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Development and testing 
of a novel image analysis algorithm 
for descriptive evaluation of shape 
change of a shrinkable soft 
material
Pinpinat Stienkijumpai1, Maturada Jinorose1* & Sakamon Devahastin2,3

Soft material can undergo non-uniform deformation or change of shape upon processing. Identifying 
shape and its change is nevertheless not straightforward. In this study, novel image-based algorithm 
that can be used to identify shapes of input images and at the same time classify non-uniform 
deformation into various patterns, i.e., swelling/shrinkage, horizontal and vertical elongations/
contractions as well as convexity and concavity, is proposed. The algorithm was first tested with 
computer-generated images and later applied to agar cubes, which were used as model shrinkable 
soft material, undergoing drying at different temperatures. Shape parameters and shape-parameter 
based algorithm as well as convolutional neural networks (CNNs) either incorrectly identified some 
complicated shapes or could only identify the point where non-uniform deformation started to take 
place; CNNs lacked ability to describe non-uniform deformation evolution. Shape identification 
accuracy of the newly developed algorithm against computer-generated images was 65.88%, while 
those of the other tested algorithms ranged from 34.76 to 97.88%. However, when being applied 
to the deformation of agar cubes, the developed algorithm performed superiorly to the others. The 
proposed algorithm could both identify the shapes and describe their changes. The interpretation 
agreed well with that via visual observation.

Shape is among the most important characteristics that must be carefully designed and controlled when manu-
facturing a product, especially when a shrinkable soft material is used as a starting raw material1. This is because 
such a material consists mainly of water, which may need to be removed (or, in other words, dehydrated) during 
processing. Material structure, e.g., cell wall of plants or even soft structure of various gels, which holds and 
is indeed supported by water would then collapse, resulting in shrinkage and deformation2–6. Since moisture 
gradients generally exist during dehydration due to different rates of moisture removal at different locations, 
deformation is in most cases non-uniform2,7. This leads in turn to shape change of a resulting product, which 
may be either desirable or undesirable, depending on a specific manufacturing situation and purpose.

Non-uniform deformation is of interest as such a deformation would lead to changes in both size and shape 
of a product undergoing processing. These changes in turn affect heat and mass transfer behavior as well as many 
other properties of a product8–10. A means to accurately characterize and describe this type of deformation is 
therefore highly desirable. Deformation is nevertheless typically determined and reported in terms of volumet-
ric shrinkage, which is a ratio of volume change of a specimen to its initial volume11,12. However, volumetric 
shrinkage cannot clearly be used to quantify the change of shape (i.e., non-uniform deformation). It has indeed 
been reported that the same specimen undergone two different processes and/or conditions could have the same 
volumetric shrinkage but completely different shapes11,13.

Image analysis is an alternative method that can be used for material and product characterization; the 
method can well be used for the determination of both size and shape of a product14,15. Nevertheless, although 
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there exist several algorithms that can be used to identify shape, e.g., template matching method14, or such 
statistical methods as k-cluster and discriminant analyses14,16 as well as decision tree14,17–19, such available algo-
rithms can only classify images into a limited number of predetermined shapes, making these algorithms less 
robust and flexible. The limitation exists because in order to evaluate shape using image analysis, appropriate 
shape parameters must first be devised and tested. Although various shape parameters have been proposed9,14,17 
most reported works were performed using shape parameters that can only describe or identify some specific 
shapes. In other words, each parameter has its own set of shapes that can be identified; therefore shape must be 
indicated a priori20, which is clearly an inappropriate approach. Most available algorithms cannot also be used 
to describe non-uniform deformation; only a period over which non-uniform deformation takes place could be 
identified. In addition, in a real-world situation, a product entering an image analysis system may be arbitrarily 
oriented17,18,21; this may lead to an inaccurate decision during the shape matching process. Therefore, an input 
image needs to be properly aligned prior to being analyzed for more accurate results22. Most existing algorithms 
lack this important image processing step, however.

More robust neural network-based algorithms such as convolutional neural networks (CNNs) have recently 
been used to identify shapes of input images. CNNs have successfully been used, for example, to identify shapes 
of crystal structures23,24. Performance of CNNs nevertheless depends on their architectures; various architectures, 
including GoogLeNet, ResNet-50, Xception, VggNet-19, AlexNet and EfficientNet-16 have been studied25,26. 
More importantly, for CNNs to succeed in real-world situations, a large number of images are required to train 
the networks. Such a training (and subsequent validation) step may require large computational resources and 
time, hence preventing the use of CNNs in a situation where limited developmental time and resources are 
available. Acquiring a sufficient number of real-world images may also sometimes not be feasible; this may in 
turn adversely affect the identification accuracy27. More importantly, most available algorithms cannot be used 
to describe the evolution of non-uniform deformation; only the shape (and not its evolution) can be described 
and quantified.

The present study aimed at developing a novel image-based algorithm that can be used to determine the 
shapes of input images and at the same time capture changes in the shapes (non-uniform deformation) of such 
images. The effects of alignment and alignment methods on the resulting shape analysis results were investi-
gated. Newly proposed scheme that can be used to classify non-uniform deformation into various patterns, i.e., 
swelling/shrinkage, horizontal and vertical elongations/contractions as well as convexity and concavity, is also 
proposed. The developed algorithm was first tested with computer-generated images and later applied to cubes 
of agar gel of different compositions, which were used as a model highly shrinkable soft material, undergoing 
drying at different temperatures. Analysis results were compared with those obtained using shape parameters 
and shape-parameter based algorithm as well as CNNs.

Results and discussion
Test of shape identification algorithms.  First, the accuracies of the newly proposed shape identifica-
tion procedures with and without image alignment were compared; the results are shown in Table 1. The results 
of the use of the algorithm by Igathinathane et al.17 and CNNs are also listed. Note that the shape identification 
accuracy was calculated by comparing the known shapes of the computer-generated images with those identified 
by each tested algorithm. A count was made on both correct and incorrect shape identifications; percent accu-
racy was then calculated. In the case of the newly developed algorithm, identifying the shape of input images 
without any alignment yielded the lowest accuracy, as expected. Unaligned images had higher chances of being 
overlapped with other reference geometries than with the most suitable ones. Nevertheless, although the align-
ment step could help improve the accuracy of shape identification, such a step resulted in a longer processing 
time. Zigzagging artefact, which was the results of the alignment step28, might also affect shape identification.

Table 1.   Accuracies of various shape identification algorithms. EEM = equivalent ellipsis method.

Deformation 
pattern

Number of 
images

% Accurate identification

Without 
alignment

With alignment Igathinathane 
et al.12

CNN

EEM Extrema Manual ResNet-50 Xception

0, 0, 0, 0, 0 120 35.00 47.50 100.00 86.67 40.00 100.00 100.00

+, +, +, 0, 0 240 32.50 46.67 85.00 83.33 40.00 100.00 100.00

+, +, 0, 0, 1 240 32.08 40.00 70.00 98.33 40.00 100.00 100.00

+, 0, +, 0, 1 240 32.50 59.58 82.92 100.00 40.00 100.00 100.00

0, 0, 0, −, 1 240 30.42 44.17 92.92 74.17 41.67 100.00 100.00

+, +, +, −, 1 480 35.21 45.00 85.83 82.08 41.04 100.00 100.00

+, +, 0, −, 1 480 33.96 44.17 68.13 87.50 35.83 100.00 100.00

+, 0, +, −, 1 480 32.92 60.00 80.83 86.88 26.46 99.79 100.00

0, 0, 0, +, 1 240 27.92 40.42 50.00 67.50 20.00 41.67 84.58

+, +, +, +, 1 480 26.04 39.58 48.54 60.63 20.00 100.00 100.00

+, +, 0, +, 1 480 25.83 28.96 42.71 61.42 40.00 52.08 92.50

+, 0, +, +, 1 480 30.63 56.88 35.00 62.71 40.00 50.21 96.67

4200 Avg 30.98 45.93 65.88 77.10 34.76 85.48 97.88
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Different alignment methods (see Fig. 1) yielded different levels of accuracy as shown in Table 1. Equivalent 
ellipsis method resulted in the lowest accuracy. When images were not deformed (0, 0, 0, 0, 0), major axis of 
those images could have already been aligned, either on the horizontal or vertical axis, causing the method not 
to rotate the images until reaching α = 0° or even rotating the images upside-down; this is because α is always the 
acute angle between the major axis and horizontal axis. When applying the equivalent ellipsis method to images 
with horizontal elongation (+, +, 0, 0, 1), the method yielded the lowest accuracy. For example, when a triangle 
or pentagon was horizontally elongated, the method identified it instead as a rectangle or hexagon. Such an error 
occurred because the apex angle would change from smaller than 90° to larger than 90°. The method performed 
better when images were vertically elongated (+, 0, +, 0, 1) because the major axis of those images would align 
on the longest axis of the images. Nevertheless, this alignment method required the shortest processing time 
(around 0.25 s per image using the currently employed hardware) because it refers to only one angle (α) in order 
to perform the alignment process.

Extrema method was noted to give more accurate identification results than the equivalent ellipsis method. 
The accuracy was higher than 50% if input images resembled their reference geometric shapes. This is because 
the extrema points of the images would be the same as those of the reference geometric images. On the other 
hand, when images were convexed (0, 0, 0, +, 1), the extrema points sometimes changed to the convex points. 
Convexity also caused images to look more like a circle or an ellipse. This alignment method required longer 
processing time than the equivalent ellipsis method (around threefold longer) as the former needs to refer to up 
to four angles to perform the alignment process (see Fig. 2).

Manual alignment method gave the highest accuracy (higher than 60% in all cases). The major advantage of 
this method arose when images experienced horizontal (+, +, 0, 0, 1) or vertical elongation (+, 0, +, 0, 1); such 
images would suffer less inaccuracy than the ones with no deformation (0, 0, 0, 0, 0). This is because the manual 
alignment method rotates an image from 0° to 360° at 1° interval, causing some zigzagging artefact on the image 
edge. However, when images were elongated, the dimension ratio of the artefact to the characteristic length of the 
images would decrease. Nevertheless, this method required the longest time, 51.29 s per image or around 70-fold 
longer than the extrema method. This is expected as it has 360 possible angles to refer to.

Although the manual alignment method resulted in the highest accuracy, the processing time was excessive. 
This is clearly not appropriate, especially if real-time image-based process control is to be conducted. For this 
reason, extrema method was chosen because it exhibited higher accuracy than the equivalent ellipsis method 
and yet performed 70 times faster than the manual alignment method.

It is seen in Table 1 that the developed algorithm (employing the extrema alignment method) gave 100.00% 
and 92.92% accuracy when input images did not suffer any deformation (0, 0, 0, 0, 0) and when images were 
concaved (0, 0, 0, −, 1), respectively. This is because the points at the angles of those images were distinct (except 
in the case of circles). This in turn caused the RMSD values to be lower. Swollen images (+,  , +, 0, 0) having more 
zigzagging edges, caused by the forced deformation process, would, for example, result in pentagons or hexagons 

Figure 1.   Image alignment methods. (a) Equivalent ellipsis method, (b) extrema method and (c) manual 
alignment method.

Figure 2.   Possible β angles to refer to during alignment using extrema method.
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looking more like circles. Horizontal elongation exhibited stronger adverse effect than vertical elongation because 
when images with apex angles of less than 90° (such as triangles and pentagons) were horizontally elongated, 
the angles would become larger than 90°. This in turn affected RMSD because this value was calculated from d 
values at the same angle θ. The algorithm did not well identify images when they were convexed as the image 
would become more like circles.

When all 4200 computer-generated images were analyzed using the developed algorithm with the extrema 
method, the overall capability to accurately identify the shapes of input images was noted to be 65.88%. In 
contrast, when the algorithm by Igathinathane et al.17 and CNN with ResNet-50 architecture (CNN ResNet-50) 
and CNN with Xception architecture (CNN Xception) were used for the same shape identification purpose, 
the overall accuracies were noted to be 34.76%, 85.48 and 97.88% respectively. The reason for the much lower 
overall accuracy of the algorithm by Igathinathane et al.17 is that the algorithm could not identify pentagons 
and hexagons as these shapes are not included in the algorithm; computer-generated pentagons and hexagons 
were therefore incorrectly identified as either ellipses or rectangles. This clearly indicates the disadvantage of 
this (or similar algorithms) where new reference geometric shapes always need to be added and analyzed when 
dealing with input images of peculiar shapes. In the case of CNNs, the algorithms were not good at identifying 
both horizontally and vertically convexed images. This may probably be due to the inherently ambiguous sorting 
classes and blurring appearance29. CNN Xception performed better than CNN ResNet-50, as expected30. It is 
important to note, however, that both the newly developed algorithm and that of Igathinathane et al.17 require 
no training, while CNN ResNet-50 and CNN Xception require significant training time. Using the currently 
employed hardware, as much as 41,942 and 138,269 s were required, respectively, for the two CNNs.

Comparative performance of developed algorithm and existing shape parameters.  Effect of 
size change.  The effect of the change in image size on the Extent was first evaluated. Size change did not sig-
nificantly affect the Extent. This is because when the size of an image increased, the size of the rectangular 
bounding box also increased at the same rate. Each geometric shape was noted to exhibit its own Extent value; 
the values for a triangle, rectangle, pentagon, hexagon and circle are 0.525 ± 0.003, 1.000 ± 0.000, 0.710 ± 0.002, 
0.768 ± 0.002 and 0.805 ± 0.004, respectively. Extent nevertheless has a significant disadvantage that it can only 
be used to identify reference geometric shapes. This shape parameter cannot be used to describe non-uniform 
deformation; only a point where non-uniform deformation starts to take place could be identified15.

In the case of fractal dimension, change of this parameter could be divided into three periods based on the 
ratio of area of interest (AOI) to the total area of an image. When the aforementioned ratio was lower than 5%, 
fractal dimension was close to unity. This unexpected result was noted because the method that was used to 
calculate the fractal dimension here was the box counting method. When the size decreased, AOI resembled a 
point. This implies that fractal dimension calculated by the box counting method could not be used when the 
ratio of AOI to the total area of an image is lower than 5%. On the other hand, when such a ratio was higher than 
5% but lower than 20%, fractal dimensions of a triangle, rectangle, pentagon, hexagon and circle were noted to 
be 1.826 ± 0.061, 1.863 ± 0.036, 1.852 ± 0.052, 1.869 ± 0.051, 1.883 ± 0.051, respectively. Finally, when such a ratio 
was higher than 20%, all fractal dimensions approached 2.

In the case of the presently developed algorithm, the change in size affected i, j and k. This is expected as i 
is related to image area, which is in turn related to size; j and k are also linearly related to horizontal and verti-
cal dimension changes. Parameter l, which is used to indicate convexity and concavity was not affected by the 
change in size, as expected.

Effects of horizontal and vertical length changes.  Both horizontal elongation and contraction did not affect 
the Extent because these changes equally affected both AOI and its rectangular bounding box. In the case of 
the newly developed algorithm, horizontal elongation and contraction affected i and j but did not affect k and 
l. When an image was horizontally elongated or contracted, its size also increased or decreased, respectively. 
However, since the change occurred only in the horizontal direction, k was not affected. Parameter l was also 
not affected as no convexity took place. The above-mentioned reasons can also be used to explain the effect of 
vertical length change.

Effects of convexity and concavity.  Extent of a triangle was most significantly affected and so can be used to 
quantify both the convexity and concavity. In contrast, the Extent of a rectangle exhibited similar patterns of 
changes, whether convexity or concavity took place; Extent cannot therefore be used to classify convexity and 
concavity of this geometric shape. Extent values of a concaved pentagon, hexagon and circle exhibited similar 
patterns; however, the values belonging to these shapes that were made to convex remained almost unchanged. 
Therefore, the Extent can only be used to identify concavity of these shapes.

Since each geometric shape exhibited its own Extent value, convexity and concavity of a triangle could, for 
example, be identified by looking at the deviation of its Extent value from the reference value of 0.525; higher 
Extent value than the reference value indicated convexity and vice versa. Similar identifications can also be made 
for a pentagon, hexagon and circle. Since convexity and concavity caused the image perimeter to be rougher, 
fractal dimension increased. However, this parameter cannot be used to describe such a change of shape, only 
being able to identify if any change exists.

In the case of the presently developed algorithm, concavity and convexity only affected parameter l. As a 
result, this parameter can be used to identify and quantify convexity and concavity by looking at the deviation 
of its value from zero in much the same way as in the case of Extent. However, this parameter can be applied to 
all tested shapes, including a rectangle.
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Note that parameter m is used to identify if deformation is uniform or non-uniform. Such a decision is made 
based on the values of α and l. Uniform deformation is said to take place only if both the value of α is higher than 
95% and the value of l is higher than 99%. The chosen threshold of 95% is based on the typical confidence level 
used in most engineering statistical analysis. The threshold of 99% was, on the other hand, chosen by adjusting 
the value until the computed identification matched that visually observed.

Test of developed algorithm on agar cubes.  Performance of the developed algorithm was evaluated by applying it 
to agar cubes containing either 0 or 20% sucrose undergoing hot air drying at 80 °C (see Fig. 3). Top-view images 
of agar cubes containing 0 and 20% sucrose are shown in Table 2. The algorithm indicated that the top-view 
shape of agar cubes with 0% sucrose changed from square to rectangle to hexagon when the moisture ratios were 
about 0.78 and 0.36, while no shape change was detected in the case of agar cubes with 20% sucrose. Agar with 
0% sucrose had almost no solids to support its structure after water had been evaporated. On the other hand, 
agar with 20% sucrose possessed more solids to support its structure and hence deformed more uniformly. In 

Figure 3.   Deformation of agar cubes with (a) 0% sugar and (b) 20% sugar during drying at 80 °C.

Table 2.   Top-view images of agar cubes with 0 and 20% sucrose during drying at 80 °C. ShapeCNN was that 
obtained via CNN Xception.

Moisture ratio 1.00 ± 0.00 0.78 ± 0.02 0.56 ± 0.03 0.36 ± 0.03 0.20 ± 0.02 0.06 ± 0.01

0% sucrose

Shape = Rectangle
i = 100
j = 100
k = 100
l = 100
m = “Uniform”
ShapeIg = Rectangle
ShapeCNN = Rectangle
Extent = 0.9473
DF = 2.1399

Shape = Rectangle
i = 84.35
j = 96.84
k = 96.93
l = 101.11
m = “Non-uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.9396
DF = 2.1171

Shape = Rectangle
i = 68.69
j = 84.98
k = 83.91
l = 102.76
m = “Non-uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.9167
DF = 2.0961

Shape = Hexagon
i = 52.75
j = 77.47
k = 75.48
l = 103.32
m = “Non-uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.8771
DF = 2.0747

Shape = Pentagon
i = 36.84
j = 65.22
k = 60.92
l = 102.15
m = “Non-uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.8845
DF = 2.0545

Shape = Pentagon
i = 24.07
j = 58.01
k = 50.19
l = 99.33
m = “Non-uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.7944
DF = 2.0309

20% sucrose

Shape = Rectangle
i = 100
j = 100
k = 100
l = 100
m = “Uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.8637
DF = 2.2786

Shape = Rectangle
i = 79.27
j = 86.62
k = 84.81
l = 100.04
m = “Uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.8613
DF = 2.2423

Shape = Rectangle
i = 69.24
j = 81.41
k = 81.27
l = 100.70
m = “Uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.8627
DF = 2.2508

Shape = Rectangle
i = 62.40
j = 80.67
k = 82.33
l = 99.98
m = “Uniform”
ShapeIg = Inclined 
rectangle
ShapeCNN = Rectangle
Extent = 0.8712
DF = 2.2615
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other words, the cubes with 20% sucrose experienced only the change in size; no convexity and concavity were 
observed.

Top-view shape changes of agar cubes with 0% sucrose could be divided into three periods. First, the shape 
of the cubes was slightly convexed. This is because their edges were hardened while the other portions, which 
were still moist and elastic, were forced to convexed out (see the results at the moisture ratios of 0.78 and 0.56). 
i decreased from 100 to 84.35 and 68.69% when the area decreased by 15.65 and 31.31%, while j decreased from 
100 to 96.84 and 84.98%, indicating the horizontal contractions of 3.16 and 15.02%. k also decreased from 100 
to 96.93 and 81.91%, indicating the vertical contractions of 3.07 and 18.09%. The decreasing rate of k was higher 
than that of j, implying that the vertical contraction was more extensive than the horizontal one. This is because 
the direction of drying air flow in the present experimental study was perpendicular to the top horizontal edges 
of the cubes. In the case of l, its value increased from 100 to 101.11 and 102.76%, indicating, as mentioned earlier, 
that convexity had occurred. The top-view shape of the cubes then appeared as rectangle rather than as square. 
Parameter m also correctly indicated the non-uniform deformation.

During the second period, when the moisture ratios were between 0.56 and 0.36, the shape of the cubes 
changed into hexagon. i decreased from 68.69 to 52.75%, indicating that shrinkage still occurred. The value of 
j decreased from 84.98 to 77.47%, while that of k decreased from 83.91 to 75.48%. Trends of changes of j and 
k were similar to those during the first period in that there was more extensive vertical contraction than the 
horizontal one. The value of l changed from 102.76 to 103.32%, indicating that there was also convexity. It was 
indeed this convexity that led to further shape change. Parameter m again indicated non-uniform deformation.

Finally, when the moisture ratios were lower than 0.36, structural collapse was noted, resulting in the change 
of shape of agar cubes from hexagon to pentagon. This is because agar cubes exhibited concavity in the middle 
softest region prior to finally being hardened (see the results at the moisture ratios of 0.20 and 0.06). The value of 
i decreased to 24.07%, implying that agar cubes extensively shrunk; j and k also decreased to 58.01 and 50.19%, 
respectively. The value of l decreased to 99.33%, implying that the cubes were concaved. Parameter m again 
indicated that the deformation was non-uniform in nature.

The results obtained by the developed algorithm were compared with those obtained using the algorithm 
developed by Igathinathane et al.17 and CNN Xception, in terms of ShapeIg and ShapeCNN, respectively; CNN 
Xception was selected due to its higher overall identification accuracy. The results obtained using Extent and 
fractal dimension were also compared. The results are as shown in Table 2. The developed algorithm could both 
identify and describe the changes of shape. The interpretation indeed agreed with that via visual observation. 
On the contrary, the algorithm of Igathinathane et al.17 could only identify the shape as “inclined rectangle” 
even though the cubes changed into other shapes (e.g., pentagon, hexagon) rather than rectangle. Interestingly, 
although CNN Xception could identify the shapes of computer-generated images very accurately, it could only 
identify the shape of agar cubes as “rectangle.” This might be due to the insufficient number of images for the 
network training. Although as many as 45,000 images were used for training the network, it still did not succeed 
in this real-world application. This illustrates a limitation of CNNs when being applied even to identify simple 
shapes of practical materials and/or objects. Acquiring a sufficient number of real-world images for training 
may not always be feasible, however.

Extent and fractal dimension could only identify the points where non-uniform deformation started to 
take place but lacked the ability to describe such a deformation. This agrees with the observation reported by 
Jinorose et al.15.

Conclusion
A novel image analysis algorithm that can be used to identify shape and describe non-uniform deformation of an 
input image is proposed and was tested with both computer-generated images and cubes of agar gel, which was 
used as the test highly shrinkable material, undergoing drying. Identifying the shape of an input image without 
any alignment yielded the lowest accuracy. Among the tested alignment methods, the extrema method performed 
adequately when both the efficiency and required computational resource were taken into consideration. The 
algorithm was well capable of distinguishing the different deformation patterns of the computer-generated 
images and, in particular, agar cubes with different solids contents. In the latter case, the developed algorithm 
was superior to the use of simple shape parameters, shape-parameter based algorithm and even convolutional 
neural networks. It is important to note that the developed algorithm can identify any shape and its change 
without being limited to only predetermined shapes as in the case of other existing algorithms. The developed 
algorithm is robust and could be further developed for real-time process control of a drying process where size 
and shape of a material, in particular soft material, are of concern.

Algorithm development and testing
Algorithm development.  Computer specification.  Personal computer with Intel® Core™ i7-10657G7 at 
1.30 GHz was used in all cases. Computer is installed with NVIDIA GeForce GTX 1650 with Max-Q Design as 
Graphics Processing Unit with 32 GB of RAM and 512 GB of SSD. The operating system is Windows 10 Home.

Image pre‑processing steps.  Computer-generated images were first segmented using the algorithm described 
by Jinorose et al.15. First, artefact was eliminated from each image via the use of MATLAB® (version R2020a, 
MathWork Inc., MA). Each image was then cropped to 512 × 512 pixel. Image segmentation was performed by 
converting an RGB image into a binary image using Otsu’s thresholding method15. Edge detection and holes fill-
ing were subsequently performed to extract an area of interest.

As in reality a material entering an image analysis system may initially be arbitrarily oriented, a material 
image must first be aligned into an axis prior to being analyzed. Three alignment methods were tested in this 
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study viz. equivalent ellipsis, extrema and manual alignment methods (see Fig. 1). In the case of the equivalent 
ellipsis method, image would be rotated until α = 0°. Note that α is an angle between the major axis of an ellipse 
that has the same second moment of area of interest as that of an input image and the horizontal axis31 (Fig. 1a). 
In the case of the extrema method, image would be rotated until β = 0°. In this case, β is an angle between the 
line connecting points p1 and p2, which are the two extrema points, and the horizontal axis28 (Fig. 1b). In the case 
of the manual alignment method, image would be rotated from 0° to 360° at every 1° interval. The final angle 
of rotation (δ) was selected as the one that gave the lowest root mean square difference (RMSD) of the distance 
between the centroid and the edge of the image at angle θ (dimage,θ) and that of the reference standard geometric 
shape (dref,θ) at the same angle θ (Eq. 1).

The final angle of rotation was then used to rotate the image as per the following rotation matrix (Eq. 2) using 
the ‘affine2d’ and ‘imwarp’ functions in MATLAB R2020a31:

Matching input image with reference geometric shapes.  Five reference geometric shapes were used in this study, 
i.e., triangle, rectangle, pentagon, hexagon and circle (Fig.  4). Each image itself was with the dimensions of 
97 × 97 pixel, while the black background where the image sat on was with the dimensions of 512 × 512 pixel. An 
input image was matched to one of these geometric shapes to identify the closest shape of the image.

To identify the shape of an input image, its bounding box would be expanded until the length and width of 
that bounding box equal to those of the box belonging to all the reference geometric shapes. RMSD was then 
calculated and the most appropriate shape was selected as the one giving the lowest RMSD value.

Description of non‑uniform deformation of input image.  Before being able to describe non-uniform deforma-
tion of an input image, reference geometric shapes were first made to deform in various ways. The input image 
was first compared with the one with no deformation. The deformation patterns include swelling and shrinkage, 
horizontal and vertical elongations/contractions as well as convexity and concavity.

Swelling and shrinkage (or negative swelling) were achieved as per the swelling matrix (Eq. 3)14. Elongation, 
both in horizontal and vertical directions, was achieved as per the elongation matrices (Eqs. 4 and 5)14, while 
convexity and concavity functions are defined as shown in Eqs. (6) and (7)32. Built-in ‘affine2d’ and ‘geomet-
ricTransform2d’ functions were used along with the above-mentioned equations to achieve the deformation; 
‘imwarp’ function was used to implement all the deformation operations.

(1)RMSD =

√

∑360
θ=0 (dref ,θ − dimage,θ)

2

360

(2)Rotation matrix =

[

cos −sin 0
sin cos 0
0 0 1

]

(3)Swellingmatrix =

[

S 0 0
0 S 0
0 0 1

]

(4)Horizontal elongationmatrix =

[

S 0 0
0 1 0
0 0 1

]

(5)Vertical elongationmatrix =

[

1 0 0
0 S 0
0 0 1

]

(6)dconvex = dimage,θ + d
3
image,θ

(

S

max(dimage,θ)
2

)

Figure 4.   Reference geometric shapes used in this study.
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where S is the scaling factor.
All the deformation patterns are summarized in Table 3. Parameters i, j, k, l and m are used to describe the 

various deformation patterns. Parameter i (Eq. 8) indicates swelling and shrinkage; ‘+’ indicates swelling, while 
‘−’ indicates shrinkage. Parameter j (Eq. 9) indicates horizontal elongation (+) and contraction (–). Parameter k 
(Eq. 10) indicates vertical elongation (+) and contraction (–). Parameter l (Eq. 11) indicates convexity (+) and 
concavity (–). Finally, parameter m is used to indicate whether the deformation is uniform or not. This latter 
parameter was calculated from Eq. (13) and the aforementioned parameter l; when α is less than 0.05 and l is 
less than 0.01, m would indicate uniform deformation. The choices of these decision criteria is as explained in 
the “Results and discussion” section.

In the above equations, A is the projected area of the area of interest (AOI), L is the length of the bounding box 
of AOI, W is the width of the bounding box of AOI. ‘major’ and ‘minor’ are the lengths (in pixel) of the major axis 
and minor axis, respectively, of the ellipse that has the same normalized second central moment as that of AOI.

Comparison between developed and existing algorithms.  Performance of the developed algorithm was com-
pared with that of algorithm developed by Igathinathane et al.17. These investigators developed the algorithm 
that could identify an image into either triangle, rectangle or circle. Three shape parameters, i.e., reciprocal 
aspect ratio (RAR), rectangularity as well as Feret major ratio (FMR), which were calculated as per Eqs. (14–16), 

(7)dconcave = dimage,θ − d
3
image,θ

(

S

max(dimage,θ)
2

)

(8)i =
A− Aini

Aini

(9)j =
L − Lini

Lini

(10)k =
W −Wini

Wini

(11)l =
ExtentEllipse − ExtentEllipse,ini

ExtentEllipse,ini

(12)ExtentEllipse =
A

π
4 (major)(minor)

(13)α =
j− k

min(j, k)
× 100

Table 3.   Deformation patterns of reference geometric shapes.

Deformation pattern + 0 −

Swelling and shrinkage

i, j, k, l, m system +, +, +, 0, 0 0, 0, 0, 0, 0 −, −, −, 0, 0

Horizontal elongation and contraction

i, j, k, l, m system +, +, 0, 0, 1 0, 0, 0, 0, 0 −, −, 0, 0, 1

Vertical elongation and contraction

i, j, k, l, m system +, 0, +, 0, 1 0, 0, 0, 0, 0 −, 0, −, 0, 1

Convexity and concavity

i, j, k, l, m system 0, 0, 0, +, 1 0, 0, 0, 0, 0 0, 0, 0, −, 1
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were used for such an identification purpose. Each of these parameters was assigned a specific range over which 
each of the three shapes (ShapeIg) would be identified. Note that if the shape of an input image was far from 
the above three standard shapes, the algorithm would fail to capture such a shape; all peculiar shapes would be 
identified as an ‘inclined rectangle.’

where ABB is the area of a rectangular bounding box, while Df is the maximum Feret diameter.
For non-uniform deformation description, Extent (Eq. 17)15,31 and fractal dimension (Eq. 18)33 were also 

used. The description results based on these parameters were compared with those given by the newly developed 
algorithm.

where Nr is the number of boxes intercepted with the size of each iteration of r value, while r is the size of the box.
Finally, convolutional neural networks (CNNs) with two different architectures, i.e., ResNet-50 and Xcep-

tion, were tested via the use of the Deep Learning toolbox in MATLAB® (version R2020a, MathWork Inc., MA). 
Stochastic gradient descent with momentum (SGDM) with InitialLearnRate of 0.01 were used34. The validation 
frequency was 315, while the MaxEpochs and MinBatchSize were both set at 10.

In the cases of the presently developed algorithm and that of Igathinathane et al.17 4200 computer-generated 
images were created and used to test the algorithms. On the other hand, in the case of CNNs, 45,000 computer-
generated images were created and used to train (31,500 images) and validate (13,500 images) the networks. The 
same 4200 images were also used to test the trained CNNs.

Agar drying.  Agar preparation.  2% (w/w) granulated purified agar (Product no. 1016141000, Merck Mil-
lipore Corp., Darmstadt, Germany) was mixed with either 0 or 20% (w/w) sucrose solution. The mixture was 
stirred at room temperature (25 ± 2 °C) at 100 rpm for 1 h, then heated to 95 °C and finally stirred at 150 rpm for 
10 min. The mixture was cooled at room temperature until its temperature reached 50 °C. The cooled mixture 
was poured into a silicone mold to form agar cubes, each with the dimensions of 1.9 × 1.9 × 1.9 cm. The sample 
was allowed to set at room temperature for 1 h before being kept at 4 ± 1 °C for 24 h.

Drying experiments.  Drying experiments were conducted in a hot air dryer (Memmert GmbH+ Co. KG, 
UM500, Schwabach, Germany) at 80 °C. Three agar cubes were taken out for moisture content determination 
and image acquisition at every 1 h.

Moisture content determination.  A sample was weighed using a digital balance with an accuracy of ± 0.0001 g 
(Sartorius Lab Instruments GmbH & Co. KG, BSA224S-CW, Göttingen, Germany) and then dried in a hot 
air oven (Memmert GmbH+ Co. KG, UM500, Schwabach, Germany) until constant mass was obtained as per 
AOAC method 984.25 (2000). The moisture content (MC) of the sample was calculated using Eq. (19):

where mi is the mass of agar before drying at 105 °C, while mbd is the bone-dry mass.

Image acquisition and segmentation.  The utilized image acquisition system was the one described by Jinorose 
et  al.15.  Only top-view images were acquired and analyzed. Image segmentation was implemented as also 
described by Jinorose et al.15.

Data availability
Experimental and relevant data are available from the authors upon suitable request.

Received: 23 June 2021; Accepted: 17 August 2021

(14)RAR =
minor

major

(15)Rectangularity =

π
4 (major)(minor)

ABB

(16)FMR =
Df

major

(17)Extent =
A

ABB

(18)Fractal dimension(DF) =
log(Nr)

log
(

1
r

)

(19)MC(%d.b.) =
mi −mbd

mbd
× 100%
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