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The thyroid-stimulating hormone receptor (TSH-R) is predominantly expressed in the
basolateral membrane of thyrocytes, where it stimulates almost every aspect of their
metabolism. Several extrathyroidal locations of the receptor have been found including:
the pituitary, the hypothalamus, and other areas of the central nervous system; the
periorbital tissue; the skin; the kidney; the adrenal; the liver; the immune system cells;
blood cells and vascular tissues; the adipose tissue; the cardiac and skeletal muscles, and
the bone. Although the functionality of the receptor has been demonstrated in most of
these tissues, its physiological importance is still a matter of debate. A contribution to
several pathological processes is evident in some cases, as is the case of Grave’s disease
in its multiple presentations. Conversely, in the context of other thyroid abnormalities, the
contribution of the TSH-R and its ligand is still a matter of debate. This article reviews the
several different sites of expression of the TSH-R and its potential role in both physiological
and pathological processes.

Keywords: thyroid, thyroid stimulating hormone, TSH receptor autoantibodies, thyroid diseases, receptors, G-
protein coupled receptors
INTRODUCTION

The thyroid-stimulating hormone receptor (TSH-R), encoded by a gene located in 14q31 (1),
belongs to the G protein-coupled receptor family. It has a large extracellular domain, seven
transmembrane passages, and a small intracellular domain (2).

A single chained TSH-R with approximately 100 kDa has been described (3, 4), however, the
holoreceptor is most frequently cleaved into two subunits, a and b, linked by disulfide bonds (5).
Cleavage may be important in the induction of some of TSH-R signaling pathways (6). The
membrane-spanning b subunit, with a molecular mass of ~30 kDa, is common to luteinizing
hormone (LH), human chorionic gonadotropin (hCG) and follicle stimulating hormone (FSH). The
a subunit, of ~50 kDa, and is TSH-specific, located in the extracellular region, and shed from the cell
surface (2, 5).

The TSH-R couples to four subfamilies of G proteins (7): Gs, inducing adenyl-cyclase activity
and cyclic AMP production [the most common pathway (8, 9)]; Gq/G11 activating phospholipase C;
G13, inducing p44/42 mitogen-activated protein kinase (MAPK); Gi inhibiting adenyl-cyclase
activity (7). The receptor is constitutionally active, however, TSH and TSHRAbs may enhance
or, less frequently, block its signalling (5).
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TSH RECEPTOR EXPRESSION

In Thyroidal Tissue
The main site of expression of the TSH-R is the basolateral
membrane of thyrocytes (10, 11). TSH-R activation stimulates
iodine uptake, synthesis and secretion of thyroid hormones, and
proliferation of thyroid follicular cells (9, 10, 12). In adult
thyrocytes, TSH stimulation is paramount to maintaining
follicular architecture and regulate the expression of thyroid-
specific genes such as those coding thyroglobulin (Tg), thyroid
peroxidase (TPO), and sodium/iodide symporter (NIS) (11).

TSH/TSH-R also seem to be relevant during the
embryological development of the thyroid gland, as their
expression was shown in embryonic stem cells (13). However,
other factors are certainly involved at this stage (11).

In Extrathyroidal Tissue
In the last decades, TSH-R expression has been found in several
extrathyroidal tissues. In this section, data on the extrathyroidal
sites of TSH-R expression and suggested, albeit generally
unproved, physiological roles are explored.

TSH-releasing hormone (TRH) is produced in the
hypothalamus mainly in the paraventricular nucleus and
upregulates TSH production (14). The production of both TRH
and TSH is under strict negative feedback control by the thyroid
hormones (15). Follicle-stellate cells constitute ~10% of the anterior
pituitary cells and form a network with each other and with
endocrine cells (16). TSH-R expression was found in these cells
and it has been hypothesized to be responsible for fine-tuning of the
TSH levels, through an ultra-short negative feedback mechanism in
pituitary thyrotrophic cells (16, 17). In the hypothalamus, activation
of the TSH-R may be relevant for regulation of food intake (18) and
influence seasonal reproductive patterns in some animals (19).
TSH-R has also been demonstrated in other areas of the human
brain such as the cortex, amygdala, cerebellum, cingulate gyrus and
frontal, occipital and temporal lobes (20).

The presence of a functional TSH-R has been widely
documented in the periorbital tissue (10, 21, 22), where it may
be important in regulating the differentiation of orbital
fibroblasts (23).

TSH-R is also expressed in the epidermis and hair follicles
(24, 25), and the skin has been found to synthesize TSH under
the control of TRH and thyroid hormones (23, 26). Treatment of
organic cultures with TSH resulted in altered gene expression in
hair follicles and stimulation of epidermis differentiation (25).

Thyroid hormones have been proposed to modulate renal
development, morphology, and function (27). TSH-R expression
was also demonstrated in the kidney and adrenal (28) and TSH
stimulation was shown to increase cAMP production in human
kidney cells (29).

In the ovary, the TSH-R has been found in granulosa cells
(30) where its expression is increased by gonadotropins and
decreased by estrogen (23). In murine models, the presence of
TSH-R has been demonstrated in the testis and TSH has been
shown to inhibit steroidogenesis (31). A role of TSH/TSH-R in
the seasonal effects on gonadal growth in some animals has also
been suggested (23).
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TSH/TSH-R have been proposed to influence immune
regulation (32). TSH-R expression was found in bone marrow
hematopoietic cells, where TSH may regulate TNFa production
(33). In thymocytes, TSH acting on the TSH-R was proposed to
constitute an important growth factor influencing the development
of T-cells (34). In white blood cells, TSH-R may be involved in
recruitment, development and immunoregulation (23). This
receptor has been found to be expressed on monocytes, dendritic
cells, natural killer cells, T and B cells (32). Stimulation with
recombinant human TSH has been shown to promote
proliferation of natural killer cells, T and B cells (35). In dendritic
cells, TSH stimulation was shown to lead to the production of pro-
inflammatory cytokines and increased phagocytic activity (36).

Expression of the TSH-R in eritrocytes has been documented
to influence Na+/K+-ATPase conformation (37). In blood vessels,
TSH-R appears to contribute to the stimulation of angiogenesis
and vascular smooth muscle proliferation (38).

TSH/TSH-R have been suggested to have bone protective
properties (39). In human bone marrow-derived mesenchymal
stem cells, TSH-R seems to be important for self-renewal,
maintenance and differentiation (40). TSH was suggested to
stimulate osteoblastic differentiation and to inhibit
osteoclastogenesis (39). Nevertheless, sufficient data on the
physiological effects of TSH on bone is conflicting (41). On the
one hand, in human osteoblasts, TSH-R seems to have low
expression and functionality (42). Also no influence of genetic
variants influencing TSH concentration or TSH-R expression
was found by van Vliet et al. (43). On the other hand, findings
from van der Deure et al. and Kim et al. support an independent
effect of TSH levels in improving bone mineral density (44).

Functional TSH-R was found in white adipose tissue in
preadipocytes and differentiated adipocytes. It may have a role
in preadipocyte behaviour and contribute to regulation of
lipolysis in adipocytes (45, 46). In brown adipose tissue, a role
of the TSH-R in thermogenesis has been suggested through
induction of uncoupling protein-1 and deiodinase 2 (47, 48).

Expression of TSH-R has also been documented in
hepatocytes (49), where stimulation with TSH may up-regulate
cholesterol synthesis (50) and hepatic glucose production (51).

In the skeletal muscle, TSH appears to improve insulin
sensitivity and increase insulin substrate-1 receptor expression
(52). In the cardiac muscle, expression of a functional TSH-R has
also been demonstrated (53, 54) and it was shown to influence
cardiac electric properties (55).

As pleiotropic expression and myriad effects of the TSH-R are
identified, it is becoming increasingly clear that it may play a part
in several human diseases, which will be explored in the
following sections of this text.
TSH RECEPTOR IN HUMAN DISEASE

TSH Receptor Relevance in Thyroid
Gland Diseases
Graves’ disease (GD) is the most common form of hyperthyroidism
in countries without iodine deficiency (56, 57). Its physiopathology
July 2022 | Volume 13 | Article 944715
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involves an autoimmune response with infiltration of specific T cells
against the TSH-R, more commonly its thyroid-specific a-subunit
(58). The fact that the a-subunit is shed may be important for the
development of antibodies, but it is not sufficient, as it seems to
occur in all humans (59). TSHRAbs share many of the actions of
TSH on the TSH-R, and mostly lead to thyroid hyperplasia with
upregulated production and secretion of thyroid hormone (5).
However, TSH induces a more regulated response of thyroid
specific genes, whereas stimulatory TSHRAbs persistently
upregulate those genes (60). Conversely, some TSHRAbs may
decrease TSH effects (blocking antibodies) or have a neutral effect
on TSH binding and cAMP production (5).

Chronic autoimmune thyroiditis is an even more common
autoimmune thyroid disease (61). Antibodies against thyroid
peroxidase (anti-TPO) and thyroglobulin (anti-Tg) are usually
present. However, TSHRAbs can be identified in 6,3-12% of HT
patients and in 12-59% of atrophic thyroiditis patients. As some
TSHRAbs have a blocking effect, they may contribute to
hypothyroidism (5), or be associated with a fluctuating course
between hyper and hypothyroidism (62).

Several somatic and germline mutations in the TSH-R have
been identified and are listed on the TSH-R database (https://
www.tsh-receptor-mutation-database.org/) (63).

Activating mutations of the TSH-R have been implicated in
thyroid autonomy and hyperthyroidism (64, 65), these are usually
located in exons 9 and 10 that encode the transmembrane domain
(8). Inherited germline mutations are implicated in Familial Non-
Autoimmune Autosomal Dominant Hyperthyroidism (OMIM
609152) (66), a rare, autosomal dominant, disease that courses
with hyperthyroidism of varying severity and age of onset, and
goiter. De novo germline mutations cause Persistent Sporadic
Congenital Non-Autoimmune Hyperthyroidism, which usually
presents precociously with significant hyperthyroidism, but with
no familial history (8, 67).

Somatic activating mutations of the TSH-R are far more
common and are involved in the pathogenesis of a substantial
proportion of autonomous nodules and toxic multinodular
goiter, the remaining being usually caused by somatic
mutations in GNAS (68–70).

At the opposite pole, there are inactivating mutations that
may occur in different parts of the receptor structure and cause
resistance to TSH action (71). The clinical phenotype varies from
compensated TSH resistance to congenital hypothyroidism with
severe thyroid hypoplasia (23, 64). In most cases there seems to
be a genotype-phenotype correlation with the former being
associated with residual function of at least one allele, whereas
hypothyroidism arises in the context of two non-functioning
alleles (72).

Mutations that extend receptor specificity have also been
described. TSH, FSH, LH and hCG and their receptors have
evolved from a common ancestor. In normal conditions hCG can
weakly stimulate the TSH-R leading to to lower TSH values in
the first trimester of pregnancy (73). It has been proposed that
mutations that reverse evolution may be associated with
hyperemesis gravidarum, making TSH-R more sensitive to
hCG action (23).
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Finally, an important role of TSH-R in differentiated thyroid
cancer (DTC) has also been proposed. Most, but not all, data
suggests that TSH-R expression is maintained in tumor cells
(74). TSH-R activation may have a pro-oncogenic and growth-
promoting role (10). In murine models its expression was shown
to be necessary for the initiation of the neoplastic process. TSH,
acting through its receptor, has the potential of stimulating the
growth of DTC (64). TSH has also been shown to promote
vascular endothelial growth factor production thus contributing
to angiogenesis (75, 76) to induce genomic instability (77) and to
contribute to invasion and immune evasion in thyroid tumors
(78). Conversely, the TSH-R seems to have an important role in
maintaining differentiation of thyroid cancer cells, and in
advanced and dedifferentiated thyroid cancer, a decrease in its
expression has commonly been reported (79).

TSH Receptor Relevance in
Extrathyroidal Illness
Graves’ orbitopathy (GO) is present at GD presentation in ~26%
of the cases, or, more rarely emerges during follow-up (80). It is
an autoimmunity driven phenomena (81), causing orbital
lymphocytic infi l tration with a predominance of T
lymphocytes, edema, and an increase in orbital connective
tissue, adipose tissue and the extraocular muscles volume (82).
The TSH-R is currently seen as the main autoantigen in
ophthalmopathy and periorbital fibroblasts as the target of
autoimmune attack (81). In patients with recent onset GO,
TSHRAbs levels directly correlate with orbital disease activity
(83) and may predict clinical course (84). Stimulation of TSH-R
in orbital fibroblasts by TSHRAbs leads to activation of
intracellular pathways, production of glycosaminoglycans and
an increase in proliferation, adipogenesis and myofibrillogenesis
(81). Indeed, enhanced TSH-R expression has been shown to be
influenced by the autoimmune and inflammatory process (85)
and to parallel with de novo adipogenesis (82). A role for the
IGF-1 receptor has also been suggested and a crosstalk between
IGF-1 receptor and the TSH-R is currently accepted as an
important phenomenon in the pathophysiology of GO (86–90).

TSH-R has also been implicated in Graves’ dermatopathy.
Similarly to what occurs with GO, this rare manifestation is
associated with high titers of TSHRAbs, and characterized by a
large amount of glycosaminoglycans dispersed in the reticular
portion of the dermis. TSH-R immunoreactivity has been
documented in the pretibium of patients with Graves’
dermatopathy (91).

The presence of TSH-R in thymocytes, may potentially
explain the thymic hyperplasia seen in some patients with
GD (34).

Hashimoto’s Encephalopathy, a rare aseptic form of
encephalopathy, occurs in association with Hashimoto
thyroiditis (92). Hypotheses proposed for its pathogenesis
include: an immunopathological vasculitis; hormonal
dysregulation; antibodies against antigens existent in the brain.
The latter theory emphasizes the role of anti-thyroid antibodies
such as TSHRAbs, anti-TPO and anti-Tg, since they are
expressed in the brain (93). TSHRAbs might bind to TSH-R in
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cortical neurons and have a role in Hashimoto’s Encephalopathy
(94). Homology between central nervous system antigens
involved in Hashimoto’s Encephalopathy (such as alpha-
enolase, dimethylargininase-I and aldehyde reductase-I) and
thyroid antigens, including the TSH-R, has been found. This
raises the possibility of cross-reactivity as an alternative
pathophysiological mechanism (95).

Diffuse TSH-R expression in the brain may connect it with other
neurological diseases. In the limbic system, abnormal interaction
between anti-thyroid antibodies and the TSH-R may lead to
neuronal inactivation/destruction and reduction of TSH-R
expression, downregulating limbic-thyroid function, thus
contributing to mood dysregulation and maniac-depressive
disorders (20). Reduced TSH-R signaling may also be linked with
declining cognitive function, as there is evidence suggesting an
association between cognitive impairment and subclinical
hyperthyroidism and in murine models, reduced TSH-R signaling
was associated with impaired special learning and memory (96).
TSHb resistance has been associated with attention-deficit/
hyperactivity disorder (ADHD) and TSH-R knockout in mice led
to a ADHD phenotype (97). Conversely, both Alzheimer's disease
and Down syndrome patients have greater expression of temporal
and frontal lobe TSH-R, suggesting a potential role for TSH-R in
neurogenerative disorders (20).

Thyroid disease is frequently accompanied by increased or
decreased glomerular filtration rate or alterations in tubular
transport (27), effects usually attributed to a direct action of
thyroid hormones. As renal expression of TSH-R was
documented, an influence of TSH itself has also been proposed
(29). There are reports of nephritis due to thyroid antigen-
antibody complexes in GD (98, 99). Despite these phenomena
being generally attributed to circulating complexes, in light of the
knowledge of TSH-R expression in the kidney, in situ antibody
formation can also be considered (29).

Overt hypothyroidism has been associated with decreased
fertility. For subclinical hypothyroidism this relationship is not
clear, nevertheless TSH levels >4.0 mIU/L have been associated
with adverse fertility outcomes (100). In a population with
polycystic ovary syndrome undergoing in vitro fertilization,
TSH levels in serum and in follicular fluid showed a negative
correlation with oocyte maturation rate and fertilization (30). As
such, one might wonder if TSH acting on the TSH-R in the
granulosa cells, may contribute to the negative effects of
hypothyroidism in fertility.

TSH acting on the testis may contribute to compromised
secretion of androgens in hypothyroidism (31).

In murine models, absence of bone TSH-R expression was
found to result in an osteoporotic phenotype. It is conceivable
that the lack of TSH stimulation in thyrotoxicosis may contribute
along with elevated thyroid hormones to increased bone loss in
these patients (12, 101).

The presence of TSH-R on adipocytes has led some authors to
question whether elevated TSHmight contribute to the increased
risk of obesity and cardiovascular disease associated with
hypothyroidism (45). Overt hyperthyroidism has been
associated with modest weight gain, however, for subclinical
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hypothyroidism a relationship with weight gain is not so clear. A
positive correlation between TSH and body mass index has been
found, although it’s been difficult to ascertain whether it is a
contributing factor or a consequence of adiposity (102). There
are some data to support a role of TSH-R signaling in the
regulation of energy expenditure, thus contributing to weight
variations associated with hyper and hypothyroidism (103). In
murine models, a positive correlation between TSH-R expression
and body mass index was found in diet-induced fat mice (104),
and TSH-R knockout induced obesity resistance (105). It was
proposed that TSH acting on the TSH-R on adipose tissue would
promote triglyceride synthesis in adipocytes (105). A prior
diagnosis of GD has been found to be a risk factor for a
greater weight gain after treatment for hyperthyroidism (106)
and it was hypothesized that TSHRAbs acting on adipose tissue
might contribute to this effect (103).

Hypothyroidism is associated with abnormal cardiac
repolarization and some data supports the possibility that
increased stimulation of the TSH-R in cardiomyocytes may be
a contributing factor (55, 107).

Since in hepatocytes TSH stimulation may increase both
cholesterol and glucose synthesis, the presence of TSH-R in
these cells may be one contributor to the worsening of
cardiovascular risk factors associated with hypothyroidism (50,
51). Increased mitochondrial oxidative stress is associated with
an incremental risk of conditions such as non-alcoholic hepatic
liver disease. In murine models TSH signaling through its hepatic
receptor has shown to upregulate oxidative stress (108).

Besides the above-mentioned role of the TSH-R in thyroid
cancer, there are some data suggesting its expression in
extrathyroidal malignancies such as melanoma (109), glioma/
glioblastoma (110), lung (111), breast cancer (112), ovarian
cancer (113) and hepatocellular carcinoma (114).

A summary of the locations of TSH-R and its potential
influence on human disease is provided on Table 1.
CONCLUDING REMARKS

The discovery of TSH-R expression in several organs changes the
perspective of TSH action from a simple stimulator of thyroid
gland function to a hormone with pleiotropic actions that may
have an influence on the clinical picture of thyroid gland
dysfunction and in several human diseases.

However, the physiological and pathophysiological roles are
difficult to establish given that: it requires the ability to
distinguish the consequences of TSH deficiency from those of
thyroid hormones’ excess (reciprocal relationship), the receptor
is frequently expressed at low levels in peripheral tissues, and
there is the potential for local TSH production (12).

It is possible that the fact that TSH-R has a constitutive
activation and a biphasic controlled response to TSH, may
contribute to less overt manifestations of subclinical
thyroid disorders.

Detailed examination of extrathyroidal manifestations of
patients with germline TSH-R mutations rendered euthyroid
July 2022 | Volume 13 | Article 944715
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may shed a light. New molecules with the function of
TSH.R agonists, antagonists or inverse agonists have
recently emerged, and can also assist in increasing our
understanding on the extrathyroidal roles of the TSH-R. Due
to the pleiotropic expression of the TSH-R, the importance
of such knowledge may be reflected on several human
diseases and even contribute to the creation of a new
theranostic tool.
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TABLE 1 | Locations of TSH-R and its potential influence on human disease.

Location Proposed roles and Potential involvement in illness References

Thyroid, basolateral
membrane of thyrocytes
(mRNA and protein)

• Stimulates almost every aspect of
their metabolism
• Possible role in embryonic
development

• Graves’ Hyperthyrodism (TSHRABs)
• Chronic autoimmune thyroiditis (blocking TSHRABs)
• Familial non-autoimmune autosomal dominant hyperthyroidism, persistent
sporadic congenital non-autoimmune hyperthyroidism, TSH resistance (germline
mutations)
• Autonomous nodules and toxic multinodular goiter (somatic mutations)
• Thyroid cancer

(10, 11, 23, 58,
61, 64, 65, 71)

.

Pituitary follicle-stellate
cells (mRNA and protein)

• Ultra-short negative feedback
mechanism

_ (16, 17)

Hypothalamus (mRNA
and protein)

• Regulation of food intake
• Influence in seasonal reproductive
pattern

_ (18, 19)

Other areas of the
brain (mRNA and
protein)

_ • Hashimoto encephalopathy
• Neurodegenerative disorders
• Maniac depressive disorders

(20, 94, 96, 97)

Periorbital tissue
(mRNA and protein)

• Differentiation of orbital fibroblasts • Graves orbitopathy (21, 23, 81, 82,
85)

Epidermis and hair
follicles (mRNA and
protein)

• Epidermis differentiation
• Regulation of gene expression in
hair follicles

• Graves dermatopathy (24, 25)

Ovary and Testis
(mRNA and protein)

• Regulation of sex steroid
synthesis
• Influence in seasonal reproductive
pattern

• Negative effects of hypothyroidism in fertility.
• Compromised androgen secretion in hypothyroidism.

(23, 30, 31)

Immune system
(mRNA and protein –

demonstrated in some
cells)

• Regulation of recruitment,
development and immunoregulatory
functions
• Regulation of TNFa production
• Influence in the development of T-
cells

• Thymic hyperplasia in Graves’s Disease
• Immune dysregulation in cancer

(23, 33–36)

Red blood cells
(protein)

• Na+/K+-ATPase conformation _ (37)

Blood vessels (mRNA
and protein)

• Stimulation of angiogenesis and
vascular smooth muscle proliferation

• Increased angiogenesis in cancer (38)

Cardiomyocytes
(mRNA and protein)

• Influence cardiac electric
properties

• Abnormal cardiac repolarization in hypothyroidism (55, 107)

Bone (mRNA) • Stimulation of osteoblastic
differentiation
• Inhibition of turnover and
remodeling

• Decrease in bone mass in primary hyperthyroidism. (39, 42)

White adipose tissue
(mRNA and protein)

• Regulation of preadipocyte
behaviour and lipolysis in adipocytes

• Obesity and increased cardiovascular risk (in hypothyroidism) (45, 46)

Brown adipose tissue
(mRNA)

• Stimulation of thermogenesis (47, 48)

Skeletal muscle
(mRNA and protein)

• Improvement of insulin sensitivity (52)

Kidney and adrenal
(mRNA and protein)

• Contribution to the influence on
renal function of thyroid hormones

• Nephritis due to thyroid antigen-antibody complexes in GD (98, 99) (28, 29, 98, 99)

Liver (mRNA and
protein)

• Regulation of cholesterol
synthesis and gluconeogenesis

• Contribution to hypercholesterolemia and altered glucose metabolism in the
context of thyroid illness.
• Increased oxidative stress.

(49–51, 108)
July 2022 | Volume 13
mRNA, messenger ribonucleic acid; TNFa, Tumor necrosis factor a; TSH, thyroid stimulating hormone; TSHRABs, antibodies against the TSH receptor.
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