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Emergent dynamics of a three-node regulatory 
network explain phenotypic switching and 
heterogeneity: a case study of Th1/Th2/Th17 cell 
differentiation

ABSTRACT Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets in-
cluding Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a “master regulator”—
T-bet (Th1), GATA3 (Th2), and RORγT (Th17)—that inhibits the other two master regulators. 
Such mutual repression among them at a transcriptional level can enable multistability, giving 
rise to six experimentally observed phenotype, Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/
Th17, and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, 
particularly in the case of epigenetic influence, remain unclear. Here through mathematical 
modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node 
mutually repressing network to elucidate how epigenetic changes mediated by any master 
regulator can influence the transition rates among different cellular phenotypes. We show 
that the degree of plasticity exhibited by one phenotype depends on relative strength and 
duration of mutual epigenetic repression mediated among the master regulators in a three-
node network. Further, our model predictions can offer putative mechanisms underlying rela-
tively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our 
modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of 
emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/
GATA3/RORγT.

INTRODUCTION
Differentiation of naïve CD4+ T-cells into diverse T-helper (Th) cells 
facilitates versatile and adaptable immune responses to different 
challenges and serves as a powerful model system to investigate 
cell-fate decision making (Evans and Jenner, 2013). Different Th 
cells—Th1, Th2, and Th17 among others—have distinct cytokine 
and functional profiles. Th1 cells mainly produce IFNγ, and mediate 
host defense against intracellular bacteria and viruses, while Th2 
cells produce IL-4 and are implicated in allergic immune responses. 
Th17 cells secrete IL-17A, IL-17F, and GM-CSF and act against bac-
terial and fungal pathogens such as Mycobacterium (Kaiko et al., 
2008; Stadhouders et al., 2018). Earlier thought to be mutually 
exclusive and (terminally) stable phenotypes, recent single-cell 
evidence has revealed the heterogeneity and plasticity of Th cell 
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subsets. For instance, hybrid Th1/Th2, Th2/Th17, and Th1/Th17 
phenotypes have been observed at a single-cell level in vitro and in 
vivo (Peine et al., 2013; Chatterjee et al., 2018; Xhangholi et al., 
2019; Tortola et al., 2020). Moreover, in vitro restimulation can drive 
switching among multiple phenotypes Th1, Th2, and Th17 and the 
corresponding hybrid ones (Curtis et al., 2010; Evans and Jenner, 
2013; Tortola et al., 2020; Cerboni et al., 2021). However, a dynami-
cal characterization of phenotypic switching among these Th cell 
subpopulations has not been performed.

T-bet, GATA3, and RORγT have been proposed as the “master 
regulators” of Th1, Th2, and Th17 cells, respectively. They can mu-
tually repress each other and self-activate directly or indirectly, thus 
driving CD4+ naïve cell differentiation into diverse Th subsets (Fang 
and Zhu, 2017). Such mutual repression is a hallmark of “sibling” 
cell-fates in many systems, such as for PU.1/GATA1 in the case of 
common myeloid progenitor differentiating to a myeloid or ery-
throid fate (Zhou and Huang, 2011), or ZEB1/ GRHL2 for epithelial-
mesenchymal transition (Hari et al., 2020). Similarly to PU.1/GATA1 
and ZEB1/ GRHL2, the T-bet/GATA3/RORγT regulatory network can 
be multistable, enabling the coexistence of different phenotypes 
and switching among them—Th1 (high T-bet, low GATA3, low 
RORγT), Th2 (low T-bet, high GATA3, low RORγT), Th17 (low T-bet, 
low GATA3, high RORγT), hybrid Th1/Th2 (high T-bet, high GATA3, 
low RORγT), hybrid Th2/Th17 (low T-bet, high GATA3, high RORγT), 
and hybrid Th1/Th17 (high T-bet, low GATA3, high RORγT). Intrigu-
ingly, self-activation of master regulators can enrich for hybrid phe-
notypes (Duddu et al., 2020). However, a comprehensive analysis of 
the interplay among factors influencing the rates of transition among 
these phenotypes remains to be done.

Epigenetic changes, including modifications of histones and 
DNA methylation status, can control the rate of phenotypic switch-
ing by influencing the access of master regulators to their genome-
wide targets. Thus cell-specific chromatin landscape and “histone 
code” can form stable epigenetic marks at various gene loci, thus 
governing the commitment, heritability, and plasticity of various 
cell-fates (Chang and Aune, 2007; Miyamoto et al., 2015; Suelves 
et al., 2016). Early biochemical evidence for the importance of epi-
genetic processes in T-cell differentiation came from studies show-
ing that treatment of T-cells with inhibitors of histone de-acetylases 
(HDACs) or DNA methylation led to the production of IL-2 and IFNγ 
by cells that could not previously produce them (Wilson et al., 
2009). Further, T-bet, GATA3, and RORγT have been shown to con-
trol chromatin accessibility required for T-cell differentiation into dif-
ferent lineages/phenotypes (Sanders, 2006; Hirahara et al., 2011). 
Interestingly, such influence was shown to be at least partly inde-
pendent of signals from cytokine receptors/signaling, suggesting 
many parallel paths that these master regulators can take to sup-
press other lineages and to promote their own (Josefowicz, 2013; 
Lee et al., 2020). Epigenetic changes such as chromatin remodeling 
are crucial not only for CD4+ T-cell differentiation but also for lin-
eage stability (Renaude et al., 2021). For instance, in Th2 cells, re-
pressive histone marks H3K27me3 and H3K9me3 are deposited on 
Th1-associated genes, thus forming heterochromatin at those spe-
cific promoters and establishing transcriptional silencing. Such epi-
genetic changes drive lineage stability and often need to be 
“erased” for reprogramming.

Once differentiated, Th subsets are often reprogrammed to 
other ones during injury response and resolution (Tortola et al., 
2020). The stronger the lineage stability mechanisms in a cell the 
less reprogrammable it can become. While mutual antagonism at 
transcriptional and epigenetic levels enable the establishment of a 
cell-state and have been witnessed in other cellular decision-making 

contexts (Tripathi et al., 2020; Serresi et al., 2021), they can differ-
ently control the reprogramming rates. For example, in various in-
stances, “epigenetically locked” cells can be difficult to reprogram 
(Nashun et al., 2015; Baumann et al., 2019; Eichelberger et al., 
2020). Despite such wealth of molecular and functional data for T-
cell differentiation, we still lack a quantitative systems-level investi-
gation of how the rates of phenotypic switching among Th1, Th2, 
and Th17 depend on the epigenetic influences mediated by T-bet, 
GATA3, and RORγT on each other.

Here we build on our previous study that showed that a mutually 
repressing three-node system enables three predominant states 
driven by each node, and that switching between these states was 
possible. However, the dynamics of switching and longevity (mean 
residence times) of these phenotypes, especially in cases where epi-
genetic control exists, remained unexplored. While Th cells are 
known to undergo similar switching, experimental data regarding 
the dynamics of the switches are scarce and the experiments are 
difficult to perform. Thus we have used a mathematical modeling 
approach to address the questions of emergent dynamics of a 
three-node system repressing each other at both transcriptional and 
epigenetic levels. Our simulations reveal that the rate of switching 
among phenotypes and the consequent changes in population dis-
tribution of cellular phenotypes are a function of the relative strength 
as well as duration corresponding to epigenetic repression medi-
ated by the three master regulators on one another. The stronger 
the incoming epigenetic repression for a given master regulator the 
higher the probability of switching out of the corresponding pheno-
type. These results unravel a potential design principle of T-cell dif-
ferentiation at individual cell and population levels.

RESULTS
Transcriptional dynamics of Th1, Th2, and Th17 induction 
and corresponding phenotypic plasticity
To assess the transcriptional dynamics of T-cell differentiation, we 
quantified the extent of changes in Th1, Th2, and Th17 signature 
gene-sets under diverse experimental conditions using publicly 
available datasets. First, we analyzed a RNA-seq dataset (GSE71645) 
in which naïve T-cells were cultured for 72 h either in a Th1-inducing 
medium (IL-12 treatment) or in a Th2-inducing medium (IL-4 treat-
ment) (Kanduri et al., 2015) and projected the samples on a two-di-
mensional plane of Th1 and Th2 ssGSEA (single-sample Gene Set 
Enrichment Analysis) scores (Subramanian et al., 2005) (Figure 1Ai). 
We observed that cells treated with IL-12 showed a significant en-
richment in Th1 signature while IL-4 treated cells showed an enrich-
ment in Th2 signature (Figure 1Aii). Time-course microarray data 
collected for this experiment (GSE71566) demonstrated that rela-
tive enrichment of one of the two signatures (Th1 or Th2) can be 
seen as early as 3 d in culture (Figure 1B). Similar mutually opposing 
trends for Th1 and Th2 enrichments were also seen in another inde-
pendent dataset (GSE62484) that contained populations of naïve 
T-cells, activated Th1, and activated Th2 cells (Figure 1C) (Hertweck 
et al., 2016). Analysis of two other time-course transcriptomic data-
sets (GSE60678, GSE32959) reinforced our observations that a 3-d 
treatment of naïve CD4+ T with either a Th1- or a Th2-inducing me-
dium began to show differential activation of Th1 or Th2 induction 
programs (Äijö et al., 2012; Gustafsson et al., 2015) and stabilized at 
later time points (Figure 1, D and E). These dynamics are reminis-
cent of many cell differentiation trajectories where a multipotent 
progenitor cell often coexpresses mutually opposing master regula-
tors (and/or their targets) corresponding to two (or more) pheno-
types. This multipotent state of a cell is destabilized under the im-
pact of exogenous signals (cytokines, growth factors, etc.) that push 
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it toward an “attractor” corresponding to one of the differentiated 
states (Huang et al., 2007; Bargaje et al., 2017).

Next, we investigated transcriptomic signatures corresponding 
to Th17 differentiation and noticed that this signature captured the 
inhibition of Th17 differentiation when RORγT, a master regulator 
of Th17 cell state, was silenced in naïve CD4+ T-cells (Figure 1F) 
(GSE123192) (Lee et al., 2020). Finally, we assessed how the three 
different cell types (Th1, Th2, Th17) are separated in a three-di-
mensional space of their ssGSEA scores (Figure 1G). We found that 
each of the cell types displayed significant enrichment of their cor-
responding signatures. Further, the T naïve cells are situated 

“intermediate” to the three cell-type signatures (Figure 1Gi), con-
sistent with the undifferentiated state coexpressing markers of 
multiple phenotypes it can give rise to, as seen across biological 
contexts (Olsson et al., 2016). We observed that Th1, Th2, and 
Th17 cells showed significant enrichment in their respective signa-
tures while the signatures of the competing programs (for exam-
ple, Th1 and Th2 programs during Th17 differentiation) were sig-
nificantly suppressed (Figure 1Gii; GSE54627; Touzot et al., 2014). 
Collectively, these results indicate the robust transcriptomic signa-
tures associated with Th1, Th2, and Th17 induction during the tri-
furcation event during T-cell differentiation.

FIGURE 1: Transcriptomic analysis showing enrichment of Th1, Th2, and Th17 signatures specific to corresponding cell 
types. (A) (i) A 2D scatterplot showing T naïve, Th1, and Th2 cell types on the Th1-Th2 ssGSEA score plane. 
(ii) Quantification of differences in levels of Th1 and Th2 ssGSEA scores across T naïve, Th1, and Th2 cell types 
(GSE71645). (B) Quantification of differences in levels of Th1 and Th2 ssGSEA scores across T naïve, activated T naïve, 
induced Th1, and induced Th2 cell types (GSE71566). (C) Quantification of differences in levels of Th1 and Th2 ssGSEA 
scores across T naïve, activated Th1, and activated Th2 cell types (GSE62484). (D) Quantification of differences in levels 
of Th1 and Th2 ssGSEA scores across T naïve, Th1, and Th2 cell types over the time points 0 h, 6 h, 1 d, 3 d, 6 d, and 8 d 
(GSE60678). (E) Quantification of Th1 and TH2 ssGSEA scores for differentiating Th1 and Th2 cells over time points 0.5, 
1, 2, and 3 d (GSE32959). (F) Quantification of differences in levels of Th17 ssGSEA scores across WT and RORγT 
knockout Th17 cells (GSE129132). (G) (i) A 3D scatterplot showing T naïve, Th1, Th2, and Th17 cell types on the 
Th1-Th2-Th17 ssGSEA score space in a nontreatment condition (control set at 0 h) and (ii) its corresponding (same 
condition) quantification of differences in the levels of Th1, Th2, and Th17 signatures (ssGSEA scores) (GSE54627). 
*Significantly different level of ssGSEA scores assessed by Students t test; p value < 0.05.
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T-bet, GATA3, and RORγT—the proposed master regulators of 
Th1, Th2, and Th17, respectively—and their targets constitute the 
above-mentioned transcriptomic signatures associated with Th1, 
Th2, and Th17 differentiation (Radens et al., 2020). They have been 
reported to mutually repress each other, thus pushing CD4+ naïve 
cells into diverse differentiation trajectories (Fang and Zhu, 2017), a 
trend robustly captured in transcriptomic datasets shown above. 
Thus a network of three mutually repressing regulators (A, B, and C) 
can serve as a model for CD4+ T-cell differentiation.

We have previously shown that such a “toggle triad” among A, 
B, and C (Figure 2A) can enable three predominant states (high A, 
low B, low C), (low A, high B, low C), and (low A, low B, high C; 
Figure 2B, represented by Abc, aBc, and abC correspondingly here-
after) (Duddu et al., 2020). The states enabled by a toggle triad are 
reminiscent of emergent dynamics of a “toggle switch,” a mutually 
inhibitory feedback loop between two master regulators that often 
enable two mutually exclusive states: (high A, low B) and (low A, 
high B) corresponding to a specific phenotype (Cherry and Adler, 
2000; Gardner et al., 2000; Graham et al., 2010). A toggle switch 
explains the behavior of a progenitor cell differentiating into one of 
two cell fates, each fate driven majorly by a master transcription fac-
tor (TF). Similarly to phenotypic plasticity and heterogeneity ob-
served in a toggle switch under the influence of noise (Gardner 
et al., 2000; Ozbudak et al., 2004), we would expect the three states 
enabled by a toggle triad to also be capable of switching among 
one another. To confirm this, we performed stochastic switching 
simulations for six different tristable parameter sets (P1–P6) that re-
vealed possible switching among the three phenotypes: Abc (blue), 
aBc (red), and abC (yellow) (Figure 2C). The mean residence times in 

each state vary with the parameter set. However, across parameter 
sets, none of the states could be classified as transient/intermedi-
ate. For further characterization of the dynamical traits of the toggle 
triad, we mapped two phase diagrams for a representative para-
meter set with degradation or production rates of B and C (kB, kC; 
gB, gC) as the respective bifurcation parameters (Supplemental 
Figure S1).

Together, these results indicate that depending on the relative 
abundance of T-bet, GATA3, and RORγT, cells can exist in one or 
more of the three dominant phenotypes (Th1, Th2, and Th17) and 
can switch back and forth under the influence of stochastic fluctua-
tions (biological noise). Such state-switching can induce and main-
tain phenotypic heterogeneity in a given Th cell population, with the 
relative frequencies of Th1, Th2, and Th17 dependent on relative 
levels of the master regulators (or equivalently, the concentration of 
different cytokines which can drive various cell-fates through their 
action on these master regulators).

Epigenetic repression driven by a master regulator can 
enrich for its corresponding phenotype in a heterogeneous 
population
Besides mutual repression at a transcriptional level, the three master 
regulators (T-bet, GATA3, and RORγT) can engage in epigenetic mu-
tual repression as well (Mukasa et al., 2010; Wei et al., 2010; Zhu 
et al., 2012; Sasaki et al., 2013; Lee et al., 2020). To incorporate epi-
genetic repression in our framework that captures transcriptional 
repression among these three master regulators, we utilized a 
phenomenological model approach (Miyamoto et al., 2015) that 
introduces an epigenetic parameter (α) to quantify the threshold 

FIGURE 2: Phenotypic heterogeneity in Th cell population. (A) Toggle Triad network topology underlies the 
differentiation of naïve CD4+ T-cell into Th cells (Th1, Th2, and Th17). Each master regulator (T-bet, GATA3, and RORγT, 
respectively) mutually represses the other two. (B) The three states enabled by a toggle triad are listed along with 
notation used hereafter. A schematic representing a kinetic model with certain parameter set enabling a heterogenous 
population and noise enabling switching between the states. (C) Stochastic simulations of the network for different 
parameter sets (P1–P6 [Supplemental Table S1]) showing switching between the three states.
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(half-maximal) levels corresponding to the influence of expression 
levels of one node on its target. The higher the value of α corre-
sponding to a network edge, the stronger the epigenetic repression 
incorporated in that interaction. The underlying idea behind this 
framework is that epigenetic remodeling (or repression) serves as a 
self-stabilizing mechanism to maintain a cell-state and potentially 
propagate it across generations. In this epigenetic modeling frame-
work, the longer a node stays at a high expression level (“ON”) the 
less likely it is for the node to switch to a lower expression level 
(“OFF”, due to chromatin and/or DNA methylation changes it may 
have mediated meanwhile), or in other words, the more likely a cell 
is to maintain the state driven by that master regulator, even if the 
levels of that node decline later. For instance, in fully matured Th1 
cells, IFN-γ expression becomes relatively independent of T-bet ac-
tivity and coincides with DNA methylation changes (Mullen et al., 
2002).

Here we use this framework to simulate multiple scenarios, i.e., 
epigenetic repression incorporated on various edges in a network, 
and quantify changes in phenotypic distribution in a differentiating 
T-cell population (Th1, Th2, Th17) in the presence of noise to ac-
count for stochastic effects. First, we considered the scenario of epi-
genetic repression mediated by one of the master regulators (say, B) 
on inhibitory links to other two nodes (from B to A and from B to C) 
(Figure 3A). The population distribution is calculated by considering 
multiple initial conditions (here 1000), each representing an individ-
ual cell. The trajectory of each initial condition (cell) is followed, and 
the expression values of A, B, and C are noted. Depending on the 
expression levels of the nodes, the state (of the cell) is defined and 
the population distribution is deduced. Noise is incorporated into 
the system at definite time intervals (see Materials and Methods). 
For a given tristable parameter set, we first identified population 

distribution in the absence of any epigenetic repression (αBA = 0, 
αBC = 0); ∼20% cells were present in (high A, low B, low C) (Abc or 
state A) and 30% in (low A, high B, low C) (aBc or state B) states, 
while 50% cells exhibited a (low A, low B, high C) (abC or state C) 
phenotype (Figure 3B, left bottom panel).

As we increase the strength of epigenetic repression from B to C 
(αBC), we observe a decrease in population percentage of abC (or C) 
state and a corresponding increase in that corresponding to A and 
B. At (αBA = 0, αBC = 0.05), the system displays a population per-
centage distribution of ∼25% A, 45% B, and 30% C. This trend con-
tinues with a further increase in value of αBC; at (αBA = 0, αBC = 0.1), 
a population distribution around 30% A, 45% B, and 25% C is ob-
served (Figure 3B, left column). Incorporating epigenetic repression 
from B to A (αBA) in addition to αBC = 0.1 further increases the popu-
lation percentage corresponding to B. At (αBA = 0.1, αBC = 0.1), the 
population predominantly consists of cells in state B (70%) (Figure 
3B, top row). This trend is further exemplified by the phase plot 
showing that the population percentage of B is minimum at low 
values of (αBA, αBC) and increases sharply as (αBA, αBC) values in-
crease (Figure 3B). We performed a similar analysis for other tristable 
parameter sets and observed similar trends, although the degree of 
enrichment of corresponding state varied (Figure 3C; Supplemental 
Figures S2 and S3). For instance, in parameter sets P1, P3, and P4, 
including such epigenetic repression drastically alters the pheno-
typic distribution in favor of the master regulator which is inhibiting 
the other two epigenetically (C inhibits A and B in P1, B inhibits A 
and C in P3, B inhibits A and C in P4). The trends are consistent but 
not as strong, however, in parameter sets P2 (A inhibits B and C) and 
P5 (C inhibits A and B) (Supplemental Figures S2 and S3).

Put together, we conclude that including epigenetic repression 
from interactions originating from one of the three nodes in a toggle 

FIGURE 3: Epigenetic repression mediated by one node in toggle triad on the other two nodes. (A) Toggle triad 
network topology in which interactions incorporating epigenetic repression are marked in green. (B) Phase plot showing 
the population percentage of cells in state B (aBc) with bifurcation parameters as the α values corresponding to the 
epigenetic feedback of B -| A and B -| C, as well as dynamics of distribution of population percentage between states A, 
B, and C for certain pairs of αBA and αBC values. (C) Population percentage of the node from which interactions with 
epigenetic repression originate, with pair of α values at corresponding maximum and minimum for six parameter sets 
(P1–P6 given in SupplementalTable S1). Parameter set P6 used in B. Results for parameter sets P1–P5 shown in 
Supplemental Figures S2 and S3.
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triad helps to increase the percentage of cells in a state for which 
that node serves as a master regulator. The magnitude of change in 
phenotypic composition depends on the strength of epigenetic 
feedback of either or both interactions. Extrapolating these results 
in the context of T-cell differentiation, they imply that if T-bet can 
epigenetically repress on GATA3 and/or RORγT, the population pre-
dominantly will consist of Th1 cells. Similarly, Th2 (or Th17) cells can 
be the predominant phenotype in a heterogeneous T-cell popula-
tion if GATA3 (or RORγT) can repress T-bet and RORγT (or T-bet and 
GATA3) epigenetically.

These observations offer dynamical insights into how the ability 
of RORγT to “not only establishing the permissive epigenetic land-
scape but also preventing the repressive one” (Lee et al., 2020) is 
crucial for robust Th17 differentiation. Th17 cells have been re-
ported to be relatively more plastic and can be reprogrammed read-
ily to Th1 and Th2 (Lexberg et al., 2008; Stadhouders et al., 2018; 
Cerboni et al., 2021) with implications in diseases such as rheuma-
toid arthritis (Yang et al., 2019). This instability has been suggested 
to be driven by rapid epigenetic modifications for cytokines (Il17a-
Il17f, Ifng) and TF (Rorc) gene expression associated with Th17 cell 
lineage specification (Mukasa et al., 2010). Our simulations pro-
posed that increased plasticity of Th17 cells may be a consequence 
of 1) weak epigenetic repression driven by RORγT on T-bet and/or 
GATA3, and/or 2) strong epigenetic repression mediated by T-bet 
and/or GATA3 on RORγT.

Impact of competing and complementing epigenetic 
repression driven by two master regulators on population 
distributions
Next, we consider the scenario of epigenetic repression incorpo-
rated on a pair of mutual repressive links (marked by green in Figure 
4A: here inhibition between B and C is considered). The strength of 
epigenetic repression is characterized by corresponding α values 
αBC and αCB. For the given parameter set (P6), the system con-
verges to ∼ 20% A, 30% B, and 50% C in the absence of any epigen-
etic repression (αBC = 0, αCB = 0) (Figure 4A). Increasing either αBC 
or αCB increases the population percentage corresponding to state 
B or C, respectively; at (αBC = 0.2, αCB = 0), the population distribu-
tion is ∼30% A, 45% B, and 25% C, while at (αBC = 0, αCB = 0.3), the 
heterogeneous population comprises 15% A, 15% B, and 70% C. 
Increasing both αBC and αCB values brings the population closer to 
the case of no epigenetic influence; at (αBC = 0.2, αCB = 0.3), the 
population distribution comprises ∼25% A, 25% B, and 50% C. 
Quantifying the ratio of population percentages corresponding to 
states B and C with αBC and αCB as the two parameters, we ob-
served skewed ratios of the two phenotypes when one of the epi-
genetic repression links is much stronger than the other (<1 at αBC = 
0.2, αCB = 0; and >6 at αBC = 0, αCB = 0.3) (Figure 4B). Similar analy-
sis for other parameter sets (Figure 4C; Supplemental Figures S4–
S8) substantiates these trends where the ratio of population per-
centages of two representative states is skewed when one of the 
links dominates ([α1-min, α2-max] and [α1-max, α2-min]) but not when 
the epigenetic influence on one another is of comparable strengths 
([α1-min, α2-min] and [α1-max, α2-max]). In the context of T-cell differen-
tiation, these results imply that if T-bet and GATA3 can repress the 
expression or function of each other at an epigenetic level, the rela-
tive strength of their epigenetic inhibitions governs the relative pro-
portions of Th1 and Th2 in a heterogeneous population. Similar 
statements can be made for mutual repression between any other 
pair of master regulators here.

Finally, we considered a scenario where both epigenetic repres-
sions are incorporated on two edges terminating at a single node of 

the toggle triad (marked in green in Figure 4D; here inhibition of C 
by A and by B). The strength of the epigenetic feedback is charac-
terized by corresponding α values, αAC and αBC, respectively. With-
out any epigenetic feedback (αAC = 0, αBC = 0), the system equili-
brates to a population percentage distribution of 20% A, 30% B, and 
50% C (Figure 4D). Increasing either αAC or αBC decreases the popu-
lation percentage corresponding to state C (abC); at (αAC = 0.1, αBC 
= 0) and (αAC = 0, αBC = 0.1), the population percentage correspond-
ing to state C drops to ∼40 and 25%, respectively. Increasing both 
αAC and αBC further reduces the population percentage of state C 
(20% C at [αAC = 0.1, αBC = 0.1]) (Figure 4, D and E). Similar trends 
are seen for other parameter sets where one node is epigenetically 
being repressed by other two nodes: A inhibited by B and C epige-
netically; C inhibited by A and B epigenetically; B inhibited by A and 
C epigenetically) (Figure 4F; Supplemental Figures S4–S8).

Together, these three different scenarios underscore how epi-
genetic repression incorporated through different inhibitory edges 
in T-bet/GATA3/RORγT regulatory network can alter the population 
distribution structure (the percentage of Th1, Th2, Th17) in a T-cell 
differentiation context.

The impact of epigenetic influence on population 
distribution depends on both corresponding strength(s) and 
duration(s)
So far, we have considered epigenetic feedback on any edge to not 
vary as a function of time. Next, we characterize the dynamics of the 
system with the epigenetic feedback provided only for a certain 
time duration instead of being present constantly (throughout the 
simulation) as previously.

We considered the tristable parameter set P6 where epigenetic 
repression was incorporated on two interactions originating from a 
single node (Figure 5A; B inhibiting both A and C; strengths: αBA 
and αBC, the same as the case considered in Figure 3). We switched 
on the epigenetic feedback for only a fraction of the entire simula-
tion time (X). Without any epigenetic feedback, the population dis-
tribution converged to ∼32% in states A and B and 36% in state C 
(Figure 5B). As X increased, the population percentage correspond-
ing to state B increases while those corresponding to A and C simul-
taneously decrease. We then varied both parameters—X and αBA (= 
αBC)—to make a phase plot. The population percentage corre-
sponding to B is ∼33% at αBA = αBC = 0 and no epigenetic feedback 
(X = 0). At low strengths (αBA = αBC < 0.05) and short durations (X < 
0.5) of epigenetic feedback, the population distribution remains 
largely unperturbed (left bottom of Figure 5C). However, beyond 
this approximate threshold, increasing either the strength (dose) of 
epigenetic influence or the duration (marked by an asterisk and ar-
rows in Figure 5C) leads to significant changes in the population 
levels corresponding to B.

Next, we considered the case where epigenetic influence was 
incorporated for mutual inhibition between two nodes (Figure 5D; B 
inhibiting C and C inhibiting B; strengths: αBC and αCB; same as the 
case considered in Figure 4, A and B). Without any epigenetic feed-
back, the population distribution converged to ∼32% in both the 
states A and B and 36% in state C (Figure 5B). We started with the 
case where one of the two master regulators inhibited the other 
epigenetically (B inhibits C: αBC = 0.2, αCB = 0) and increased X 
(Figure 5E, left). The population percentage corresponding to C de-
creased (from ∼37 to 20%) while that corresponding to B increased 
(from ∼32 to 37%), although not drastically. We then considered 
the scenario of epigenetic repression through the other interaction 
(i.e., C inhibits B epigenetically, αBC = 0, αCB = 0.3), and estimated 
population distributions at varying values of X (Figure 5E, right). As 
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X increased, the population percentage corresponding to B 
dropped sharply (from ∼32 to 20%) and that corresponding to C in-
creased concurrently (from ∼37 to 47%).

Next, to evaluate the impact of mutual epigenetic repression 
more clearly, we plotted a phase diagram by varying two parame-
ters, X and the difference between epigenetic repressions that B 
and C have on each other (= αBC – αCB) (Figure 5F), showing the 
ratio of population percentages corresponding to states B and C. 
When both B and C inhibit each other comparably (|αBC – αCB| < 
0.05), the population ratio remains largely unchanged irrespective 
of the duration of feedback X. On the other hand, when either inter-
action is much stronger than the other (|αBC – αCB| > = 0.05), the ra-
tio of populations remains largely similar until the duration of epi-
genetic feedback crosses an approximate threshold (marked by 
asterisks), after which the population distribution diverges depend-
ing on the relative mutual strength of epigenetic influence.

Further, we considered the case with epigenetic repression in-
corporated on two interactions terminating on the same node 
(Figure 5G; A and B both inhibiting C; strengths: αAC and αBC; same 
as the case shown in Figure 5, D and E). Without any epigenetic in-
fluence, the population converged to ∼32% cells in states A and B 
and 36% in state C (Figure 5H). As X is increased, the population 
percentage corresponding to state C decreases while that corre-
sponding to states A and B concomitantly increase. When we varied 

both the parameters, X and αAC (= αBC), to draw a phase plot, we 
found that the population percentage corresponding to state C is 
∼38% at αBC = αAC = 0 and no epigenetic feedback (X = 0). At low 
strength (αBC = αAC < 0.1) and short durations (X < 0.5) correspond-
ing to epigenetic repression, no major changes are observed for the 
population distribution (left bottom part in Figure 5I). However, be-
yond this approximate threshold (marked by an asterisk in Figure 5I), 
increasing either the strength or the duration (vertical and horizontal 
arrows in Figure 5I) leads to a comparable and pronounced de-
crease in the population corresponding to state C. Similar simula-
tions for the three cases of epigenetic repression considered are 
performed for other parameter sets (P1–P5) and the trends remain 
consistent (Supplemental Figures S9–S13).

Put together, we conclude that both the factors—strength of epi-
genetic silencing (α) or the time duration for which it is switched on 
(X)—can act independently and alter the population distribution 
patterns, given a threshold amount of the other. These two variables 
seem to have additive and complementary effects rather than re-
dundant ones. In terms of T-cell differentiation, these results indicate 
that either a strong epigenetic silencing of other cell lineages for a 
short duration or a gradually accumulating impact of epigenetic si-
lencing (DNA methylation, histone modification etc.) can drive 
changes in the underlying population heterogeneity, suggesting an 
“area under the curve” dynamical principle.

FIGURE 4: Epigenetic repression on edges originating from more than one node in the toggle triad. (A) (Left) Toggle 
triad network in which interactions where epigenetic repression is incorporated are marked in green. (Right) Dynamics 
of distribution of population percentage between states A, B, and C for certain pairs of αBC and αCB values. (B) Phase 
plot showing the ratio of population percentage of C to that of B with bifurcation parameters as the α values 
corresponding to the epigenetic feedback of B -| C and C -| B. (C) Ratio of population percentages of the nodes from 
which interactions with epigenetic feedback originate with pair of α values at combinations of maximum and minimum 
for three different parameter sets. (D) (Left) Same as A. (Right) Same as A but for certain values of αAC and αBC. 
(E) Phase plot showing the population percentage of C with bifurcation parameters as the α values corresponding to 
epigenetic feedback of A -| C and B -| C. (F) Population percentage of C (for parameter set P6), that of corresponding 
nodes in other parameter sets (P1–P5). Results for P6 are shown in B and E; those for P1-P5 are shown in Supplemental 
Figures S4–S8.
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Previously, we considered varying values of αAC = αBC and ob-
served how this feedback strength and X affect the phenotypic het-
erogeneity of the population distribution. Next, we consider a more 
generic scenario where αAC and αBC values need not be identical. 
Also, instead of including the epigenetic influence on only incoming 
links on C (C being inhibited by A and B), we now also incorporate 
the epigenetic influence of C inhibiting A and/or B to represent the 
mutual epigenetic repression scenario.

First, we choose a tristable parameter set ({Abc, aBc, abC}) and 
include epigenetic influence from C to B with (αCB = 0.2). We can 
continuously decrease the strength of this influence, i.e., αCB varies 
between 0 and 0.2, and increase the epigenetic influence from B on 
C (αBC). Thus similarly to mutual repression as seen at a transcrip-
tional level in a toggle switch (Gardner et al., 2000), two nodes can 
also inhibit each other at an epigenetic level as well. The difference 
between the two parameters (αBC–αCB) indicates which epigenetic 

repression (from B to C or from C to B) is predominant. Thus we 
varied two parameters, αBC–αCB and X, and obtained the phase 
plots corresponding to percentage population in the three states: 
Abc (state A), aBc (state B), and abC (state C) (Figure 6A, i–iii, re-
spectively). As αBC–αCB changes from –0.2 to 0.2, i.e., as the epi-
genetic influence of B inhibiting C takes over that of C inhibiting B, 
and given a minimal critical value of X (= 0.01), the population cor-
responding to state B increases from ∼12 to ∼20%. For the same 
change in parameters, population for state C decreases correspond-
ingly from ∼78 to ∼70%. But, for the same change in epigenetic in-
fluence at a higher value of X (= 0.03), the change in population 
corresponding to state B is more drastic (from 12 to 40%), with a 
correspondingly sharp fall in population corresponding to state C 
(from 80 to 50%). Similar trends noted for a different representative 
example of mutual epigenetic repression are considered (i.e., when 
A and C inhibit each epigenetically) (Supplemental Figure S14A).

FIGURE 5: Epigenetic repression on edges originating from more than one node in the toggle triad. (A) Toggle Triad 
network topology in which interactions marked in green are being provided with epigenetic feedback. (B) Population 
percentages of A, B, and C as X, the fraction of time for which the epigenetic feedback for both marked interactions is 
switched ON and then turned OFF. (C) Phase plot showing population percentage of B (node from which interactions 
with epigenetic feedback originate) with bifurcation parameters as the α value corresponding to epigenetic feedback of 
B -| A and B -| C (αBA = αBC) and X. (D) Same as A. (E) Same as B but for two cases where feedback for one of the 
interactions, B -| C (C -| B) is switched ON with the other one C-|B (B-|C) switched OFF. (F) Phase plot showing ratio of 
population percentage of C to B (nodes between which interactions with epigenetic feedback are present) with 
bifurcation parameters as the difference of α values corresponding to the epigenetic feedback of B -| C and C -| B and 
X. (G) Same as A. (H) Same as B. (I) Phase plot showing population percentage of C (node onto which interactions with 
epigenetic feedback terminate) with bifurcation parameters as the α value corresponding to the epigenetic feedback of 
A-|C and B-|C (both same so considered on single axis) and X. Results for parameter set P6 shown here; those for P1–P5 
are shown in Supplemental Figures S9–S13.
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Next, we investigate the scenario of mutual epigenetic repres-
sion for two toggle switches instead of just one: between B and C as 
well as between A and C. Thus in addition to changes in αBC–αCB, 
αAC–αCA can also be considered as a parameter to be varied. For 
this parameter set, while αBC–αCB changes from –0.2 to 0.2, αAC–
αCA changes from –0.05 to 0.15. We observed that at X = 0.03, as 
the magnitude of the incoming epigenetic repression on C increases 
as compared with the ability of C to epigenetically repress A and/or 
B (i.e., αBC–αCB > 0 and αAC–αCA > 0), the population corresponding 
to state C drops sharply from 80 to 15% with a corresponding in-
crease in population corresponding to both states A and B (from 10 
to 35% for A and from 10 to 45% for B) (Figure 6B, i–iii).

Finally, we consider the case of a fixed duration for which epi-
genetic repression is switched ON (X = 0.03), but we vary the dif-
ference in the strengths of epigenetic repression between two 
master regulators to draw the phase plot of population corre-
sponding to the three states (Figure 6C). We noticed that for this 
parameter set, the population corresponding to state A changes 
more along the x axis (αAC–αCA) than along the y axis (αBC–αCB), 
i.e., the frequency of state A is more sensitive to changes in mutual 
epigenetic repression between A and C than those between B and 
C (Figure 6Ci). A similar trend is seen for node B initially (i.e., a 
change in the frequency of state B is more prominent along the y 

axis [αBC–αCB] than along the x axis [αAC–αCA]), but at higher val-
ues of αAC–αCA, the population corresponding to state B is also 
affected (Figure 6C, ii). Because C is involved in both instances of 
mutual epigenetic repression (i.e., with B and with A), the popula-
tion corresponding to state C falls with an increase in incoming 
epigenetic repression from either node—A or B. When C is maxi-
mally repressing A and B at an epigenetic level (left bottom part of 
Figure 6Ciii), the population corresponding to state C is 80%. At 
the values corresponding to (maximum αAC, minimum αBC) and 
(minimum αAC, maximum αBC) (right bottom and left top parts of 
Figure 6Ciii respectively), the population corresponding to state C 
falls to 60 and 55%, respectively. At the value corresponding to 
(maximum αAC, maximum αBC), the population of C decreases to 
15% (top right part of Figure 6Ciii). Besides depending on the dif-
ference in corresponding α values, changes in population distribu-
tion can depend on X too (Supplemental Figure S6, B and C). 
These simulations performed for other parameter sets (P1–P5) re-
veal consistent trends (Supplemental Figures S14–S18).

In terms of T-cell differentiation, these results imply that if the 
extent of epigenetic repression on one of the three master regula-
tors is strong enough as compared with the repression it can medi-
ate on one or both of other two master regulators, the correspond-
ing phenotypic frequency will decrease majorly.

FIGURE 6: Varying the epigenetic repression onto the node in toggle triad. (A) (i) Phase plot of population percentage 
corresponding to node A with variations in two parameters: X and the relative epigenetic influence which is varied from 
a case of stronger repression from C to B (αBC < αCB) to a stronger repression from B to C (αBC > αCB) (ii) Same as i but 
for state B. (iii) Same as i but for state C. (B) (i) Same as Ai but for varying relative epigenetic influence in both feedback 
loops (between A and C and between B and C). Corresponding αBC – αCB and αAC – αCA values are given on the x axis 
marked by * and **, respectively. (ii) Same as i but for state B. (iii) Same as i but for state C. (C) (i) Phase plot of 
population percentage corresponding to state A with bifurcation parameters as the difference in α values 
corresponding to mutual epigenetic repression (αBC – αCB and αAC – αCA), at X = 0.03. (ii) Same as i but for state B. 
(iii) Same as i but for state C. Results for parameter set P6 are shown here; those for P1–P5 parameter sets are shown 
in Supplemental Figures S14–S18.
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DISCUSSION
Gaining a predictive understanding of the dynamics of cell-fate de-
cisions is instrumental for decoding cell differentiation during devel-
opment and homeostasis and modulating it in pathological scenar-
ios. Cell-fate decisions, including those seen in naïve helper T-cell 
differentiation into Th1, Th2, and Th17 cells, are the emergent out-
comes of an entangled interplay of various levels of regulatory con-
trol—transcriptional (Evans and Jenner, 2013; Pillai and Jolly, 2021), 
translational (Liu et al., 2018; Sarkar et al., 2019), alternative splicing 
(Jolly et al., 2018; Radens et al., 2021), epigenetic (Wilson et al., 
2009; Jia et al., 2019), and metabolic (Stark et al., 2019; Jia et al., 
2021) among others. Recent efforts have begun to identify the dy-
namics of cell-fate decisions by investigating time-course transcrip-
tional data (Pedicini et al., 2010; Intosalmi et al., 2015; Cook and 
Vanderhyden, 2020; Deshmukh et al., 2021). However, how the dif-
ferent regulatory layers operating at varying time scales orchestrate 
coordinated cell decision-making at an individual cell and cell popu-
lation level remains largely unclear.

Here we investigate the dynamics of coupled transcriptional-
epigenetic regulation in a network of three mutually repressing 
nodes forming a toggle triad (Figure 7). Analyzing the dynamics of 
a toggle triad can help elucidate CD4+ helper T-cell differentiation 
into Th1, Th2, and Th17 cells given that each of the master regulator 
(T-bet, GATA3, and RORγT) can repress the other two at transcrip-
tional and/or epigenetic levels directly or indirectly. We incorpo-
rated a simple phenomenological model to include epigenetic influ-
ence (Miyamoto et al., 2015) to demonstrate how varying strengths 
of epigenetic repression can alter the stability of the three cell states 
(Th1, Th2, and Th17) and consequently alter the proportion of these 
phenotypes in a differentiating CD4+ T-cell population. The stron-
ger the epigenetic repression mediated by a master regulator the 
higher the predominance of corresponding phenotype in a cell 
population.

Our model predicts that besides its strength, the duration for 
which epigenetic repression is “active” can modulate the popula-
tion heterogeneity during helper T-cell differentiation. Specifically, a 
weaker epigenetic repression for longer times and a stronger re-
pression for shorter times has similar outcomes; this prediction can 
help plan next experiments to decode T-cell differentiation as a 
function of varying cytokine doses and durations. Thus unlike previ-
ous mathematical models for CD4+ T-cell differentiation mostly 

FIGURE 7: A schematic representing Th1/Th2/Th17 differentiation mediated by a toggle triad.

focused on steady-state analysis at a tran-
scriptional level (Hong et al., 2011; Marti-
nez-Sanchez et al., 2018; Puniya et al., 
2018), our model incorporates the epigene-
tic-driven dynamics of plasticity and hetero-
geneity among Th1, Th2, and Th17 pheno-
types in a CD4+ T-cell population.

Phenotypic heterogeneity has been re-
ported in silico (Martinez-Sanchez et al., 
2018; Puniya et al., 2018), in vitro, and in 
vivo in the presence of a mixture of cyto-
kines driving different T-cell phenotypes 
(Han et al., 2014; Becattini et al., 2015; Du-
Page and Bluestone, 2016; Eizenberg-
Magar et al., 2017; DiToro and Basu, 2021; 
van Beek et al., 2021). Our model predicts 
that multistability in T-bet/GATA3/ RORγT 
regulatory network can allow for phenotypic 
switching and heterogeneity as its inherent 
dynamical property, similar to other regula-
tory networks driving sibling cell fates (Zhou 

and Huang, 2011). Another dynamical feature of multistable sys-
tems is the presence of both stability (for individual phenotypes) and 
plasticity (among many phenotypes), and epigenetic remodeling 
may alter the balance between them. For instance, differences in 
chromatin marks may alter the propensity of an epithelial cell to 
switch to a mesenchymal phenotype under the influence of an in-
ducer (Eichelberger et al., 2020; Jia et al., 2020). Similarly, a subset 
of Th2 cells have been shown to not express T-bet and IFNγ when 
stimulated under Th1 conditions (Messi et al., 2003). Recent “cross-
polarization” experiments highlighted such “limited but detectable 
functional plasticity” for a population of Th1, Th2, and Th17 cells, 
indicating that these phenotypes represent relatively stable entities 
(Tortola et al., 2020). Epigenetic marks are considered to help main-
tain such stability and heritability of cell-fate decisions (Wilson et al., 
2009), but whether epigenetic differences underlie such heteroge-
neity in response (stability vs. plasticity) in a cell population needs 
further investigation (van Beek et al., 2021). Preliminary evidence in 
Th1 cells pinpoints that permissive chromatin modifications coin-
cide with the ability of Th1 cells to express IL-17 under Th17-polar-
izing conditions (Curtis et al., 2010), but it falls short of establishing 
a causative connection. Our model simulations imply that epigene-
tic repression driven by master regulators can influence the rate of 
switching from one phenotype to another, thus offering a quantita-
tive dynamic platform to measure the stability (heritability) versus 
plasticity propensities.

The balance between plasticity and stability is likely to depend 
on phenotype-specific global mapping of chromatin marks such as 
H3K4me3 and H3K27me3 that associate with activation and repres-
sion of gene expression, respectively (Wei et al., 2009). Higher plas-
ticity has been shown to be concurrent with the presence of bivalent 
chromatin (i.e., simultaneous presence of active and repressive 
marks) (Chaffer et al., 2013). For instance, the Foxp3 promoter is not 
epigenetically repressed in Th17 cells, possibly enabling Th17-Treg 
plasticity (Wei et al., 2009). In our phenomenological model which 
does not explicitly capture the molecular details of epigenetic re-
pression (Huang and Lei, 2019; Zhao et al., 2021), a bivalent chro-
matin state can be conceptually mapped onto the regions of rela-
tively weak epigenetic influence of one master regulator on others. 
Thus the weaker the epigenetic influence of node A on node B (αAB) 
relative to that of node B on node A (αBA) the higher the expected 
plasticity of the phenotype driven by node A. Indeed, this trend is 
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observed in our simulations in terms of both plasticity of phenotype 
and the consequent population distribution. Therefore our model 
can possibly explain the high plasticity observed for Th17 cells ob-
served in many contexts such as cancer and autoimmunity (Stad-
houders et al., 2018; Cerboni et al., 2021). In other words, we pro-
pose that increased plasticity of Th17 cells may be a consequence 
of 1) weak epigenetic repression driven by RORγT on T-bet and/or 
GATA3 and/or 2) strong epigenetic repression mediated by T-bet 
and/or GATA3 on RORγT.

Together, despite the limitations of investigating a minimalistic 
regulatory network and incorporating epigenetic influence only at a 
phenomenological level, our model simulations offer valuable in-
sights into the dynamics of phenotypic plasticity and heterogeneity 
in a CD4+ T-cell population comprising Th1, Th2, and Th17 pheno-
types. We provide a platform to quantify the plasticity and stability 
of different phenotypes and the overall phenotypic distribution as a 
function of varying strengths of epigenetic influence mediated by 
the master regulators (T-bet, GATA3, RORγT) on one another in a 
toggle triad (Figure 6). Various instances of plasticity among Th1, 
Th2, and Th17 phenotypes have been seen depending on the mi-
croenvironment (Krawczyk et al., 2007; Zhou et al., 2009; Geginat 
et al., 2016; Kanamori et al., 2018; Tortola et al., 2020), but whether 
this switching happens back and forth (for instance, Th1 being con-
verted to Th2 and converting back to Th1 on the removal of signal) 
remains to be investigated. The extent of such reversibility can de-
pend on, among other factors, duration and dose of inducing sig-
nals as well as a chromatin state of various regulators (Stadhouders 
et al., 2018), as seen in other cell-fate decision-making scenarios (Jia 
et al., 2019; Katsuno et al., 2019; Eichelberger et al., 2020). Our 
model simulations provide a framework to understand the possible 
conditions that may be needed for bidirectional transitions in the 
form of intrinsic (epigenetic regulation) and/or extrinsic (cytokine) 
factors.

Our next steps include extending this T-bet/GATA3/RORγT tog-
gle triad network to include the master regulators of other lineages 
that CD4+ T-cells can differentiate into, such as induced T-regulatory 
cells (iTregs) and T follicular helper (Tfh) cells among others (Marti-
nez-Sanchez et al., 2018). It would be intriguing to observe what 
network topologies are required to explain this diversity of pheno-
typic repertoire of T-cells. The design principles learned through 
such analysis can not only reveal the dynamics of CD4+ T-cell dif-
ferentiation but also guide the design of multistable synthetic gene 
regulatory circuits (Santos-Moreno et al., 2020; Zhu et al., 2022).

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

RACIPE (RAndom CIrcuit PErturbation analysis)
RACIPE is a computational tool that investigates the emergent dy-
namics of a given network topology (Huang et al., 2017) which takes 
network topology as an input. Rather than specifying certain kinetic 
parameters of the system, RACIPE attempts to reveal all possible 
behaviors of the system by sampling these parameters over a range 
and simulating the model multiple times with varying parameter 
sets and initial conditions. The analysis of these results provides in-
formation on the relation between the behavior or states of the to-
pology enabled by specific parametric spaces as well as the fre-
quency or probability of different behaviors and states/phases of 
the network.

The formulation of interactions between two nodes in the net-
work, say a node A being inhibited by a node B, in RACIPE is given 
by the following equation:
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where gA and kA are intrinsic production and degradation rates of 
node A, respectively, and the Hill function Hs (B, B0 A, nBA, λBA) 
represents the interaction (here inhibition) of node B on node A. 
Thus the first term on RHS of the equation dictates the net produc-
tion rate of the node A, while the second term of the equation dic-
tates the degradation rate.
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The base formulation uses Hill function but is modified to include 
both activation/inhibition into the same equation rather than using 
two separate ones. The usage of Hill functions to represent the inhi-
bition or activation between genes is a consequence of using a bio-
chemical rate equation formulation of gene expression (Edelstein-
Keshet, 2005; Santillan, 2008). In this formulation, called a shifted 
Hill function (Lu et al., 2013), the parameters include the threshold 
(B0 A), Hill coefficient (nBA), and fold-change value (λBA). The 
threshold determines the expression level of node B over which the 
inhibitory link from node B to node A is more active. Decreasing the 
threshold activates the link even at low expression levels of node B. 
The Hill coefficient determines how quickly the effect of inhibition 
escalates with an increasing expression level of node B (cooperativ-
ity) while the fold-change value determines the degree of the effect 
of inhibition (or activation).

Apart from the network topology as an input, the number of 
parameter sets and the number of initial conditions per parameter 
set can be input; their default values are 10,000 and 100, respec-
tively). Default values (given below) of sampling ranges for param-
eters can also be modified for different simulations. Default values 
of g and k are between (1,100) and (0.1, 1), respectively; the Hill 
coefficient is sampled from the set {1,2,3,4,5,6}; the fold-change 
value is sampled from (1,100) for activation and (0.01, 1) for inhibi-
tion. The threshold is calculated such that for all the parameter sets 
of the RACIPE model ensemble, each interaction has a roughly 50% 
chance of being functional (Huang et al., 2017). A parameter set is 
classified as enabling monostability, bistability, tristability, etc. de-
pending on the number of different steady states the 1000 initial 
conditions that the system converges to at the end of simulation.

For the purpose of this paper, we have only shortlisted para-
meter sets which enabled tristability with the states as {Abc, aBc, 
abC}. Additionally, we placed a criterion of at least 20% of the initial 
conditions ending up in all three of the states to focus on parameter 
sets with comparable relative stability of the three states. We then 
selected few representative parameter sets for performing simula-
tions shown in this paper.

Mathematical framework for epigenetic feedback
The formalism used for epigenetic feedback tries to emulate the 
process at a phenomenological level. The referred phenomenon 
is that the longer a node stays at high expression, the higher the 
chance it has to stay high (Miyamoto et al., 2015) potentially 
because with epigenetic remodeling it is capable of ensuring 
which may repress its inhibitors via chromatin changes, as seen 
for various cell-fate decision cases (Díaz-López et al., 2015; 

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e21-10-0521
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Somarelli et al., 2016). We introduced an epigenetic parameter 
(α) to quantify the threshold (half-maximal) levels corresponding 
to influence of expression levels of one node on the other two. 
The higher the value of α the lower the threshold of correspond-
ing shifted Hill function (Miyamoto et al., 2015). This epigenetic 
feedback is added to the threshold instead of Hill coefficient or 
fold-change value because it tells us about the levels of the 
node which epigenetically influences its target.

The equations used are as follows:
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The first equation is the form of the iterative equation used for 
the expression level of a node. A(i + 1) and A(i) represent the node 
A expression levels at consecutive iterations; τ represents the size of 
the time-step taken. In the equation, gA and kA are the intrinsic pro-
duction and degradation rates of node A, respectively. Hs (B, B0 A, 
nBA, λBA) and H (C, C0 A, nCA, λCA) represent the interaction (here 
inhibition) of nodes B and C on node A, respectively. The last term 
is the noise added to the system at set intervals in the iteration. Ev-
ery time noise is added, random numbers in a vector of size 1 × 3 are 
generated from a normal distribution with mean and variance 0 and 
1, respectively (noise is added to all three nodes). These random 
numbers are multiplied by N (which is an order of magnitude lower 
to the mean expression level of nodes) to correspond to expression 
levels of the nodes. Formulation of a white noise term can capture 
different sources of biological noise such as noise due to transcrip-
tional bursting, chromatin accessibility, and protein or mRNA degra-
dation. This formalism has previously been used to approximate 
biological noise (Tkacik et al., 2009).

The second equation represents how epigenetic feedback is em-
ployed in the formalism. Here feedback is provided to the inhibition 
of node A on node B. A0B(i + 1) and A0B(i) represent threshold val-
ues corresponding to the inhibition of node B by node A at con-
secutive iterations; a0b is the set threshold value given by the cho-
sen parameter set (i.e., without any epigenetic feedback); αAB is 
epigenetic parameter providing feedback corresponding to the 
node expression level A(i). The higher the α value the stronger the 
epigenetic feedback provided or the lower the steady-state thresh-
old value is. The longer the node A is expressed high the lower the 
threshold level A0B goes. Thus even if the levels of node A drop due 
to various factors, because the threshold value is very low (repre-
senting the condition in which chromatin remodeling has taken 
place), the inhibition of node A on node B is still active, thus en-
abling node A to recover its high expression while making sure that 
the expression of node B remains low. β is a scaling factor for deter-
mining the rate of change of the threshold value and is used to 
control abrupt changes in node expression.

sRACIPE
We used the webserver facility of Gene Circuit Explorer (GeneEx) to 
simulate stochastic dynamics of gene regulatory circuits: https://ge-
neex.jax.org/. The tool tries to account for stochastic effects due to 
cell-to-cell variation and low copy numbers in individual cells by in-
cluding a noise term based on a Wiener process (Wt) with a vari-
ance. The stochastic differential equation are solved using the Euler-
Maruyama method (Kohar and Lu, 2018).

Scoring of Th1, Th2, and Th17 gene signatures
To calculate the activity scores for specific signatures, the ssGSEA 
metric (Barbie et al., 2009) was used on gene lists of the Th1, Th2, 
and Th17 cell types obtained (Supplemental Table S3 in Radens 
et al., 2020). We also computed average z-scores to be used as a 
metric of quantification for dataset GSE62484.
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