of measurement. Long
lasting GM changes need more time to be restored and, therefore, early
measurements may not reveal significant GM normalization

(Rodriguez-Raecke et al., 2013). Furthermore, other factors (e.g. ele-
vated levels of cortisol and cytokines related to stress, pharmacological
therapy) may induce additional functional and structural brain changes
that hamper and/or prevent the reversal of GM decrease (Erpelding
et al., 2016). It seems that pain duration and maladaptive processes
may underpin treatment resistance, influencing the possibility of re-
versal of pain-related structural alterations. These observations underlie
the importance of early interventions to maximise the possibility of
treating effectively chronic pain.

In general, the cellular/microscopic-level changes that could ex-
plain the MRI-observed alterations (i.e. regional GM increase/decrease)
include: increase/decrease in neuronal or glial cell size, neuronal or
glial cell genesis/degeneration/apoptosis, changes in spine size and
density, dendritic atrophy, angiogenesis and endothelial cell prolifera-
tion, and changes in the blood flow or in the interstitial fluid (Agostini
et al., 2013; Apkarian et al., 2004; Keifer Jr. et al., 2015; Schmidt-
Wilcke et al., 2005). Reversal of GM alterations due to pharmacological
and/or non-pharmacological treatments may depend on the restoration
of one or more of these neurobiological mechanisms.

Finally, it is noteworthy to discuss a methodological caveat con-
cerning the relationship between our co-alteration network analysis and
anatomical covariance (Evans, 2013; Mechelli et al., 2005). Anatomical
covariations can be considered as “the covariance of morphological
metrics derived from morphological MRI” (Evans, 2013). So it seems
that the morphological co-alterations examined in this study may be
conceived of as a type of anatomical covariance. However, methodo-
logically speaking, the two approaches are utterly different, as anato-
mical covariance is always derived from single-subject data, while our
meta-analytic method works on raw data obtained from a statistical
comparison between pathological and healthy subjects. This is the
reason why we prefer to avoid the expression “anatomical covariance”
and, instead, call our approach co-alteration network analysis.

Fig. 6. Gray matter co-alteration network. The nodes represent regions of gray matter decrease. The size and color of the nodes reflect their degree value. Small sizes correspond to low
degrees.
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4.2. The GM decrease co-alteration network

Initially, most of the identified GM decrease co-alteration network
nodes (42/44; 95.45%) were found to be interconnected in the GM co-
alteration matrix, thus indicating that they tend to be altered together
as elements of a common network structure. In order to ascertain how
many nodes could be parts of functional networks as well, we decided
to filter this matrix with functional connectivity data. The co-alteration

network (composed of 41 nodes) exhibits long-range inter- and intra-
hemispheric connections, as well as a number of highly interconnected
brain areas. Within this network we were able to identify a core set of
highly connected nodes, of which the most important are the right
anterior insula, ACC, S2, posterior insula, PCC, BA 44, and left anterior
insula. These areas form a core alteration pattern and, notably, have
been equally identified as key hubs of the healthy structural and
functional connectome (Crossley et al., 2014).

Fig. 7. Gray matter co-alteration network. The nodes represent regions of gray matter increase. The size and color of the nodes reflect their degree value. Small sizes correspond to low
degrees.

Fig. 8. Gray matter co-alteration network for both GM de-
crease and GM increase. The size and color of the nodes
reflect their degree values. Small sizes correspond to low
degree values. r: right; l: left.
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It is worth noting that in the co-alteration network the highly con-
nected nodes appear to be significantly lateralized, with most of them
located in the right hemisphere (Figs. 8 and 9). The important role of
the right hemisphere in pain processing has been highlighted by pre-
vious studies (Jensen et al., 2016; Ostrowsky et al., 2002; Symonds
et al., 2006) and our findings provide further evidence to support this
view. Another interesting finding is that the highest connected nodes of
the co-alteration network closely resemble the rich-club organization of
the human connectome (van den Heuvel and Sporns, 2011).

Recent studies that have investigated the pattern of structural brain

alterations in neurodegenerative diseases by confronting the spatial
distribution of the GM atrophy with the normal structural (DTI) or
functional (rs-fMRI) connectivity profiles (Crossley et al., 2014; Zhou
et al., 2012). These investigations have found that the regions showing
higher structural/functional connectivity profile in the healthy brain
networks as well as the regions showing shorter functional pathways to
the network epicenters are the more vulnerable to pathological al-
terations. In agreement with these studies, our results have important
clinical implications, as they suggest the possibility that the analysis of
healthy structural and/or functional intrinsic connectivity patterns may
help to track the distribution of pathological alterations within the
brain and predict the regional vulnerability to disease. Since we found
that in chronic pain the highest degree areas of the co-alteration net-
work correspond to the highest degree areas of the normal functional
connectivity network, it is reasonable to hypothesize that the nodal
stress mechanism might play a central role in the development of GM
neuronal alterations.

4.3. The GM increase co-alteration network

As to the GM increase data, only 12 out of the initial 23 nodes
(52.17%) resulted connected in the GM co-alteration matrix, thus
suggesting that GM increase may be a more localized and limited oc-
currence in patients with chronic pain. GM increase may also be a more
variable phenomenon and, thereby, less easily detectable in VBM stu-
dies. The identified GM increase co-alteration network was character-
ized by a pattern with few and sparsely connected nodes. Notably, no
node with more than two connections was identified.

4.3.1. The insular cortex
In our analysis the right anterior insula emerged as the region with

the highest degree value. More specifically, the right anterior insula was
found to be connected inter-hemispherically with the contralateral
anterior insula, ACC and BA 6, and intra-hemispherically with ipsi-
lateral ACC, PCC, S2, BA 44, putamen, BA 47, BA 44 and DLPFC.
Interestingly, several regions connected to the anterior insula are also
highly-connected nodes of the co-alteration network. These results are
consistent with other studies that found the insula to elicit painful
sensations when stimulated, as well as to be involved in pain

Fig. 9. Graphical illustration of nodes corresponding to GM decrease. Nodes with the
same degree value are arranged at the same level. Highest degree nodes are at the top of
the figure and lowest degree nodes are at the bottom. r: right; l: left.

Fig. 10. GM decrease. Graphical illustration of highly connected nodes with their intra- and inter-hemispheric connections and their first neighbors.
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processing, both in its anterior and posterior parts, which also exhibited
a right-side lateralization (Jensen et al., 2016; Mazzola et al., 2009;
Ostrowsky et al., 2002; Segerdahl et al., 2015).

Our connectivity model of neural co-alteration is also supported by
animal studies. In fact, the antero-inferior division of the insula has
been found to be strongly connected with the rostral anterior cingulate
cortex (Vogt and Pandya, 1987; Vogt et al., 1987; Vogt, 1993; Vogt
et al., 2004), and tract tracing studies in primates have shown that the
insula is connected with the primary (S1) and secondary somatosensory
cortex (S2), parietal operculum, prefrontal and motor cortex, supple-
mentary motor area, orbitofrontal cortex, prefrontal and orbitofrontal
areas, frontal operculum, anterior cingulate cortex, superior temporal
gyrus, temporal pole, primary auditory and auditory association cor-
tices, visual association cortex, olfactory bulb, amygdaloid body, hip-
pocampus, and entorhinal cortex (Flynn et al., 1999; Mesulam and
Mufson, 1982; Mufson and Mesulam, 1982). Most of these connections
have been also confirmed by human studies of structural (DTI) and
functional (rs-fMRI) connectivity (Cauda et al., 2011; Ghaziri et al.,
2017).

Overall, our findings suggest that the insula is a preferentially tar-
geted network node in various chronic pain conditions and appears to
play an important role in the development of GM alterations across the
brain.

4.3.2. The cingulate cortex, S2, and BA 44
The ACC node was located in the dorsal ACC (BA 32). This region is

thought to be involved in a wide range of cognitive and emotional
functions and has significant connections with the insula (Menon,
2015). As we have seen, both these areas are key regions of the salience
network (Beissner et al., 2013; Menon, 2015; Menon and Uddin, 2010;
Seeley et al., 2007), which supports the quick identification of external
and/or internal stimuli that are relevant for the organism's survival
(Menon, 2015). Chronic pain may disrupt the synchronization of this
survival mechanism, affecting a common set of cerebral regions in-
volved in pain processing, self-monitoring and salience detection
(Cauda et al., 2010; Hemington et al., 2016; Kucyi and Davis, 2015;
Legrain et al., 2011; Mouraux et al., 2011; Torta and Cauda, 2011).

S2 is involved in a series of important functions, including sensor-
imotor integration, attention, learning, memory, as well as the ela-
boration of nociceptive and pleasant inputs that are salient for further
higher-order cognitive processing (Chen et al., 2008; Ferretti et al.,
2003; Hamalainen et al., 2002; Ploner et al., 1999; Schnitzler and
Ploner, 2000; Timmermann et al., 2001). S2 has significant connections
with S1 and is supposed to play a relevant role in encoding the intensity
of painful sensations (Lockwood et al., 2013).

PCC is densely connected with a high metabolic activity profile; its
cognitive functions are principally devoted to internally directed cog-
nition (Buckner et al., 2008; Hagmann et al., 2008; Leech and Sharp,
2014; Raichle et al., 2001). It is a key region of the default mode net-
work, which is thought to be involved in retrieving autobiographical
memories, planning the future and free wandering, as well as in in-
tegrating the sense of self-location and body ownership (Guterstam
et al., 2015). Importantly, PCC seems to be involved in fine-tuning the
meta-stability of intrinsic connectivity networks, thus allowing to
control the focus of attention across time by regulating the variability of
neuronal activation within the networks (Leech and Sharp, 2014).

The involvement of the right BA 44 in pain processing is less clear.
In fact, its functions have been mainly associated with the elaboration
of prosodic information (Hesling et al., 2005a; Hesling et al., 2005b;
Wildgruber et al., 2005), generation of melodic phrases (Brown et al.,
2006), and motor response inhibition (Bernal and Altman, 2009; Rubia
et al., 2003). However, BA 44 seems to be also involved in action
monitoring (Rubia et al., 2003) and lesions in this area have been as-
sociated with anosognosia for hemiplegia (Berti et al., 2005). Moreover,
it has been suggested that the right frontal operculum (right IFG) may
play a role in body ownership, in the resolution of conflicting signals

between internal and external representations of body-related events
(Tsakiris et al., 2007), and in the awareness of limb functioning (Kortte
et al., 2015).

4.4. Relationship between the co-alteration matrix and diffusion matrix

At first glance the patterns of structural co-alterations and of al-
terations' spread seem to be unrelated. The former is typically derived
from structural data and generally associated with a static event; the
latter is instead studied by means of longitudinal investigations and
frequently thought of as the result of causal events having a specific
development in time. However, we propose to show that a deep
mathematical relationship lies at the root of both patterns. In fact, the
dynamics of how neuronal alterations spread across the brain can be
described in mathematical terms with a Laplacian matrix, which, in
turn, can be obtained from co-alteration data of meta-analytical origin.

If we consider two groups of neurons structurally connected (brain
areas) – A1 that is altered and A2 that is not altered – then the alteration
factor, spreading from A1 to A2, is the product of the concentration of
the alteration factor x1 and the strength of the connectivity c12 be-
tween A1 and A2. As a result, at a certain time the concentration of the
alterations in A2 will grow by a factor of βc12(x2− x1)δt, in which β is
the diffusion constant defining the pace of the alterations' spread. This
system can be mathematically explained as follows:

= −dx
dt

βc x x2 12( 2 1)

Starting from this model Abdelnour et al. (2014) have showed the
possibility to build a network of brain nodes by using the following
equation:

= −dx t
dt

βLx t( ) ( )

in which L is the Laplacian matrix, expressed as:

= −L D A

where D is the degree matrix, a diagonal matrix reporting the number of
edges linked to every node, and A is the adjacency matrix, a square
matrix reporting whether or not couples of nodes are adjacent or linked.

The Laplacian matrix can be proved to be tantamount to the heat
equation, which, in turn, is a case of the diffusion equation generalized
to complex networks (Kondor and Lafferty, 2002). This equation has
the following solution:

= −x t βL x( ) exp( ) 0 (1)

The formula shows the development of a diffusion process, which
begins from an initial stage x0.

Notably, to resolve the diffusion equation we need the Laplacian
matrix, which can be derived from the co-alteration matrix of meta-
analytical data. In fact, the co-alteration matrix describes the relations
among the different altered nodes of a complex network (Crossley et al.,
2013). This matrix can be constructed in several ways; to estimate the
relationship between the altered nodes we used the Jaccard Index and
to identify the significant relations between them we applied the same
statistical method proposed in Toro et al. (2008). As a consequence, we
can construct a square and symmetric matrix, which is an adjacency
matrix A that reports in its rows and columns information about the co-
occurrences of the altered network nodes. Thus, from this connection
matrix we can obtain the degree matrix D as well as the Laplacian
matrix L and in principle describe the diffusion of alterations within the
complex network.

We can see now the mathematical relationship between the pattern
of anatomical co-alterations and the pattern of alterations' spread in
that the diffusion matrix of the alterations can be constructed from co-
alteration data. In other words, the Laplacian matrix in Eq. (1) allows to
describe the development of the alterations' spread. However, to do so
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we need to know the initial stage, that is, the starting configuration
after which alterations begin to propagate (start condition x0). After
knowing this onset we could describe how the alterations propagate by
affecting sequentially the nodes. From data of meta-analytical source,
however, it is not possible to recognize the point(s) of onset of the al-
teration process (i.e., the starting nodes). This is why with our metho-
dology we cannot describe the exact progression of the pathological
spread; in the article we therefore discuss the alterations' diffusion
using the term “distribution” rather than the terms “spread” or “pro-
pagation”. Despite this limitation, we can maintain that, given the
mathematical considerations stated above, alterations can develop from
one node to another, thus allowing us the interpretation that the co-
alteration pattern obtained from examining our meta-analytical data
has a network-like architecture.

4.5. Limitations

Our findings indicate that the co-alteration network of chronic pain
follows closely the brain patterns of functional connectivity. This in-
triguing result, however, could also be a limitation, as our co-alteration
network has been compared with a model of healthy brain connectivity
only based on one MRI modality (i.e., resting state functional con-
nectivity). In fact, although scientific data suggest that the baseline
functional pathways reflect to some extent the patterns of structural
connections (Behrens and Sporns, 2012; Deco and Corbetta, 2011;
Wang et al., 2013) the exact relationship between structural and
functional connectivity is as yet unclear. Therefore further analyses on
how structural and functional connectivity relates to each other are
needed in order to understand whether or not our model is able to
explain thoroughly the distribution of neuronal alterations in patients
with chronic pain.

Another issue regards the high heterogeneity of chronic pain con-
ditions, whose integration may be particularly challenging. Leaving
aside the well-known aetiology-related issue, there are also differences
in the methodological approaches used to study brain changes.
Moreover, pain processing relies on distributed networks integrating
various sensory, emotional and cognitive aspects, which, according to
their different involvement, may lead to discrepancies between studies.

Therefore, differences in the brain location of GM changes between
studies can be associated with a variety of factors, related to pain ae-
tiology, somatotopic localization of pain, pain duration, pharmacolo-
gical therapy, and co-morbidities (e.g. depression). For example,
painful conditions with alteration of the nervous system (i.e. neuro-
pathic pain) may differ from conditions in which the alteration of the
nervous system does not occur. Differences can also regard the con-
tribution of inflammatory, autoimmune or vascular components.
However, with the help of a meta-analytic approach, common trends
between various conditions can be identified. As previous meta-ana-
lyses suggest, chronic pain could lead to common structural and func-
tional brain changes, independently of the possible condition-specific
differences as well as of the aetiology or other condition-related factors
(Cauda et al., 2014a; Smallwood et al., 2013).

In our case it was not possible to run separate analyses for different
clinical conditions, as studies for each condition were not enough to
allow appropriate statistical analysis. This is why we decided to include
in our meta-analysis all the studies reporting GM alterations in chronic
pain; in fact the inclusion of a substantial number of studies was ne-
cessary to achieve a significant statistical power.

Unfortunately, in the literature most of the studies about chronic
pain (here included) do not have correction for multiple comparisons;
instead they often use a more liberal thresholding or correction method
like that applied by the study of Mordasini et al. (2012) relying on the
study of Rüsch et al. (2003). This study suggests a more liberal
thresholding in case of a clearly defined a priori hypothesis, based on
previous knowledge regarding brain structures that are involved pain
processing and modulation (e.g. midbrain, thalamus, putamen,

amygdala, somatosensory cortex, insular cortex, cingulate cortex, pre-
frontal cortex, caudate nucleus, nucleus accumbens, amygdala). This
thresholding strategy was mentioned in 16 studies, of which 13 used an
initial uncorrected threshold for the whole brain analysis. Such a priori
knowledge about the aforementioned brain structures was used to de-
fine an appropriate cluster extent threshold (5 studies) or to define a
more liberal thresholding or correction method (11 studies), thus al-
lowing to look for significant changes even in small structures that are
known to be involved in pain processing an modulation (Table S4).
Previous studies have shown that uncorrected levels larger than
p < 0.001 can be included into the statistical parametric mapping
analysis of gray matter volume differences if they match an priori hy-
pothesis regarding the anatomical location of the findings (in our case,
anatomical structures within the pain processing and modulation
system) without losing protection against false-positive results
(Mordasini et al., 2012; Rüsch et al., 2003).

To sum up, among the 55 studies included in our meta-analysis, 16
studies (11 with voxel-level and 5 with cluster-level correction) re-
ported results with an initial correction for multiple comparisons,
whereas 39 studies reported an initial whole-brain uncorrected
threshold (generally, p < 0.001). In this second case, 12 studies re-
ported a cluster-level correction (RFT, SVC, Monte Carlo simulation,
FWE with p < 0.05); 5 studies reported a cluster extent threshold
derived from a priori information about the size of the small anatomical
structures involved in pain processing; 9 studies reported a minimum
cluster extent threshold; and 13 studies reported no cluster-level cor-
rection or cluster extent threshold. Overall, 28 studies reported results
corrected for multiple comparison and 27 studies reported uncorrected
results. More detailed information about the statistical analysis per-
formed by the studies included in our meta-analysis may be found in
the Supplementary Materials, Table S4.

In the light of the previous considerations, we could not avoid the
inclusion of studies reporting more liberal thresholded results, as the
number of studies with fully corrected results was too limited for a
significant statistical co-alteration analysis. So, although it is common
practice in this field of research the use of uncorrected data for multiple
comparisons (Dai et al., 2015; Pan et al., 2015; Smallwood et al., 2013;
Yuan et al., 2017), we cannot rule out that this fact may have in-
troduced a bias or inflated the statistics. To thoroughly address this
issue, we hope that in the future, when a sufficient number of studies
with corrected data will be present in the literature, it will be possible
to provide a further meta-analysis that will be able to confirm our
conclusions.

Finally, we cannot completely exclude that possible partial volume
effects may have contaminated the results of the functional connectivity
analysis between the nodes. In fact, the positioning of the nodes was
driven by the anatomical data instead of the functional segmentation.
Functional segmentation would have positioned the nodes in the areas
of maximum functional homogeneity, thus minimising possible partial
volume effects. In contrast, the anatomical positioning cannot minimize
these effects from the beginning. However, the choice of the anatomical
positioning was based on constraints related to the co-alteration ana-
lysis, specifically we wanted i) to position the nodes in the areas of
maximum anatomical homogeneity and ii) to maximise the number of
foci in each node.

Moreover, artefacts associated with partial volume effects are not
likely to cause false positives in the correlation analysis between co-
alteration and functional connectivity data. More probably, these ar-
tefacts could reduce the correlation value between the two types of
connectivity. So, this consideration leads us to think that such artefacts,
if present, did not alter significantly the similarity result between
anatomical and functional matrices.

5. Conclusions

Our analysis provides further support to the hypothesis that
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neuronal alterations distribute according to the logic of a network-like
propagation, not only in neurodegenerative disease but also in other
pathological conditions such as chronic pain. We were able to answer
all the four questions put forward in the introduction. In fact, we found
out that i) in patients with chronic pain GM alterations do not distribute
randomly, but ii) they rather form a symptom-related pattern of
structural co-alterations, which iii) strongly mirrors the pattern of brain
functional connectivity. Finally, iv) within this pattern or co-alteration
network a set of highly connected nodes can be clearly identified. In
particular, while areas showing GM increase seem to be a more local
phenomenon, areas showing GM decrease tend to form a more densely
connected network, with long-range inter- and intra-hemispheric con-
nections. We can therefore hypothesize that these highly connected
network nodes might play a pivotal role in the development and dis-
tribution of neuronal alterations in patients suffering from chronic pain;
this suggests the nodal stress mechanism as the principle factor in-
volved in this pathological process.

Another interesting finding is that the areas of the co-alteration
network with the highest degree of connections are also parts of the
salience network and appear to be more localized on the right-side, thus
supporting the right lateralization in the processing of painful stimuli.
This, in turn, suggests greater susceptibility of right-side highly con-
nected nodes to alterations caused by chronic pain. These findings
might have important implications for the emerging field of patho-
connectomics, paving the way for better strategies to track and predict
symptom-related patterns of pathological alterations within the brain
(Deco and Kringelbach, 2014; Filippi et al., 2013; Fornito and Bullmore,
2015; Fornito et al., 2015). What is more, they provide an additional
argument in recommending the treatment of chronic pain as early as
possible in order to prevent the development of GM pathological
changes.

Acknowledgements

Support from NIH/NIMH grant MH074457 (P. Fox, PI).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.12.029.

References

Abdelnour, F., Voss, H.U., Raj, A., 2014. Network diffusion accurately models the re-
lationship between structural and functional brain connectivity networks.
NeuroImage 90, 335–347.

Agostini, A., Benuzzi, F., Filippini, N., Bertani, A., Scarcelli, A., Farinelli, V., Marchetta,
C., Calabrese, C., Rizzello, F., Gionchetti, P., Ercolani, M., Campieri, M., Nichelli, P.,
2013. New insights into the brain involvement in patients with Crohn's disease: a
voxel-based morphometry study. Neurogastroenterol. Motil. 25 (2), 147–e182.

Apkarian, A.V., 2011. The brain in chronic pain: clinical implications. Pain Manag. 1,
577–586.

Apkarian, A.V., Sosa, Y., Sonty, S., Levy, R.M., Harden, R.N., Parrish, T.B., Gitelman, D.R.,
2004. Chronic back pain is associated with decreased prefrontal and thalamic gray
matter density. J. Neurosci. 24, 10410–10415.

Apkarian, A.V., Hashmi, J.A., Baliki, M.N., 2011. Pain and the brain: specificity and
plasticity of the brain in clinical chronic pain. Pain 152, S49–64.

Apkarian, A.V., Baliki, M.N., Farmer, M.A., 2013. Predicting transition to chronic pain.
Curr. Opin. Neurol. 26, 360–367.

Baliki, M.N., Apkarian, A.V., 2015. Nociception, pain, negative moods, and behavior
selection. Neuron 87, 474–491.

Baliki, M.N., Schnitzer, T.J., Bauer, W.R., Apkarian, A.V., 2011. Brain morphological
signatures for chronic pain. PLoS One 6, e26010.

Baliki, M.N., Mansour, A.R., Baria, A.T., Apkarian, A.V., 2014. Functional reorganization
of the default mode network across chronic pain conditions. PLoS One 9, e106133.

Behrens, T.E., Sporns, O., 2012. Human connectomics. Curr. Opin. Neurobiol. 22,
144–153.

Beissner, F., Meissner, K., Bar, K.J., Napadow, V., 2013. The autonomic brain: an acti-
vation likelihood estimation meta-analysis for central processing of autonomic
function. J. Neurosci. 33, 10503–10511.

Bernal, B., Altman, N., 2009. Neural networks of motor and cognitive inhibition are
dissociated between brain hemispheres: an fMRI study. Int. J. Neurosci. 119,

1848–1880.
Berti, A., Bottini, G., Gandola, M., Pia, L., Smania, N., Stracciari, A., Castiglioni, I., Vallar,

G., Paulesu, E., 2005. Shared cortical anatomy for motor awareness and motor
control. Science 309, 488–491.

Brown, S., Martinez, M.J., Parsons, L.M., 2006. Music and language side by side in the
brain: a PET study of the generation of melodies and sentences. Eur. J. Neurosci. 23,
2791–2803.

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain's default network:
anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38.

Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-
Hanna, J.R., Sperling, R.A., Johnson, K.A., 2009. Cortical hubs revealed by intrinsic
functional connectivity: mapping, assessment of stability, and relation to Alzheimer's
disease. J. Neurosci. 29, 1860–1873.

Cauda, F., D'Agata, F., Sacco, K., Duca, S., Cocito, D., Paolasso, I., Isoardo, G., Geminiani,
G., 2010. Altered resting state attentional networks in diabetic neuropathic pain. J.
Neurol. Neurosurg. Psychiatry 81, 806–811.

Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., Vercelli, A., 2011. Functional
connectivity of the insula in the resting brain. NeuroImage 55, 8–23.

Cauda, F., Palermo, S., Costa, T., Torta, R., Duca, S., Vercelli, U., Geminiani, G., Torta,
D.M., 2014a. Gray matter alterations in chronic pain: a network-oriented meta-ana-
lytic approach. NeuroImage Clin. 4, 676–686.

Cauda, F., Costa, T., Diano, M., Duca, S., Torta, D.M., 2014b. Beyond the “pain matrix”,
inter-run synchronization during mechanical nociceptive stimulation. Front. Hum.
Neurosci. 8, 265.

Cauda, F., Costa, T., Diano, M., Sacco, K., Duca, S., Geminiani, G., Torta, D.M., 2014c.
Massive modulation of brain areas after mechanical pain stimulation: a time-resolved
FMRI study. Cereb. Cortex 24 (11), 2991–3005.

Cauda, F., Costa, T., Fava, L., Palermo, S., Bianco, F., Duca, S., Geminiani, G., Tatu, K.,
Keller, R., 2015. Predictability of autism, schizophrenic and obsessive spectra diag-
nosis. Toward a damage network approach. bioRxiv 014563. http://dx.doi.org/10.
1101/014563.

Ceko, M., Bushnell, M.C., Fitzcharles, M.A., Schweinhardt, P., 2013. Fibromyalgia in-
teracts with age to change the brain. NeuroImage Clin. 3, 249–260.

Ceko, M., Shir, Y., Ouellet, J.A., Ware, M.A., Stone, L.S., Seminowicz, D.A., 2015. Partial
recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive
networks in chronic low back pain after treatment. Hum. Brain Mapp. 36 (6),
2075–2092.

Chen, T.L., Babiloni, C., Ferretti, A., Perrucci, M.G., Romani, G.L., Rossini, P.M., Tartaro,
A., Del Gratta, C., 2008. Human secondary somatosensory cortex is involved in the
processing of somatosensory rare stimuli: an fMRI study. NeuroImage 40,
1765–1771.

Chen, J.Y., Blankstein, U., Diamant, N.E., Davis, K.D., 2011. White matter abnormalities
in irritable bowel syndrome and relation to individual factors. Brain Res. 1392,
121–131.

Crossley, N.A., Mechelli, A., Vertes, P.E., Winton-Brown, T.T., Patel, A.X., Ginestet, C.E.,
McGuire, P., Bullmore, E.T., 2013. Cognitive relevance of the community structure of
the human brain functional coactivation network. Proc. Natl. Acad. Sci. U. S. A. 110,
11583–11588.

Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., Bullmore, E.T.,
2014. The hubs of the human connectome are generally implicated in the anatomy of
brain disorders. Brain 137, 2382–2395.

Dai, Z., Zhong, J., Xiao, P., Zhu, Y., Chen, F., Pan, P., Shi, H., 2015. Gray matter correlates
of migraine and gender effect: a meta-analysis of voxel-based morphometry studies.
Neuroscience 299, 88–96.

Deco, G., Corbetta, M., 2011. The dynamical balance of the brain at rest. Neuroscientist
17, 107–123.

Deco, G., Kringelbach, M.L., 2014. Great expectations: using whole-brain computational
connectomics for understanding neuropsychiatric disorders. Neuron 84, 892–905.

Dominick, C.H., Blyth, F.M., Nicholas, M.K., 2012. Unpacking the burden: understanding
the relationships between chronic pain and comorbidity in the general population.
Pain 153, 293–304.

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R.S., Helms, G., Weiskopf,
N., 2011. Regional specificity of MRI contrast parameter changes in normal ageing
revealed by voxel-based quantification (VBQ). NeuroImage 55, 1423–1434 (CrossRef
Medline).

Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate-
based activation likelihood estimation meta-analysis of neuroimaging data: a
random-effects approach based on empirical estimates of spatial uncertainty. Hum.
Brain Mapp. 30, 2907–2926.

Eickhoff, S.B., Bzdok, D., Laird, A.R., Kurth, F., Fox, P.T., 2012. Activation likelihood
estimation meta-analysis revisited. NeuroImage 59, 2349–2361.

Eickhoff, S.B., Nichols, T.E., Laird, A.R., Hoffstaedter, F., Amunts, K., Fox, P.T., Bzdok, D.,
Eickhoff, C.R., 2016. Behavior, sensitivity, and power of activation likelihood esti-
mation characterized by massive empirical simulation. NeuroImage 137, 70–85.

Eickhoff, S.B., Laird, A.R., Fox, P.M., Lancaster, J.L., Fox, P.T., 2017. Implementation
errors in the GingerALE software: description and recommendations. Hum. Brain
Mapp. 38 (1), 7–11 (Jan).

Ellingson, B.M., Mayer, E., Harris, R.J., Ashe-McNally, C., Naliboff, B.D., Labus, J.S.,
Tillisch, K., 2013. Diffusion tensor imaging detects microstructural reorganization in
the brain associated with chronic irritable bowel syndrome. Pain 154, 1528–1541.

Erpelding, N., Simons, L., Lebel, A., Serrano, P., Pielech, M., Prabhu, S., Becerra, L.,
Borsook, D., 2016. Rapid treatment-induced brain changes in pediatric CRPS. Brain
Struct. Funct. 221 (2), 1095–1111.

Evans, A.C., 2013. Networks of anatomical covariance. NeuroImage 80, 489–504.
Fan, X., Wang, L., 1996. Comparability of jackknife and bootstrap results: an investigation

for a case of canonical correlation analysis. J. Exp. Educ. 64, 173–189.

K. Tatu et al. NeuroImage: Clinical 18 (2018) 15–30

28

https://doi.org/10.1016/j.nicl.2017.12.029
https://doi.org/10.1016/j.nicl.2017.12.029
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0005
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0005
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0005
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0010
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0010
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0010
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0010
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0015
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0015
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0020
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0020
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0020
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0025
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0025
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0030
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0030
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0035
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0035
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0040
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0040
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0045
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0045
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0050
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0050
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0055
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0055
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0055
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0060
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0060
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0060
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0065
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0065
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0065
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0070
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0070
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0070
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0075
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0075
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0080
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0080
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0080
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0080
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0085
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0085
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0085
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0090
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0090
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0095
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0095
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0095
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0100
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0100
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0100
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0105
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0105
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0105
http://dx.doi.org/10.1101/014563
http://dx.doi.org/10.1101/014563
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0115
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0115
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0120
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0120
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0120
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0120
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0125
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0125
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0125
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0125
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0130
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0130
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0130
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0135
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0135
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0135
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0135
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0140
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0140
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0140
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0145
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0145
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0145
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0150
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0150
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0155
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0155
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0160
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0160
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0160
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0165
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0165
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0165
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0165
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0170
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0170
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0170
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0170
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0175
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0175
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0180
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0180
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0180
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0185
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0185
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0185
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0190
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0190
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0190
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0195
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0195
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0195
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0200
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0205
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0205


Farmer, M.A., Baliki, M.N., Apkarian, A.V., 2012. A dynamic network perspective of
chronic pain. Neurosci. Lett. 520, 197–203.

Farmer, M.A., Huang, L., Martucci, K., Yang, C.C., Maravilla, K.R., Harris, R.E., Clauw,
D.J., Mackey, S., Ellingson, B.M., Mayer, E.A., Schaeffer, A.J., Apkarian, A.V., 2015.
Brain white matter abnormalities in female interstitial cystitis/bladder pain syn-
drome: a MAPP network neuroimaging study. J. Urol. 194, 118–126.

Ferretti, A., Babiloni, C., Gratta, C.D., Caulo, M., Tartaro, A., Bonomo, L., Rossini, P.M.,
Romani, G.L., 2003. Functional topography of the secondary somatosensory cortex
for nonpainful and painful stimuli: an fMRI study. NeuroImage 20, 1625–1638.

Filippi, M., van den Heuvel, M.P., Fornito, A., He, Y., Hulshoff Pol, H.E., Agosta, F., Comi,
G., Rocca, M.A., 2013. Assessment of system dysfunction in the brain through MRI-
based connectomics. Lancet Neurol. 12, 1189–1199.

Flynn, F.G., Benson, D.F., Ardila, A., 1999. Anatomy of insula — functional and clinical
correlates. Aphasiology 13, 55–78.

Fornito, A., Bullmore, E.T., 2015. Connectomics: a new paradigm for understanding brain
disease. Eur. Neuropsychopharmacol. 25, 733–748.

Fornito, A., Zalesky, A., Breakspear, M., 2015. The connectomics of brain disorders. Nat.
Rev. Neurosci. 16, 159–172.

Fox, P.T., Lancaster, J.L., 2002. Opinion: mapping context and content: the BrainMap
model. Nat. Rev. Neurosci. 3, 319–321.

Fox, P.T., Laird, A.R., Fox, S.P., Fox, P.M., Uecker, A.M., Crank, M., et al., 2005. BrainMap
taxonomy of experimental design: description and evaluation. Hum. Brain Mapp. 25,
185–198.

Gatchel, R.J., 2004. Comorbidity of chronic pain and mental health disorders: the biop-
sychosocial perspective. Am. Psychol. 59, 795–805.

Geha, P.Y., Baliki, M.N., Harden, R.N., Bauer, W.R., Parrish, T.B., Apkarian, A.V., 2008.
The brain in chronic CRPS pain: abnormal gray-white matter interactions in emo-
tional and autonomic regions. Neuron 60, 570–581.

Gerstner, G., Ichesco, E., Quintero, A., Schmidt-Wilcke, T., 2011. Changes in regional gray
and white matter volume in patients with myofascial-type temporomandibular dis-
orders: a voxel-based morphometry study. J. Orofac. Pain 25, 99–106.

Ghaziri, J., Tucholka, A., Girard, G., Houde, J.C., Boucher, O., Gilbert, G., Descoteaux, M.,
Lippe, S., Rainville, P., Nguyen, D.K., 2017. The corticocortical structural con-
nectivity of the human insula. Cereb. Cortex 27, 1216–1228.

Green, S., Higgins, J.P.T., Alderson, P., Clarke, M., Mulrow, C.D., Oxman, A.D., 2008.
Introduction. In: JTP, Higgins, Green, S. (Eds.), Cochrane Handbook for Systematic
Reviews of Interventions:The Cochrane Collaboration. John Wiley & Sons, Ltd.

Guterstam, A., Bjornsdotter, M., Gentile, G., Ehrsson, H.H., 2015. Posterior cingulate
cortex integrates the senses of self-location and body ownership. Curr. Biol. 25,
1416–1425.

Gwilym, S.E., Filippini, N., Douaud, G., Carr, A.J., Tracey, I., 2010. Thalamic atrophy
associated with painful osteoarthritis of the hip is reversible after arthroplasty: a
longitudinal voxel-based morphometric study. Arthritis Rheum. 62 (10), 2930–2940.

de Haan, W., Mott, K., van Straaten, E.C., Scheltens, P., Stam, C.J., 2012. Activity de-
pendent degeneration explains hub vulnerability in Alzheimer's disease. PLoS
Comput. Biol. 8 (8), e1002582.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns,
O., 2008. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159.

Hamalainen, H., Hiltunen, J., Titievskaja, I., 2002. Activation of somatosensory cortical
areas varies with attentional state: an fMRI study. Behav. Brain Res. 135, 159–165.

Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer,
T.J., Apkarian, A.V., 2013. Shape shifting pain: chronification of back pain shifts
brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768.

van Hecke, O., Torrance, N., Smith, B.H., 2013. Chronic pain epidemiology and its clinical
relevance. Br. J. Anaesth. 111, 13–18.

Hemington, K.S., Wu, Q., Kucyi, A., Inman, R.D., Davis, K.D., 2016. Abnormal cross-
network functional connectivity in chronic pain and its association with clinical
symptoms. Brain Struct. Funct. 221, 4203–4219.

Hesling, I., Clement, S., Bordessoules, M., Allard, M., 2005a. Cerebral mechanisms of
prosodic integration: evidence from connected speech. NeuroImage 24, 937–947.

Hesling, I., Dilharreguy, B., Clement, S., Bordessoules, M., Allard, M., 2005b. Cerebral
mechanisms of prosodic sensory integration using low-frequency bands of connected
speech. Hum. Brain Mapp. 26, 157–169.

van den Heuvel, M.P., Sporns, O., 2011. Rich-club organization of the human con-
nectome. J. Neurosci. 31, 15775–15786.

Iannetti, G.D., Mouraux, A., 2010. From the neuromatrix to the pain matrix (and back).
Exp. Brain Res. 205, 1–12.

Isnard, J., Magnin, M., Jung, J., Mauguiere, F., Garcia-Larrea, L., 2011. Does the insula
tell our brain that we are in pain? Pain 152, 946–951.

Iturria-Medina, Y., Evans, A.C., 2015. On the central role of brain connectivity in neu-
rodegenerative disease progression. Front. Aging Neurosci. 7, 90.

Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579.

Jacobsen, L., Mariano, A., 2001. General considerations on chronic pain. In: Loeser, J.D.,
Chapman, S.R. (Eds.), Bonica's Management of Pain, 3rd ed. Lippincott, Williams &
Wilkins, Baltimore.

Jensen, K.B., Regenbogen, C., Ohse, M.C., Frasnelli, J., Freiherr, J., Lundstrom, J.N.,
2016. Brain activations during pain: a neuroimaging meta-analysis of patients with
pain and healthy controls. Pain 157, 1279–1286.

Keifer Jr., O.P., Hurt, R.C., Gutman, D.A., Keilholz, S.D., Gourley, S.L., Ressler, K.J., 2015.
Voxel-based morphometry predicts shifts in dendritic spine density and morphology
with auditory fear conditioning. Nat. Commun. 6, 7582.

Khan, S.A., Keaser, M.L., Meiller, T.F., Seminowicz, D.A., 2014. Altered structure and
function in the hippocampus and medial prefrontal cortex in patients with burning
mouth syndrome. Pain 155, 1472–1480.

Kondor, R.I., Lafferty, J., 2002. Diffusion Kernels on Graphs and Other Discrete Input

Spaces. ICML.
Kortte, K.B., McWhorter, J.W., Pawlak, M.A., Slentz, J., Sur, S., Hillis, A.E., 2015.

Anosognosia for hemiplegia: the contributory role of right inferior frontal gyrus.
Neuropsychology 29, 421–432.

Kucyi, A., Davis, K.D., 2015. The dynamic pain connectome. Trends Neurosci. 38, 86–95.
Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., Turkeltaub,

P.E., Kochunov, P., Fox, P.T., 2005a. ALE meta-analysis: controlling the false dis-
covery rate and performing statistical contrasts. Hum. Brain Mapp. 25, 155–164.

Laird, A.R., McMillan, K.M., Lancaster, J.L., Kochunov, P., Turkeltaub, P.E., Pardo, J.V.,
Fox, P.T., 2005b. A comparison of label-based review and ALE meta-analysis in the
Stroop task. Hum. Brain Mapp. 25, 6–21.

Laird, A.R., Lancaster, J.L., Fox, P.T., 2005c. BrainMap: the social evolution of a human
brain mapping database. Neuroinformatics 3, 65–78.

Laird, A.R., Eickhoff, S.B., Kurth, F., Fox, P.M., Uecker, A.M., Turner, J.A., Robinson, J.L.,
Lancaster, J.L., Fox, P.T., 2009. ALE meta-analysis workflows via the Brainmap da-
tabase: progress towards a probabilistic functional brain atlas. Front. Neuroinf. 3, 23.

Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L.,
Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T., 2000. Automated Talairach
atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131.

Lancaster, J.L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K.,
Mazziotta, J.C., Fox, P.T., 2007. Bias between MNI and Talairach coordinates ana-
lyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205.

Leech, R., Sharp, D.J., 2014. The role of the posterior cingulate cortex in cognition and
disease. Brain 137, 12–32.

Legrain, V., Iannetti, G.D., Plaghki, L., Mouraux, A., 2011. The pain matrix reloaded: a
salience detection system for the body. Prog. Neurobiol. 93, 111–124.

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P., Clarke,
M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for re-
porting systematic reviews and meta-analyses of studies that evaluate health care
interventions: explanation and elaboration. J. Clin. Epidemiol. 62, e1–34.

Lieberman, G., Shpaner, M., Watts, R., Andrews, T., Filippi, C.G., Davis, M., Naylor, M.R.,
2014. White matter involvement in chronic musculoskeletal pain. J. Pain 15,
1110–1119.

Lockwood, P.L., Iannetti, G.D., Haggard, P., 2013. Transcranial magnetic stimulation over
human secondary somatosensory cortex disrupts perception of pain intensity. Cortex
49, 2201–2209.

Loeser, J.D., Treede, R.D., 2008. The Kyoto protocol of IASP basic pain terminology. Pain
137, 473–477.

Luchtmann, M., Steinecke, Y., Baecke, S., Lutzkendorf, R., Bernarding, J., Kohl, J.,
Jollenbeck, B., Tempelmann, C., Ragert, P., Firsching, R., 2014. Structural brain al-
terations in patients with lumbar disc herniation: a preliminary study. PLoS One 9,
e90816.

Maeda, Y., Kettner, N., Sheehan, J., Kim, J., Cina, S., Malatesta, C., Gerber, J., McManus,
C., Mezzacappa, P., Morse, L.R., Audette, J., Napadow, V., 2013. Altered brain
morphometry in carpal tunnel syndrome is associated with median nerve pathology.
NeuroImage Clin. 2, 313–319.

Mansour, A.R., Baliki, M.N., Huang, L., Torbey, S., Herrmann, K.M., Schnitzer, T.J.,
Apkarian, A.V., 2013. Brain white matter structural properties predict transition to
chronic pain. Pain 154, 2160–2168.

Mantel, N., 1967. The detection of disease clustering and a generalized regression ap-
proach. Cancer Res. 27, 209–220.

May, A., 2008. Chronic pain may change the structure of the brain. Pain 137, 7–15.
Mazzola, L., Isnard, J., Mauguiere, F., 2006. Somatosensory and pain responses to sti-

mulation of the second somatosensory area (SII) in humans. A comparison with SI
and insular responses. Cereb. Cortex 16, 960–968.

Mazzola, L., Isnard, J., Peyron, R., Guenot, M., Mauguiere, F., 2009. Somatotopic orga-
nization of pain responses to direct electrical stimulation of the human insular cortex.
Pain 146, 99–104.

Mechelli, A., Friston, K.J., Frackowiak, R.S., Price, C.J., 2005. Structural covariance in the
human cortex. J. Neurosci. 25, 8303–8310.

Melzack, R., 1999. From the gate to the neuromatrix. Pain 6, S121–6.
Menon, V., 2015. Salience network. In: Toga, A.W. (Ed.), Brain Mapping: An Encyclopedic

Reference. Academic Press: Elsevier.
Menon, V., Uddin, L.Q., 2010. Saliency, switching, attention and control: a network

model of insula function. Brain Struct. Funct. 214, 655–667.
Merskey, H., Bogduk, N., 1994. Classification of chronic pain, 2nd ed. IASP Press, Seattle,

pp. 1.
Mesulam, M.M., Mufson, E.J., 1982. Insula of the old world monkey. III: efferent cortical

output and comments on function. J. Comp. Neurol. 212, 38–52.
Moayedi, M., Weissman-Fogel, I., Salomons, T.V., Crawley, A.P., Goldberg, M.B.,

Freeman, B.V., Tenenbaum, H.C., Davis, K.D., 2012. White matter brain and tri-
geminal nerve abnormalities in temporomandibular disorder. Pain 153, 1467–1477.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2009. Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62,
1006–1012.

Mordasini, L., Weisstanner, C., Rummel, C., Thalmann, G.N., Verma, R.K., Wiest, R.,
Kessler, T.M., 2012. Chronic pelvic pain syndrome in men is associated with reduc-
tion of relative gray matter volume in the anterior cingulate cortex compared to
healthy controls. J. Urol. 188 (6), 2233–2237.

Mouraux, A., Diukova, A., Lee, M.C., Wise, R.G., Iannetti, G.D., 2011. A multisensory
investigation of the functional significance of the “pain matrix”. NeuroImage 54,
2237–2249.

Mufson, E.J., Mesulam, M.M., 1982. Insula of the old world monkey. II: afferent cortical
input and comments on the claustrum. J. Comp. Neurol. 212, 23–37.

Obermann, M., Rodriguez-Raecke, R., Naegel, S., Holle, D., Mueller, D., Yoon, M.S.,
Theysohn, N., Blex, S., Diener, H.C., Katsarava, Z., 2013. Gray matter volume

K. Tatu et al. NeuroImage: Clinical 18 (2018) 15–30

29

http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0210
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0210
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0215
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0215
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0215
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0215
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0220
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0220
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0220
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0225
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0225
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0225
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0230
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0230
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0235
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0235
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0240
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0240
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0245
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0245
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0250
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0250
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0250
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0255
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0255
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0260
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0260
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0260
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0265
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0265
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0265
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0270
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0270
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0270
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0275
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0275
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0275
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0280
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0280
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0280
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0285
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0285
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0285
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0290
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0290
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0290
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0295
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0295
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0300
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0300
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0305
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0305
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0305
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0310
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0310
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0315
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0315
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0315
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0320
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0320
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0325
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0325
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0325
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0330
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0330
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0335
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0335
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0340
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0340
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0345
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0345
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0350
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0350
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0355
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0355
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0355
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0360
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0360
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0360
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0365
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0365
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0365
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0370
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0370
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0370
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0375
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0375
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0380
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0380
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0380
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0385
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0390
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0390
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0390
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0395
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0395
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0395
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0400
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0400
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0405
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0405
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0405
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0410
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0410
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0410
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0415
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0415
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0415
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0420
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0420
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0425
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0425
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0430
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0430
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0430
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0430
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0435
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0435
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0435
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0440
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0440
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0440
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0445
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0445
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0450
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0450
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0450
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0450
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0455
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0455
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0455
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0455
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0460
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0460
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0460
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0465
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0465
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0470
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0475
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0475
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0475
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0480
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0480
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0480
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0485
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0485
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0490
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0495
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0495
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0500
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0500
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0505
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0505
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0510
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0510
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0515
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0515
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0515
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0520
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0520
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0520
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0525
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0525
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0525
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0525
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0530
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0530
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0530
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0535
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0535
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0540
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0540


reduction reflects chronic pain in trigeminal neuralgia. NeuroImage 74, 352–358.
Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., Mauguiere, F., 2002.

Representation of pain and somatic sensation in the human insula: a study of re-
sponses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385.

Pan, P.L., Zhong, J.G., Shang, H.F., Zhu, Y.L., Xiao, P.R., Dai, Z.Y., Shi, H.C., 2015.
Quantitative meta-analysis of grey matter anomalies in neuropathic pain. Eur. J. Pain
19 (9), 1224–1231.

Ploner, M., Schmitz, F., Freund, H.J., Schnitzler, A., 1999. Parallel activation of primary
and secondary somatosensory cortices in human pain processing. J. Neurophysiol. 81,
3100–3104.

Pomares, F.B., Funck, T., Feier, N.A., Roy, S., Daigle-Martel, A., Ceko, M., Narayanan, S.,
Araujo, D., Thiel, A., Stikov, N., Fitzcharles, M.A., Schweinhardt, P., 2017.
Histological underpinnings of Grey matter changes in fibromyalgia investigated using
multimodal brain imaging. J. Neurosci. 37 (5), 1090–1101.

Radua, J., Mataix-Cols, D., 2009. Voxel-wise meta-analysis of grey matter changes in
obsessive-compulsive disorder. Br. J. Psychiatry 195, 393–402.

Radua, J., Via, E., Catani, M., Mataix-Cols, D., 2011. Voxel-based meta-analysis of re-
gional white-matter volume differences in autism spectrum disorder versus healthy
controls. Psychol. Med. 41, 1539–1550.

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.,
2001. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682.

Raj, A., Kuceyeski, A., Weiner, M., 2012. A network diffusion model of disease progres-
sion in dementia. Neuron 73, 1204–1215.

Ravits, J., 2014. Focality, stochasticity and neuroanatomic propagation in ALS patho-
genesis. Exp. Neurol. 262 (Pt B), 121–126.

Riederer, F., Marti, M., Luechinger, R., Lanzenberger, R., von Meyenburg, J., Gantenbein,
A.R., Pirrotta, R., Gaul, C., Kollias, S., Sandor, P.S., 2012. Grey matter changes as-
sociated with medication-overuse headache: correlations with disease related dis-
ability and anxiety. World J. Biol. Psychiatry 13, 517–525.

Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W., May, A., 2009. Brain gray
matter decrease in chronic pain is the consequence and not the cause of pain. J.
Neurosci. 29, 13746–13750.

Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W., May, A., 2013. Structural brain
changes in chronic pain reflect probably neither damage nor atrophy. PLoS One 8 (2),
e54475.

Rubia, K., Smith, A.B., Brammer, M.J., Taylor, E., 2003. Right inferior prefrontal cortex
mediates response inhibition while mesial prefrontal cortex is responsible for error
detection. NeuroImage 20, 351–358.

Rüsch, N., van Elst, L.T., Ludaescher, P., Wilke, M., Huppertz, H.J., Thiel, T., Schmahl, C.,
Bohus, M., Lieb, K., Hesslinger, B., Hennig, J., Ebert, D., 2003. A voxel-based mor-
phometric MRI study in female patients with borderline personality disorder.
NeuroImage 20 (1), 385–392.

Saxena, S., Caroni, P., 2011. Selective neuronal vulnerability in neurodegenerative dis-
eases: from stressor thresholds to degeneration. Neuron 71, 35–48.

Schmidt-Wilcke, T., Leinisch, E., Straube, A., Kampfe, N., Draganski, B., Diener, H.C.,
Bogdahn, U., May, A., 2005. Gray matter decrease in patients with chronic tension
type headache. Neurology 65, 1483–1486.

Schnitzler, A., Ploner, M., 2000. Neurophysiology and functional neuroanatomy of pain
perception. J. Clin. Neurophysiol. 17, 592–603.

Schweinhardt, P., Kuchinad, A., Pukall, C.F., Bushnell, M.C., 2008. Increased gray matter
density in young women with chronic vulvar pain. Pain 140, 411–419.

Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L.,
Greicius, M.D., 2007. Dissociable intrinsic connectivity networks for salience pro-
cessing and executive control. J. Neurosci. 27, 2349–2356.

Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., 2009.
Neurodegenerative diseases target large-scale human brain networks. Neuron 62,
42–52.

Segerdahl, A.R., Mezue, M., Okell, T.W., Farrar, J.T., Tracey, I., 2015. The dorsal pos-
terior insula subserves a fundamental role in human pain. Nat. Neurosci. 18,
499–500.

Seminowicz, D.A., Labus, J.S., Bueller, J.A., Tillisch, K., Naliboff, B.D., Bushnell, M.C.,
Mayer, E.A., 2010. Regional gray matter density changes in brains of patients with
irritable bowel syndrome. Gastroenterology 139 (48–57), e2.

Seminowicz, D.A., Wideman, T.H., Naso, L., Hatami-Khoroushahi, Z., Fallatah, S., Ware,
M.A., Jarzem, P., Bushnell, M.C., Shir, Y., Ouellet, J.A., Stone, L.S., 2011. Effective
treatment of chronic low back pain in humans reverses abnormal brain anatomy and
function. J. Neurosci. 31, 7540–7550.

Shao, J., Tu, D., 1995. The Jackknife and Bootstrap. Springer-Verlag, New York.
Smallwood, R.F., Laird, A.R., Ramage, A.E., Parkinson, A.L., Lewis, J., Clauw, D.J.,

Williams, D.A., Schmidt-Wilcke, T., Farrell, M.J., Eickhoff, S.B., Robin, D.A., 2013.

Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray
matter volume. J. Pain 14, 663–675.

Stam, C.J., 2014. Modern network science of neurological disorders. Nat. Rev. Neurosci.
15, 683–695.

Symonds, L.L., Gordon, N.S., Bixby, J.C., Mande, M.M., 2006. Right-lateralized pain
processing in the human cortex: an FMRI study. J. Neurophysiol. 95, 3823–3830.

Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., Schnitzler, A., 2001.
Differential coding of pain intensity in the human primary and secondary somato-
sensory cortex. J. Neurophysiol. 86, 1499–1503.

Toro, R., Fox, P.T., Paus, T., 2008. Functional coactivation map of the human brain.
Cereb. Cortex 18 (11), 2553–2559.

Torta, D.M., Cauda, F., 2011. Different functions in the cingulate cortex, a meta-analytic
connectivity modeling study. NeuroImage 56, 2157–2172.

Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., Svoboda, K.,
2002. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult
cortex. Nature 420 (6917), 788–794.

Tsakiris, M., Hesse, M.D., Boy, C., Haggard, P., Fink, G.R., 2007. Neural signatures of
body ownership: a sensory network for bodily self-consciousness. Cereb. Cortex 17,
2235–2244.

Tu, C.H., Niddam, D.M., Chao, H.T., Chen, L.F., Chen, Y.S., Wu, Y.T., Yeh, T.C., Lirng,
J.F., Hsieh, J.C., 2010. Brain morphological changes associated with cyclic menstrual
pain. Pain 150, 462–468.

Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A., 2002. Meta-analysis of the func-
tional neuroanatomy of single-word reading: method and validation. NeuroImage 16,
765–780.

Ung, H., Brown, J.E., Johnson, K.A., Younger, J., Hush, J., Mackey, S., 2014. Multivariate
classification of structural MRI data detects chronic low back pain. Cereb. Cortex 24,
1037–1044.

Unrath, A., Juengling, F.D., Schork, M., Kassubek, J., 2007. Cortical grey matter altera-
tions in idiopathic restless legs syndrome: an optimized voxel-based morphometry
study. Mov. Disord. 22, 1751–1756.

Vogt, B.A., 1993. Structural organization of cingulate cortex: areas, neurons and soma-
todendritic transmitter receptors. In: Vogt, B.A., Gabriel, M. (Eds.), Neurobiology of
Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook. Mass,
Birkhauser, Boston, pp. 19–70.

Vogt, B.A., Pandya, D.N., 1987. Cingulate cortex of the rhesus monkey: II. Cortical af-
ferents. J. Comp. Neurol. 262, 271–289.

Vogt, B.A., Pandya, D.N., Rosene, D.L., 1987. Cingulate cortex of the rhesus monkey: I.
Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270.

Vogt, B.A., Hof, P.R., Vogt, L.J., 2004. In: Paxinos, G., Mai, J.u.4K. (Eds.), Cingulate
Gyrus.

Walker, A.K., Kavelaars, A., Heijnen, C.J., Dantzer, R., 2014. Neuroinflammation and
comorbidity of pain and depression. Pharmacol. Rev. 66, 80–101.

Wang, Z., Chen, L.M., Negyessy, L., Friedman, R.M., Mishra, A., Gore, J.C., Roe, A.W.,
2013. The relationship of anatomical and functional connectivity to resting-state
connectivity in primate somatosensory cortex. Neuron 78, 1116–1126.

Wildgruber, D., Riecker, A., Hertrich, I., Erb, M., Grodd, W., Ethofer, T., Ackermann, H.,
2005. Identification of emotional intonation evaluated by fMRI. NeuroImage 24,
1233–1241.

Wood, P.B., Glabus, M.F., Simpson, R., Patterson 2nd, J.C., 2009. Changes in gray matter
density in fibromyalgia: correlation with dopamine metabolism. J. Pain 10, 609–618.

Woodworth, D., Mayer, E., Leu, K., Ashe-McNalley, C., Naliboff, B.D., Labus, J.S., Tillisch,
K., Kutch, J.J., Farmer, M.A., Apkarian, A.V., Johnson, K.A., Mackey, S.C., Ness, T.J.,
Landis, J.R., Deutsch, G., Harris, R.E., Clauw, D.J., Mullins, C., Ellingson, B.M., 2015.
Unique microstructural changes in the brain associated with urological chronic pelvic
pain syndrome (UCPPS) revealed by diffusion tensor MRI, super-resolution track
density imaging, and statistical parameter mapping: a MAPP network neuroimaging
study. PLoS One 10, e0140250.

Wu, C.F.J., 1986. Jackknife, bootstrap and other resampling methods in regression ana-
lysis. Ann. Stat. 14, 1261–1295.

Yang, F.C., Chou, K.H., Fuh, J.L., Huang, C.C., Lirng, J.F., Lin, Y.Y., Lin, C.P., Wang, S.J.,
2013. Altered gray matter volume in the frontal pain modulation network in patients
with cluster headache. Pain 154, 801–807.

Yuan, C., Shi, H., Pan, P., Dai, Z., Zhong, J., Ma, H., Sheng, L., 2017. Gray matter ab-
normalities associated with chronic back pain: a meta-analysis of voxel-based mor-
phometric studies. Clin. J. Pain 33 (11), 983–990.

Zhou, J., Gennatas, E.D., Kramer, J.H., Miller, B.L., Seeley, W.W., 2012. Predicting re-
gional neurodegeneration from the healthy brain functional connectome. Neuron 73,
1216–1227.

K. Tatu et al. NeuroImage: Clinical 18 (2018) 15–30

30

http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0540
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0545
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0545
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0545
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0550
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0550
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0550
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0560
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0560
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0560
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0565
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0565
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0565
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0565
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0570
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0570
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0575
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0575
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0575
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0580
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0580
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0585
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0585
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0590
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0590
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0595
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0595
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0595
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0595
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0600
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0600
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0600
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0605
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0605
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0605
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0610
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0610
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0610
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0615
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0615
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0615
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0615
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0620
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0620
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0625
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0625
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0625
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0630
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0630
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0635
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0635
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0640
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0640
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0640
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0645
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0645
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0645
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0650
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0650
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0650
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0655
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0655
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0655
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0660
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0660
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0660
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0660
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0665
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0670
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0670
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0670
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0670
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0675
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0675
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0680
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0680
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0685
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0685
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0685
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0690
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0690
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0695
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0695
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0700
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0700
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0700
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0705
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0705
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0705
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0710
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0710
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0710
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0715
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0715
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0715
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0720
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0720
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0720
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0725
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0725
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0725
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0730
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0730
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0730
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0730
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0735
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0735
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0740
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0740
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0745
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0745
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0750
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0750
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0755
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0755
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0755
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0760
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0760
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0760
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0765
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0765
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0770
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0775
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0775
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0780
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0780
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0780
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0785
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0785
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0785
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0790
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0790
http://refhub.elsevier.com/S2213-1582(17)30335-2/rf0790

	How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study
	Introduction
	Materials and methods
	Search and selection of studies
	Anatomical likelihood estimation analysis
	Co-alteration network analysis
	Nodes creation
	Two-mode matrix
	Co-alteration matrix
	Filtering the co-alteration matrix with functional connectivity data
	Correlation between the co-alteration matrix and the functional connectivity matrix
	The co-alteration network and its topological analysis


	Results
	The distribution pattern of GM co-alterations
	ALE analysis
	Nodes of GM alterations
	Comparison between GM co-alteration and functional connectivity matrices
	Characterization of the GM decrease co-alteration network
	Characterization of the GM increase co-alteration network

	Discussion
	The distribution of neuronal alterations in chronic pain
	The GM decrease co-alteration network
	The GM increase co-alteration network
	The insular cortex
	The cingulate cortex, S2, and BA 44

	Relationship between the co-alteration matrix and diffusion matrix
	Limitations

	Conclusions
	Acknowledgements
	Supplementary data
	References




