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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature cells
derived from bone marrow that play critical immunosuppressive functions in the tumor
microenvironment (TME), promoting cancer progression. According to base length, Non-
coding RNAs (ncRNAs) are mainly divided into: microRNAs (miRNAs), lncRNAs, snRNAs
and CircRNAs. Both miRNA and lncRNA are transcribed by RNA polymerase II, and they
play an important role in gene expression under both physiological and pathological
conditions. The increasing data have shown that MiRNAs/LncRNAs regulate MDSCs
within TME, becoming one of potential breakthrough points at the investigation and
treatment of cancer. Therefore, we summarize how miRNAs/lncRNAs mediate the
differentiation, expansion and immunosuppressive function of tumor MDSCs in TME.
We will then focus on the regulatory mechanisms of exosomal MicroRNAs/LncRNAs on
tumor MDSCs. Finally, we will discuss how the interaction of miRNAs/lncRNAs modulates
tumor MDSCs.
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INTRODUCTION

MDSCs are a heterogeneous population derived from bone marrow progenitor cells and immature
myeloid cells (1). In normal physiology, immature myeloid cells are differentiated into monocytes,
granulocytes, macrophages and dendritic cells, which exert immune activity (2). However, in
cancers and other diseases (such as inflammation), MDSCs have the negative regulatory immune
response to exacerbate disease status (2, 3). In the process of tumor progression, MDSCs cannot
properly differentiated into monocytes and macrophages to play their immune roles, but
abnormally proliferate and accumulate within TME (4). Tumor cells secrete many factors to
Abbreviations:MDSCs, Myeloid-derived suppressor cells; TME, Tumor microenvironment; TGF-b, The transforming growth
factor-b; IL-1b, The cytokine interleukin-1b; IFN-g, Interferon-g; VEGFA, vascular endothelial growth factor A; C/EBP,
CCAAT/enhancer binding protein; CXCR2,C-X-C motif chemokine receptor 2; PTEN, Phosphatase and tensin homolog;
SHIP-1, Src Homology 2-containing Inositol Phosphatase-1; YAP, Yes-associated protein; ASH2L, Absent small or homeotic-
like; MLL1, Mixed lineage leukemia 1; CCL2, C-C motif chemokine ligand 2; MEF2C, Myocyte enhancer factor 2C; RaP1B,
Ras-related protein Rap1B; MUC1, Transmembrane glycoprotein Mucin 1; IRF8, Interferon regulatory factor 8; NLRP3,
NACHT; LRR; and PYD domains-containing protein 3; NFIA, Nuclear factor I A; AML1, Acute myeloid leukemia 1; IGF1,
Insulin-like growth factor I; FOG2, Friend of Gata 2; PDCD4, Programmed cell death 4; SOCS3, Suppressor of cytokine
signalling-3; PIAS3, Protein inhibitor of activated STAT3; SNAI1, Snail family transcriptional repressor 1; Twist1, Twist-
related protein 1; ZEB1, Zinc finger E-box binding homeobox 1; LAMB3, Laminin subunit beta-3; CHOP, C/EBP
Homologous Protein.
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inhibit the differentiation of immature myeloid cells and
promote the proliferation and immunosuppressive roles of
MDSCs (5). These mediators mainly include the TGF-b,
Ligands for toll-like receptors, IL-1b, IFN-g, IL-6, FMS-like
tyrosine kinase 3 ligand (FLT3L), Granulocyte colony-
stimulating factor (G-SCF), Macrophage colony-stimulating
factor (M-CSF), Granulocyte-macrophage colony stimulating
factor (GM-CSF) and IL-4 (6). Most mediators activate the
functional state of MDSCs by regulating signal converters and
transcriptional activators (STATs and NFkB) (7, 8). For example,
IL-6 enhances both stimulatory and inhibitory roles of MDSCs
via STAT3 signaling pathways in breast cancer (8, 9).

Tumor MDSCs are mainly divided into two main subtypes
according to their phenotypes and origins, which are defined by
cell surface markers of MDSCs in both tumor models and cancer
patients (10, 11). The phenotypes of MDSCs in tumor-bearing
mice are defined using Gr1 (ly6G/ly6C)/CD11b and further
include two subtypes of MDSCs: Monocyte-MDSCs (M-MDSCs,
CD11b+Ly6G−Ly6Chi) and Granulocyte-MDSCs (G-MDSCs,
CD11b+Ly6G+Ly6Clo) (12, 13). The phenotypes of MDSCs are
more diverse in cancer patients. MDSCs are cell populations
expressing Lin-HLA-DR-CD33+ or CD11b-CD14-CD33+ in
human body. The main subtypes are also divided into M-
MDSCs (HLA-DR−/loCD11b+CD14+ CD15−) and G-MDSCs
(CD11b+ CD14− CD15+ or CD11b+CD14− CD66b+) (14).
Third subtype known as early-MDSCs which has been found in
human studies. They are defined as Lin-HLA-DR-CD33+, mainly
consisting of colony-forming cells activity and other myeloid
precursor cells (13, 15).

M-MDSCs account for about 80% of all tumor MDSCs, but
their inhibitory roles are lower than those of G-MDSCs. M-
MDSCs are modulated by producing NO and Arginases. In
contrast, the roles of G-MDSCs are determined by ROS and
H2O2 (16–19). The main function of G-MDSCs is to inhibit T
cell function, while M-MDSCs mainly differentiate into TAMs in
Frontiers in Oncology | www.frontiersin.org 2
cancer. It is well known that MDSCs have become the most
important prognostic markers in cancer immunotherapy and
contribute to immunosuppressive checkpoint resistance
(20) (Figure 1).

MiRNAs are non-coding single-stranded small RNAs of
approximately 22-24 nucleotides in length and are highly
conserved evolutionarily, and are widely found in eukaryotic
cells. They play vital regulatory roles in cells, especially in mRNA
post-transcriptional regulation, and reduce mRNA expression
levels by binding to the 3’UTR of mRNA and binding to the 5
‘-UTR of mRNA to upregulate its transcription (10–12).
MiRNAs are involved in regulating both a wide range of
physiological activities such as cell cycle, differentiation,
proliferation, maturation and immune response and
pathological processes, such as inflammation and cancer (13).
For example, our data have shown that miRNAs mediate the
differentiation, expansion and function of tumor MDSCs (14).

LncRNAs are non-protein-coding RNAs of approximately
200 nucleotides in length (15). According to the position of
lncRNAs in the genome relative to protein-coding genes, they
can be divided into five categories: sense, antisense, bidirectional,
intronic and intergenic (16, 17). LncRNAs are ever regarded
byproducts of RNA polymerase II transcription as “noise” of
genomic transcription without biological function (5, 17).
However, the increasing evidences have revealed that LncRNAs
mediate gene expression through chromatin modification,
transcriptional regulation and post-transcriptional regulation
in the nucleus and extranuclear, and are also involved in the
occurrence and development of tumors (18–22) (Figure 2).
LncRNAs have been found to mediate the carcinogenesis of
colon cancer through a variety of molecular mechanisms,
suggesting that lncRNAs can be used as biomarkers for early
diagnosis and treatment of colon cancer (23). LncRNAs are
overexpressed during the development, differentiation and
activation of immune cells, such as monocytes, macrophages,
FIGURE 1 | The differentiation process of MDSCs in physiological and pathological conditions. Under normal physiological conditions, myeloid progenitor cells are
differentiated into monocytes, granulocytes and dendritic cells that are involved in the regulation of immune response. Under pathological condition, myeloid
progenitor cells are differentiated into MDSCs. MDSCs from Immature myeloid cells are divided as two subtypes: monocytic MDSCs (M-MDSCs) and Granulocytic
MDSCs (G-MDSCs).
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dendritic cells, neutrophils (24). Furthermore, the increasing
data were conducted on the activity of lncRNAs on MDSCs in
TME (16, 25–27). Both miRNA and lncRNAs, as Non-coding
RNAs (ncRNAs) can modulate tumor MDSCs. Thus, here we
discuss the regulatory mechanisms of miRNAs/lncRNAs on the
biological status and immune activity of MDSCs in TME, and
put forward our own opinions.
MIRNAS/LNCRNAS

ncRNAs are mainly divided by length into small (< 200
nucleotides) and long (> 200 nucleotides) RNAs according to
base length. ncRNAs are: miRNAs、lncRNAs、snRNAs、
circRNAs (28). ncRNAs act as regulatory molecules that regulate
for a wide range of cellular processes, such as chromatin
Frontiers in Oncology | www.frontiersin.org 3
remodeling, transcription and post-transcriptional modification
(29). MiRNAs have been well investigated over the past decade,
lncRNAs are actively studied for their diverse roles in gene
expression regulation. Besides, lncRNAs themselves can interact
with other ncRNAs, such as miRNAs (30). Both miRNA and
lncRNA are transcribed by RNA polymerase II, and they play
important roles in gene expression under both physiological and
pathological conditions, as transcriptional and post-transcriptional
regulators (28). Studies have shown thatmiRNAs and lncRNAs are
involved in transcriptional regulation at different levels, miRNAs/
lncRNAs directly determine gene expression by binding with
mRNA, gene/transcript or histone modifiers (31). LncRNAs may
play a functional role as miRNA sponges by base-pair blocking of
miRNA binding to target mRNA-3’UTR (32) (Figure 3).

Recent studies have highlighted the diverse roles of MiRNAs/
LncRNAs in cancer progression and metastasis. Increasing
FIGURE 2 | The LncRNA Regulation in cancer. In cancer, lncRNAs inhibit targeted mRNAs through endogenous competition with miRNAs, resulting in mRNA
downregulation and carcinogenesis, resulting in tumor gene disorder and cancer.
FIGURE 3 | The relationship between MiRNA and LncRNA. Both miRNA and lncRNA regulate gene expression through binding with mRNA, gene/transcript or
histone modifiers. LncRNA may sponges miRNA by base-pair blocking of miRNA response elements binding to target mRNA-3’UTR.
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numbers of miRNAs and lncRNAs are found to be dysregulated
in cervical cancer, regulating metastasis through regulating
metastasis-related genes and signaling pathways. Moreover,
miRNAs can interact with lncRNAs respectively during this
complex process (33, 34). In breast cancer, the lncRNA
MALAT1 and miR-100 are indirectly interlinked through
VEGFA. MALAT1 binds to miR-216b as a competing
endogenous RNA to restore Pyridox(am)ine-5- phosphate
Oxidase deficiency (PNPO) and promote cell proliferation,
migration and invasion in breast cancer (33). Therefore,
miRNAs/lncRNAs are involved in gene expression and
transcriptional regulation. They also affect the development of
cancer and regulate the expression of oncogenes and tumor
suppressors in TME (28, 32, 35). Therefore, the regulation of
miRNA/lncRNA is more conducive to the research of bioactive
targets for cancer treatment.
POST-TRANSCRIPTIONAL
REGULATION OF TUMOR MDSCS
WITH MIRNAS/LNCRNA

Researchers have found that the interactions between miRNAs/
LncRNAs and transcription factor modulated the biological
status and immune activity of MDSCs in TME (36). Here, we
describe the regulation of miRNA/lncRNA on MDSCs in the
TME. The abnormal expression of miRNAs/lncRNAs in MDSCs
and their regulatory mechanism on MDSCs have become
potential breakthrough points.

Expansion of MDSCs
The expansion of tumor MDSCs is regulated through several
pathways. Members of the CCAAT/enhancer binding protein
(C/EBP) family, as key regulatory transcription factors, may
Frontiers in Oncology | www.frontiersin.org 4
regulate many biological processes, including cell growth,
differentiation, metabolism and death. In TME, C/EBP
maintains the critical regulation of MDSCs (37, 38) (Figure 4).
In Lewis lung carcinoma and B16 melanoma, the overexpression
of miR-486 promotes the proliferation of MDSCs and inhibits
the differentiation and apoptosis of MDSCs through targeting C/
EBPA (39). During the tumor process, when the C-X-C motif
chemokine receptor 2(CXCR2) is activated, the expression level
of miR-449c targeting STAT6 mRNA in MDSCs is upgraded to
promote the MDSC expansion (6). In 4T1-breast cancer cell,
miRNA-494 which is upregulated by tumor-derived factor TGF-
b1, promotes the accumulation and activity of MDSCs through
targeting Phosphatase and tensin homolog (PTEN) and
activating Akt pathway (40). miR-155 and miR-21 promote the
expansion of tumor MDSCs through targeting ship-1 and PTEN
(41). Furthermore, miR-155 enhances tumor MDSC inhibitory
activity through SocS1 repression (42–44). MiR-155 deficiency is
also found to diminish the aggregation of functional MDSCs in
the colon cancer, indicating that miRNA-155 could accelerate
the accumulation of MDSCs (43–45). In lung tumor mouse
model, miR-21 maintained MDSC accumulation in the TME by
downregulating RUNX1 and upregulating Yes-associated protein
(YAP), indicating that targeting miR-21 in MDSCs may be
developed as an immunotherapeutic approach to combat lung
cancer (46). In mixed leukemia, tumor-secreted factors GM-CSF/
IL-6 upregulate high expression levels of miR-21a/21b/181b
through STAT3/CEBPb pathway, further diminishing the
expression of WD repeat-containing protein 5 (Wdr5), absent
small or homeotic-like (ASH2L) and mixed lineage leukemia 1
(MLL1), which are involved in the expansion and differentiation of
G-MDSC. Furthermore, knockdown of these miRNAs diminishes
the expansion of GM-CSF/IL-6-induced G-MDSCs, suggesting
that miR-21a/21b/181b stimulate accumulation of MDSCs in the
TME (47) (Table 1).
FIGURE 4 | Development and role of MDSCs. MDSCs are differentiated from myeloid progenitor cells. During the differentiation process, two signaling models are
mainly used: The signaling driven by tumor-derived growth factors (STAT3, IRF8, C/EBPb, Notch and NLRP3) is responsible for proliferation of immature bone
marrow cells and inhibits their differentiation. The second type of signaling is mediated by factors which are produced by tumor stroma (NF-KB, STAT1, STAT6). It is
responsible for pathological development of immature myeloid cells into MDSCs. The expansion and immune function of MDSCs are regulated by other different
signaling mechanisms further.
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Chemotherapy is one major method of cancer treatment.
However, it also brings some side effects. Rong et al. found that
chemotherapies (such as doxorubicin treatment) induced drug-
resistance in breast cancers cells and stimulated proliferation and
activation of MDSCs to inhibit T cell anti-tumor response. In
doxorubicin-resistant breast cancer, Doxorubicin-induced miR-
10 overexpression exaggerates the expansion and activation of
MDSCs by activating the AMKP signaling pathway, leading to
poor prognosis in breast cancer patients (52). Hox antisense
intergenic RNA (HOTAIR) is one lncRNA which is regarded as
oncogene to play crucial roles in the progression and metastasis
of several cancers such as breast, colorectal and gastric cancers.
Moreover, HOTAIR overexpression causes expansion and
recruitment of MDSCs in cancer cells through the release of
CCL2 (5) (Table 2).

MiRNAs/lncRNAs also negatively regulate the numbers and
expansion of MDSCs in the TME. In our previous studies,
negative roles of miRNAs on MDSCs have been described
(14). In tumor-bearing mice, miR-223 reduces the
accumulation of MDSCs and inhibits immature myeloid cells
Frontiers in Oncology | www.frontiersin.org 5
differentiation into MDSCs by targeting Myocyte enhancer
factor 2C (MEF2C) (36, 48). In ovarian cancer treatment, Lin
et al . found that dexamethasone(DEX), a synthetic
glucocorticoid (GC), stimulated miR-708 overexpression by
targeting RaP1B, further diminishing the expansion and
number of MDSCs in TME (53). Pyzer et al. demonstrated
that miR34a overexpression led to the downregulation of c-
myc expression by transmembrane glycoprotein Mucin 1
(MUC1) silencing, reducing the expansion of MDSCs in acute
myeloid leukemia (AML) (50) (Figure 5).

Differentiation of MDSCs
Tumor-derived factors affect different stages of myeloid cell
differentiation, leading to the generation of pathologically
activated M-MDSCs and PMN-MDSCs. The differentiation
process of MDSCs is mediated through two types of signaling
panels. The first type of signaling, driven by tumor-derived
growth factors (STAT3, IRF8, C/EBPb, Notch and NLRP3), is
responsible for proliferation of immature bone marrow cells and
inhibits their differentiation. The second type of signaling is
TABLE 1 | Regulation of MiRNAs on tumor MDSCs.

MiRNA Targets/signal pathway Function on MDSCs Ref.

miR-449c STAT6 To elevate the number (6)
miR-142-3p STAT3/CEBPb To prevent the differentiation (14, 36, 48)
miR-223 MEF2C To block accumulation/differentiation (39)
miR-486 C/EBPa To stimulate proliferation (40)
miR-494 PTEN/Akt To promote the accumulation and activity (49)

TGF-b To strengthen function (41)
miR-155 PTEN To increase the number (41)
miR-21 AMKP To exaggerate expansion (47)
miR21a/21b/181b AMPK To maintain inhibitory roles (50)
miR-34a MUC1 To diminish the expansion (51)

TGF-b/IL10 To reduce the number (52)
miR-10 STAT3/CEBPB To stimulate expansion (53, 54)
miR-708 RaP1B To diminish the expansion and number (55)
miR-424 To reduce numbers (56)
miR-9 NFIA To improve differentiation (57)
miR-136 To promote differentiation (58)
miR21/miR130b/miR155/miR28 IGF1/Jun To enhance blockage activity (59)
miR-200c To enhancing inhibitory activity (54)
miR-17-92 FOG2/PTEN To diminish blockage roles (60)
miR-195/miR-16 STAT To block immunosuppressive function (61)
miR-10a PD-l To improve the differentiation (62)
miR-30a Runx1 To enhance activity (63)
miR-17 SOCS3 To prevent differentiation/activity
March 2022 | Volume 12 | A
TABLE 2 | Regulation of LncRNAs on MDSCs.

LncRNAs Target genes/signal pathway Function on MDSCs Ref.

HOTAIR CCL2 To promote expansion and recruitment (5)
RNCR3 miR-185 CHOP To increases the inhibitory roles (16)
Olfr29-ps1 IL-6 To accelerate roles (16)
lnc-C/eBPb C/EBPb/WDR5/IL-4il To improve the differentiation (47)

C/EBPb subtypes LAP To suppress immunosuppressive function (46)
LNC-CHOP CHOP and C/EBPb To improve blockage the roles (64)
lncRNAPVT1 hypoxia-inducible factor-1a To upgrade the inhibitory activity (65)
AK036396 Ficolin B To prevent the maturation (66)
lncR MALAT1 To decrease the number (67)
rticle 77
2351

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. MicroRNAs/LncRNAs Modulate Tumor MDSCs
mediated by factors produced by tumor stroma (the NF-KB
Pathway, STAT1, STAT6). It is responsible for pathologically
activating immature myeloid cells into MDSCs (68) (Figure 4).
Accumulating evidence has demonstrated that tumor-related
MDSCs are differentiated into mature myeloid cells, such as
macrophages or neutrophils through the regulation of different
miRNAs. The downregulation of miR-9 is found to improve the
differentiation of tumor MDSCs via targeting Runx1, thereby
hindering tumor growth (56). Shi et al. demonstrated that TNF-
a-upregulated miR-136 enhanced the differentiation of MDSCs
and inhibited tumor growth by targeting Nuclear factor I A
(NFIA) (57).

MiRNAs/ lncRNAs also negat ive ly modulate the
differentiation of MDSCs in the TME. The upregulation of
miR-34a reduces immature myeloid cells differentiation into
MDSCs via TGF-b and IL-10 (51). The productions of bone
marrow are altered during tumor development, leading to the
accumulation of immunosuppressive cells there. miR-142-3p is
found to restrain the differentiation of MDSCs into mature cells
by regulating STAT3 and C/EBPb signaling pathways (13, 14).
MiR-17 family members (such as miR-17-5p, miR-20a and miR-
106a) are overexpressed in human progenitor cells and inhibit
AML1(the leukemia-associated transcription factor acute
myeloid leukemia 1; also known as runt-related transcription
factor 1, or RUNX1), leading to downregulation of M-CSFR,
which prevents differentiation and activity of tumor MDSCs
(63). In human acute promyelocytic leukemia, the master
transcription factor PU.1 is revealed to activate the
transcription of miR-424 and repress NFI-A, an inhibitor of
monocyte differentiation, thereby stimulating the differentiation
of MDSCs into mature cells to reduce MDSC population
(55) (Table 1).

Lnc-C/EBPb is an intermediate gene encoded on
chromosome 4 that is highly conserved in mice, humans and
other species. There are two subtypes of c/EBPb: liver-rich
activating protein (LAP*, LAP) and liver-rich inhibitory
Frontiers in Oncology | www.frontiersin.org 6
protein (LIP) (64). Expression of lnc-C/EBPb in murine M-
MDSCs is found to block the differentiation and inhibitory
activity of MDSCs. This is through down-regulating the
expression of IL-4, suggesting that it could be a potential target
in tumor immunotherapy (46, 47). Metastasis-Associated Lung
Adenocarcinoma Transcript 1 (MALAT1), a nuclear intergenic
lncRNA, is highly conserved among species and involved in
various diseases. Recently, lncRNA MALAT1 was found to
stimulate the proliferation, invasion, and metastasis of many
types of cancer cells such as cervical cancer, lung cancer,
colorectal cancer and liver cancer (69). Knockout of MALAT1
genes in MDSCs lead to the increased number of MDSCs by the
inhibition of MDSC differentiation (67). However, the regulatory
mechanisms need to be investigated further (Figure 6
and Table 2).

Immunosuppressive Function of MDSCs
In the TME, MDSCs inhibit the anti-tumor roles of many
immune cells, such as Natural Killer (NK) cells, B cells and T
cells. The inhibition of T cell function is most important for
evaluating the activity of MDSCs (1) (Figure 4). MiRNAs/
lncRNA upregulate the activity and immunosuppressive
function of MDSCs through different signaling pathways and
transcription factors within TME (39, 58). In B lymphoma
mouse models, the expression of miR-30a in MDSCs promotes
the immunosuppressive roles of MDSCs (56). In addition, miR-
30a also targets SOCS3/STAT3 to enhance the inhibitory activity
of MDSCs (55). In the most common type of non-Hodgkin
lymphoma (NHL) —– diffuse large B-cell lymphoma (DLBCL),
four circulating miRNAs (miR-21, miR-130b, miR-155, and
miR-28) are considered to be novel prognosis biomarkers of
DLBCL and modulate RAS protein signaling transduction via
Insuline-like growth factor I(IGF1) and Jun. These four miRNAs
are associated with the induction of MDSCs and Th17 cells
through cytokines TGFB1, IL-6 and IL-17, resulting in the
immune suppression of DLBCL (58). In gastric cancer, miR-
FIGURE 5 | Effect of MicroRNA/LncRNA on MDSC’ proliferation in the TME. MiRNAs/LncRNAs modulate the proliferation of MDSCs through different genes and
signaling pathways. In each process, microRNA/LncRNA play positive: ⊣ or negative: ⊣ roles.
March 2022 | Volume 12 | Article 772351

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. MicroRNAs/LncRNAs Modulate Tumor MDSCs
494 is positively associated with the expression of tumor-derived
TGF-b which exaggerates the suppressive roles of MDSCs (49).
In various tumor mouse models (such as lung cancer, breast
cancer and colon cancer), it has been found that the tumor-
derived factor GM-CSF induces miR-200c overexpression to
activate Akt by negatively regulating the transcriptional
regulator friend of Gata 2 (FOG2) and PTEN expression,
further enhancing the immunosuppressive activity of MDSCs
(59) (Table 1).

Olfactory Receptor 29 Pseudogene 1 (Olfr29-ps1), as one
lncRNA pseudogene, is conserved in vertebrates (70). Tumor-
associated factors can increase the expression of Olfr29-ps1 in
MDSCs. In colon and rectal cancer, Olfr29-ps1 stimulates
proliferation and inhibitory activity of M-MDSC by the
upregulation of pro-inflammatory factor IL-6 (16).
Plasmacytoma Variant Translocation 1 (PVT1), an intergenic
lncRNA, is conserved in humans and mice. In various cancers,
tumor-associated factors induce the increased expression of
PVT1 in MDSCs. Downregulation of Pvt1 expression in PMN-
MDSCs can reduce suppressive activity of MDSCs through the
reduced activity of both ROS and Arg-1. In addition, PVT1 also
up-regulates the expression levels of hypoxia-inducible factor-1a
to enhance the immunosuppressive activity of G-MDSCs under
hypoxia (65). Similarly, lnc-CHOP, as an intronic lncRNA,
increases the activity of both ROS and Arg-1 through
interacting with both CHOP and C/EBPb subtypes to promote
C/EBPb activity and H3K4me3 enrichment, further enhancing
the suppressive activity of MDSCs within the TME (64).

Tian et al. found that lncRNA AK036396 and its target Ficolin B
were highly expressed inmouse PMN-MDSCs. The downregulation
of lncRNA AK036396 improved differentiation and diminished the
suppressive roles of PMN-MDSCs through reduced Ficolin B
protein stability. In addition, human M-ficolin, as an ortholog of
mouse Ficolin B, stimulates the suppressive activity of MDSCs in
patients with lung cancer through the induction of arginase1
expression. These results indicate that lncRNA AK036396 could
Frontiers in Oncology | www.frontiersin.org 7
accelerate inhibitory roles of PMN-MDSCs on T cell anti-tumor
responses (66) (Table 2).

MiRNAs/ lncRNAs also negat ive ly modulate the
immunosuppressive function of MDSCs in the TME. The STATs
pathway is of vital regulatory function. In both lung carcinoma and
1D8 ovarian carcinoma, miR-17-92 cluster (miR-17-5p and miR-
20a) could block the roles of MDSCs through targeting STATs (54).
Tao et al. demonstrated that the restoration of miR-195 and miR-16
expression enhanced radiotherapy via T cell activation in TME by
the inhibition of PD-L1 expression, after radiation with anti-PD-1
treatment on prostate cancer. The synergistic effect of
immunotherapy and radiotherapy is associated with the
proliferation of CD8+ T cells and inhibition of MDSCs and
regulatory T cells (Treg), indicating that miR-195 and miR-16
may reduce the suppressive functions of MDSCs through PD-1
dependent pathways (60).

An intergenic lncRNA, HOXA Transcript Antisense RNA
Myeloid-Specific1 (HOTAIRM 1) has been shown to
downregulate the suppressive functions of MDSCs in the TME,
since HOTAIRM1 can induce the high expression of HOXA1 in
MDSCs to reduce Arg-1 expression and ROS production. In
addition, increased expression of HOXA1 has been shown to
decrease the percentage of MDSCs, and enhance the immune
response in a tumor mouse model (26).

Therefore, miRNAs/lncRNAs effectively regulate the
differentiation, proliferation, and immunosuppressive functions
of MDSCs (47, 71) (Figure 7).
MIRNAS/LNCRNAS FROM TUMOR-
DERIVED EXOSOMES MEDIATE THE
FUNCTION OF MDSCS IN TME

Exosomes are small extracellular vesicles with size 30-150nm in
diameter that are secreted by most cells (72). Exosomes are rich
FIGURE 6 | Effect of MicroRNA/LncRNA on MDSC’ differentiation in the TME. MiRNAs/LncRNAs mediate the differentiation of MDSCs into monocyte, dendritic cells
and neutrophils through different genes and signaling pathways. In each process, microRNA/LncRNA play positive: ⊣ or negative: ⊣ roles.
March 2022 | Volume 12 | Article 772351
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in genetic material and molecules: DNA, miRNA, lncRNAs,
proteins and lipids, which are essential for cell-cell
communication and physiological status. Moreover, exosomes
are also involved in the regulation of tumor progression in the
TME (11). Recently, it has been demonstrated that exosomes
secreted by tumor cells play critical roles in cancer progression
and invasion, including TME remodeling, tumor metastasis and
tumor-associated immunosuppression (73).

MiRNAs in tumor-derived exosomes mediate the activity of
MDSCs in TME through different expression patterns,
transcription factors and signaling pathways (61, 74). In
pancreatic cancer, the increased expression of miR-let-7i in
TDEs affects the levels of myeloid inhibitory intracellular
inflammatory cytokines (IL-6, IL-17, IL-1b) and transcription
factors, downregulating the anti-tumor immune response (74).
In glioma, glioma-derived exosomes (GDEs) miR-29a and miR-
92a increase the proliferation and suppressive roles of MDSCs
through targeting high-mobility group box transcription factor
1 (Hbp1) and protein kinase cAMP-dependent type I regulatory
subunit alpha (Prkar1a), respectively, further mediating the
formation of suppressive TME (75). In LLC lung cancer
model, miR-21a from LLC-Exosomes are revealed to increase
both the autocrine production of IL-6 and phosphorylation
levels of STAT3 by targeting Programmed cell death 4
(PDCD4), thereby preventing the activation of cytotoxic CD8
+T cells and enhancing the proliferation and activity of MDSCs
Frontiers in Oncology | www.frontiersin.org 8
(76). In addition, in hypoxia-induced GDEs miR-10a and miR-
21 stimulate the expansion and activation of MDSCs by
targeting RAR-related orphan receptor a (RORA) and PTEN
(77). In breast cancer with high expression of interleukin-6,
TDEs miR-9 and miR-181A activate the JAK/STAT to
exaggerate the proliferation and inhibitory roles of MDSCs by
targeting SOCS3 and PIAS3 (76). In gastric cancer, Ren et al.
found that the TDE miR-107 prompted the proliferation and
activation of MDSCs by targeting Dicer1 and PTEN
(78) (Table 3).

lncRNAs are also secreted in exosomes as messengers of
intercellular communication. Some lncRNAs are enriched in
exosomes, while others are almost absent, suggesting that some
lncrnas are selectively trafficked into exosomes. Furthermore,
RNA sequencing in exosomes derived from tumors revealed that
most of the non-coding transcripts of exosomes were lncRNAs
(79). Meanwhile, exosomal LncRNAs are often found in clinical
cancer samples, indicating that LncRNA may be a potential
biomarker for cancer diagnosis. In primary urothelial bladder
cancer (UBC) cells, exosomic lncRNA HOTAIR is secreted by
proteins (SNAI1, TWIST1, ZEB1 and LAMB3), which regulate
EMT, resulting in gene changes on epithelial cells. LncRNA
ZFAS1 is found to increase in the serum exosomes of GC
patients with gastric cancer (GC), suggesting that lncRNA
ZFAS1 plays a positive role in the progression of gastric cancer
(80). Exosomal LncRNA ZFAS1 also promotes the proliferation,
FIGURE 7 | Effect of miRNA/LncRNA on MDSC’ function in the TME. MiRNAs/LncRNAs modulate the immunosuppressive roles of MDSCs on T cell anti-tumor
response. In each process, miRNAs/LncRNAs play positive ! or negative ⊣ roles.
TABLE 3 | Tumor derived exosome miRNA on tumor MDSCs.

MiRNAs Target genes/signal pathways Function on MDSCs Tumor Ref.

miR-29a miR-92a PDCD4/STAT3 To improve differentiation Glioma (75)
miR-10a/miR-21 Dicer1/PTEN To enhance the expansion/activation Glioma (77)
miR-21a SOCS3/PIAS3/JAK/STAT To exaggerate the proliferation/immunosuppressive functions LLC (76)
miR-9/miR-181a RORA/PTEN To promote the proliferation and activity Breast cancer (76)
miR-107 To induce the proliferation/activation Gastric cancer (78)
miR-let-7i IL-6/IL-17/IL-1b To restrain the roles Pancreatic cancer (74)
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migration and invasion of tumor cells from esophageal carcinoma
(ESCC), and inhibits the apoptosis of ESCC cells by up-regulating
STAT3 and down-regulating MiR-124, leading to the
carcinogenesis of ESCC. LncRNA ZFAS1 is believed to be a
competitive endogenous RNA regulating MiR-124, thereby
enhancing STAT3 expression (81). In bladder cancer (BCs),
lncRNA-PTENP1 is found to be reduced in tissues and plasma
exosomes. Cells which secrete exosomal PTENP1, deliver it to BC
cells to inhibit the biological malignant behavior of BC cells by
increasing apoptosis and decreasing invasion and migration (82).
The regulatory mechanism of TDEs lncRNAs on MDSCs has not
been clarified thoroughly. A few studies have shown that TDEs
lncRNAs play the important regulatory role in TME and tumor
cell interactions, accelerating tumor growth (24). TDEs lncRNAs
are transported to the TME to modulate the roles of various cells,
including macrophages, endothelial cells and fibroblasts (24). In
liver cancer cells, lncRNA TUC339 induces M2 polarization by
interacting with cytokine-cytokine receptors to exaggerate tumor
metastasis (83). It is well known that lncRNA urothelial
carcinoma-associated (UCA1) is an lncRNA associated with the
occurrence and progression of various cancers, including
colorectal cancer. Meanwhile, the mechanism of tumor-derived
exosome lncRNA-UCA1 has also been studied. In colon cancer
(CRC), UCA1 plays a key role in CRC tumor progression by
packaging into exosome, and UCA1 sequesters mir-143 via a
sponge mechanism (84) (Table 4). However, the mechanism by
which exosome miRNA/LncRNA affects MDSC in TME remains
to be studied.
LNCRNA/MIRNA INTERACTION
REGULATE MDSCS IN TME

LncRNA not only directly participates in the regulation of gene
expression, but also regulates the expression of miRNA (85).
miRNA can regulate mRNA expression through the miRNA
response elements (MREs) of mRNA 3 ‘- UTR. LncRNA can
adsorb miRNA through MREs to competitively bind miRNA as
one Competing endogenous RNA (ceRNA) and interfere with
the binding of miRNA with downstream target genes, and then
participate in various biological processes such as cell
proliferation, differentiation, apoptosis and angiogenesis (86,
87). Luan et al. reported that LncRNA XLOC_006390z played
a functional role as one ceRNA in cervical cancer. When
XLOC_006390 is knocked out, the expression of Mir-331-3p
target gene NRP2 and Mir-338-3p target gene PKM2 is
Frontiers in Oncology | www.frontiersin.org 9
significantly downregulated, further promoting the occurrence
and metastasis of cervical cancer (88). MiRNA can regulate
lncRNA expression as well as target mRNA expression.
LncRNA structure is similar to mRNA. LncRNAs indirectly
inhibit the negative regulation of miRNAs on target genes by
competing with miRNA to bind the 3’-UTR of target gene
mRNA. Some of lncRNAs can form miRNA precursors
through intracellular shearing, and then process and generate
specific miRNAs to regulate the expression of target genes and
exert functions. In addition, Individual lncRNAs function as
endogenous miRNA sponges and inhibit miRNA expression,
further performing biological roles. Therefore, integrated
analysis of the regulatory relationship between mirNA-lncrNA-
mrna can explain the occurrence and development of diseases
comprehensively. These indicted that miRNA may regulate
lncRNA expression through the similar mechanism by which
mRNA is regulated (Figure 8).

Mir-155 was overexpressed in MEGO1 leukemia cell line and
the expression level of target lncRNA was significantly decreased.
When Mir-155 was silenced, the expression of target lncRNA
was significantly increased. These results indicated that miRNA
could regulate the expression of lncRNA (89). lncRNAs can act
as one ceRNA to sequester miRNAs, regulating the abundance
and activity of miRNAs, resulting in the de-repression of genes
targeted by corresponding miRNAs in cancer progression (34,
90). Recently, the regulation of lncRNA/miRNA in MDSCs has
become increasingly important. Studies have speculated that
lncRNA-miRNA may have synergistic effects on the roles of
MDSCs. MiR-9 and or Runx1 overlapping RNA (RUNXOR) are
two non-coding RNAs involved in the differentiation and
activation of MDSCs. Tian et al. showed that miR-9 directly
downregulated the expression of lncRNA Runx to stimulate the
differentiation of MDSCs and reduce the suppressive ability of
MDSCs (36). The retinal non-coding RNA3 (RNCR3), an
intragenic lncRNA, which is conserved sequence in
mammalian genomes, has been shown to be highly expressed
in glioblastoma and prostate cancer (91). Furthermore. Shang
et al. recognized that RNCR3 expression in MDSCs is
upregulated by inflammatory and tumor associated factors. In
the TME, the expression of RNCR3 was up-regulated in MDSC.
RNCR3 may function as one ceRNA to upregulate the expression
of Arg-1 and iNOS on MDSCs to enhance the roles of these
MDSCs through sponge mir-185-5p which binds to CHOP to
upregulate CHOP expression [104]. Therefore, those results
suggest that RNCR3/miR-185-5p/Chop may strengthen
suppressive roles of MDSCs in the TME.
TABLE 4 | Tumor derived exosome LncRNA on cancer.

LncRNAs Target genes/signal pathways Function on cancer Tumor Ref.

LncRNA HOTAIR SNAI1/TWIST1/ZEB1/LAMB3 To changing epithelial cells UBC (80)
LncRNA ZFAS1 To promoting the cancer Gastric cancer (80)
LncRNA ZFAS1 STAT3/MiR-124 To promoting the proliferation, migration and invasion of tumor Esophageal carcinoma (81)
LncRNA-PTENP1 PTENP1 To inhibiting the biological malignant behavior of BC cells Bladder cancer (82)
LncRNA TUC339 M2 polarization To exaggerating tumor metastasis Liver cancer (83)
LncRNA-UCA1 Mir-143 To promoting the cancer Colon cancer (84)
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CONCLUDING REMARKS
AND PROSPECT

MDSCs, as immunosuppressive cells, seriously affect the
progression, invasion and metastasis of tumors, and may be
used as potential targets for tumor immunotherapy. The
regulatory mechanism of tumor MDSCs has been widely
investigated by us and other scientists (14, 92–95). Increasing
evidence demonstrated that ncRNAs, especially miRNA and
lncRNAs, played the key roles in the regulation of tumor
MDSCs in the TME. Here we review that MiRNA/lncRNAs
regulate the biological status and functional activity of tumor
MDSCs through different regulatory mechanisms. Moreover, we
discuss how both exosomal miRNAs/lncRNAs and the
interaction of miRNAs/lncRNAs modulate tumor MDSCs.
However, In the TME, the regulation of miRNAs/lncRNA on
MDSCs is affected. It remains to be explored how those
dysregulated miRNAs/lncRNA are combined in the TME to
act on tumor MDSCs through tumor-related signaling pathway.
In addition, the regulation of miRNA/lncRNAs on MDSCs
provided opportunities and challenges for targeting MDSCs
immunotherapy. Moreover, these functional data of miRNA/
lncRNA on tumor MDSCs are gained from animal studies, there
Frontiers in Oncology | www.frontiersin.org 10
are a few data from human patients with cancer. Thus, miRNAs/
lncRNAs application for tumor MDSCs in clinical patients with
cancer need be further clarified. In summary, the interaction of
dysregulated miRNAs/lncRNA on tumor MDSCs with
transcription factors, cofactors and chromatin modifiers may
target specific signals to treat tumor MDSCs in the TME,
providing novel strategies for cancer treatment.
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