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Development and Clinical Validation of a
Seven-Gene Prognostic Signature Based
on Multiple Machine Learning Algorithms
in Kidney Cancer

Mi Tian1, Tao Wang2, and Peng Wang3

Abstract
About a third of patients with kidney cancer experience recurrence or cancer-related progression. Clinically, kidney cancer
prognoses may be quite different, even in patients with kidney cancer at the same clinical stage. Therefore, there is an urgent
need to screen for kidney cancer prognosis biomarkers. Differentially expressed genes (DEGs) were identified using kidney
cancer RNA sequencing data from the Gene Expression Omnibus (GEO) database. Biomarkers were screened using random
forest (RF) and support vector machine (SVM) models, and a multigene signature was constructed using the least absolute
shrinkage and selection operator (LASSO) regression analysis. Univariate and multivariate Cox regression analyses were
performed to explore the relationships between clinical features and prognosis. Finally, the reliability and clinical applicability
of the model were validated, and relationships with biological pathways were identified. Western blots were also performed
to evaluate gene expression. A total of 50 DEGs were obtained by intersecting the RF and SVM models. A seven-gene sig-
nature (RNASET2, EZH2, FXYD5, KIF18A, NAT8, CDCA7, and WNT7B) was constructed by LASSO regression. Univariate
and multivariate Cox regression analyses showed that the seven-gene signature was an independent prognostic factor for
kidney cancer. Finally, a predictive nomogram was established in The Cancer Genome Atlas (TCGA) cohort and validated
internally. In tumor tissue, RNASET2 and FXYD5 were highly expressed and NAT8 was lowly expressed at the protein and
transcription levels. This model could complement the clinicopathological characteristics of kidney cancer and promote the
personalized management of patients with kidney cancer.
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Introduction

Kidney cancer is a malignant tumor that originates in renal,

parenchymal, and urinary epithelial cells, and there are

approximately 208,500 new cases each year worldwide1.

Despite recent advances in clinical chemotherapy and surgi-

cal techniques, the prognosis of advanced kidney cancer is

still poor, with a median survival of approximately 13

months2. About 30% of patients with kidney cancer experi-

ence recurrence or cancer-related progression3,4. Nearly

20% of kidney cancer cases have progressed to advanced

stages by the time of diagnosis5. At present, the most valu-

able factor for kidney cancer prognosis is the pathological

stage after surgery. The earlier the pathological stage, the

higher the 10-year survival rate6–8. If lymph node metastasis

has occurred by the time of diagnosis, the prognosis is often

not positive9. Tumor size, histological type, and the cell

cycle are also independent factors affecting prognosis10–12.

Although these indicators play important roles in determin-

ing prognosis, patients with kidney cancer at the same
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clinical stage could have quite different prognoses. With the

rapid development of tumor molecular biology in recent

years, genomic studies have shown the increasing impor-

tance of RNA. Therefore, there is an urgent need to identify

the RNAs that may improve the clinical outcomes of patients

with kidney cancer13. However, there are few specific bio-

markers that show therapeutic effects, and prognostic factors

are also important for treatment. Therefore, the molecular

screening of kidney cancer biomarkers is necessary to

improve kidney cancer prognosis and reduce mortality.

Messenger RNAs (mRNAs) are single-stranded ribonu-

cleic acids transcribed from single strands of DNA and they

carry genetic information to guide protein synthesis14. Most

mRNAs exist in the cytoplasm of prokaryotes and eukar-

yotes and in certain organelles of eukaryotic cells. They

serve as templates for protein synthesis on ribosomes and

determine the amino acid sequences of peptide chains15,16.

The expression level and methylation of mRNA are closely

related to the processes of tumorigenesis, proliferation, and

invasion17–19. In addition, mRNAs are closely associated

with the prognoses of various tumors and can be used as

reliable biomarkers for prognosis20–22. Several genes with

potential clinically and statistically significant prognostic

value have been identified in the whole blood expression

profiles of patients with clear cell renal cell carcinoma23.

Other studies have also identified individual biomarkers

related to kidney cancer prognosis24,25. Integrating multiple

mRNAs into a single model has more reliable prediction and

prognostic value than screening only a single mRNA as a

biomarker26. Karakiewicz et al. proposed a preoperative

prognostic model of kidney cancer. For patients with kidney

cancer undergoing nephrectomy, the model’s predictive

ability showed high accuracy27. Heng et al. proposed a

well-known prognostic model for patients with metastatic

kidney cancer that has played an important role in selecting

suitable participants in many clinical trials28. Further, the

five-mRNA model constructed by Gao et al. using the

RNA-seq dataset from The Cancer Genome Atlas (TCGA)

is considered a potential prognostic biomarker for papillary

kidney cancer29.

The purpose of this study was to use the RNA sequencing

data from TCGA and the Gene Expression Omnibus (GEO)

pertaining to kidney cancer to explore the expression differ-

ences between renal cancer and adjacent tissue and to iden-

tify potential prognostic biomarkers. Based on survival

analysis, a seven-gene prognostic model, including RNA-

SET2, EZH2, FXYD5, KIF18A, NAT8, CDCA7, and

WNT7B, was established, and the relationships with prog-

nosis and clinical features were analyzed. Finally, a predic-

tive nomogram was established in the TCGA cohort and

validated internally. At the same time, we used experiments

and external cohorts to verify the mRNA and protein expres-

sion levels of these seven genes. The prognostic model and

nomogram may help guide the evaluation of prognostic sta-

tus for patients with kidney cancer.

Materials and Methods

Data Downloading and Preprocessing

In the GEO database, the chip data of clear cell renal cell

carcinoma tissue samples were collected using the search

term “kidney cancer” as the keyword, with the search scope

limited to “Homo sapiens” (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc¼GSE53757). The dataset included a

cancer tissue sample (n ¼ 77) and a cancer-adjacent sample

as the control (n ¼ 77). After the chip data were cleaned and

compared, 22,880 genes were obtained. All genes and sam-

ples were found to contain no missing values, so they could

proceed to the next step. As shown in Fig. S1, the corrected

expression values of the samples were all on the same level,

indicating that they were well homogenized.

Sample Grouping

Fragments per kilobase million (FPKM) data and clinical

information pertaining to RNA expression in renal cell car-

cinoma were downloaded from the TCGA database. Data

with no clinical prognosis information or a gene expression

level <1 were excluded. The caret package in R was used to

randomly divide the cohort with a ratio of 7.5:2.5, with 75%
of the data used for training and 25% of the data used for

validation.

Construction of Gene Signature by Integrating Multiple
Machine Learning Algorithms

In the random forest (RF) model, a fivefold cross-validation

method was adopted to divide the training set and the valida-

tion set, iterate on the number of variables tried at each split

and ntree (500 to 1000), respectively, and finally find that

when the number of variables tried at each split ¼ 58 and

ntree ¼ 500, the out-of-bag error (OOB) is the lowest

(2.78%).

In the support vector machine (SVM), the optimal vari-

ables are identified by deleting the feature vectors generated

by SVM, which includes the following steps. (1) Fitting a

linear SVM model. (2) Sorted according to the weight of

features in each SVM model. (3) Eliminate variables with

low weights. The fivefold cross-validation method was used

to split the data and assign random numbers. When halve

above was set to 100, the order of feature vector and mean

value was obtained, and AverageRank > 2500 was taken as

threshold.

The least absolute shrinkage and selection operator

(LASSO) method is a compression estimation. It obtains a

more refined model by constructing a penalty function,

which makes it compress some coefficients and set some

coefficients to zero. Therefore, the advantage of subset

shrinkage is retained. It is a biased estimation for processing

data with multicollinearity, which can realize variable selec-

tion while estimating parameters, and better solve the multi-

collinearity problem in regression analysis. We use the
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glmnet package in R to perform LASSO analysis on the

RNAs selected by the RF and SVM models.

External Validation of Proteins and Transcription Levels
of the Seven-Gene Signature

The Human Protein Atlas (HPA) provides information on the

tissue and cell distribution of 26,000 human proteins. It

mainly uses specific antibodies to study the protein expres-

sion in cell lines, normal tissue, and tumor tissue. The

expression of seven genes (RNASET2, EZH2, FXYD5,

KIF18A, NAT8, CDCA7, and WNT7B) was explored in

normal and tumor tissue. The expression of these seven

genes was explored in kidney cancer and normal tissue in

the GSE105288 and GSE106771 series of the GEO. Box-

plots for gene expression were drawn.

Genetic Alterations of the Seven Predictive Genes

The cBioPortal database integrates genomic data, including

somatic mutations, DNA copy-number alterations, mRNA

and microRNA (miRNA) expression, DNA methylation,

protein enrichment, and phosphorylated protein enrichment.

Clear Cell Renal Cell Carcinoma (DFCI, Science 2019),

Kidney Chromophobe (TCGA, Cancer Cell 2014), Kidney

Chromophobe (TCGA, Firehose Legacy), Kidney Chromo-

phobe (TCGA, Pan Cancer Atlas), and Kidney Renal Clear

Cell Carcinoma (BGI, Nat Genet 2012) datasets were

collected.

Western Blotting

Western blotting was performed according to standard pro-

tocols. We used primary antibodies raised against glyceral-

dehyde 3-phosphate dehydrogenase (Santa Cruz

Biotechnology, CA, USA); WNT7B, CDCA7, KIF18A, and

EZH2 (Cell Signaling Technology, MA, USA); and FXD5,

NAT10, and RNASET2 (Proteintech, China). Goat anti-

mouse and antirabbit antibodies conjugated with horseradish

peroxidase were used as secondary antibodies (Jackson

ImmunoResearch, West Grove, PA, USA), and we detected

the blots using enhanced chemiluminescence (Dura, Pierce,

NJ, USA).

RNA Extraction and Real-Time Polymerase Chain
Reaction (PCR) Assay

Total RNA was extracted using TRIzol Reagent (Invitrogen,

Carlsbad, CA, USA) following the manufacturer’s protocol,

and it was reverse-transcribed into complementary DNA

(cDNA) using a Superscript Reverse Transcriptase Kit

(Transgene, France). A Super SYBR Green Kit (Transgene,

France) was used to perform real-time PCR using the

ABI 7300 real-time PCR system (Applied Biosystems,

Foster City, CA, USA). The primer pairs were: (1) WNT7B

forward: CACAGAAACTTTCGCAAGTGG, WNT7B

reverse: GTACTGGCACTCGTTGATGC; (2) CDCA7

forward: TTGGTCTTCGAGTAGCCTTTCA, CDCA7

reverse: GTGCGCTAGAAAACAACTGCT; (3) KIF18A

forward: TGCTGGGAAGACCCACACTAT, KIF18A

reverse: GCTGGTGTAAAGTAAGTCCATGA; (4) EZH2

Fig. 1. Flowchart of this study.
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forward: AATCAGAGTACATGCGACTGAGA, EZH2

reverse: GCTGTATCCTTCGCTGTTTCC; (5) FXD5 for-

ward: AGTGGTCATCCTCCTACGGAC, FXD5 reverse:

TGTACCTGGAATGCACATCCAT; (6) NAT10 forward:

ATAGCAGCCACAAACATTCGC, NAT10 reverse: ACA-

CACATGCCGAAGGTATTG; and (7) RNASET2 forward:

GCGAGAAAATTCAAAACGACTGT, RNASET2 reverse:

CCTTCACTTTTATCGGGCCATAG.

Results

Data Analysis Flowchart

To make the research easier for readers to understand, we

drew a flowchart of the methodology (Fig. 1).

Differentially Expressed Genes (DEG) Identification

The GSE53757 dataset was used for different analysis and

screening for marker genes. A total of 3471 RNAs were

screened using the limma package (adj. P value < 0.05 and

|log2FC| > 1). The heat map is shown in Fig. 2A. The blue

bar represents the cancer group, and the red bar represents

the normal group. Gene expression in cancer and

paracancerous groups was quantified into two obvious

panels, indicating that the differential genes screened had

obvious differences in expression between the groups. The

log2FC and �log10Pvalue of the differential genes were

plotted into a volcano map, as shown in Fig. 2B.

Functional Analysis of DEGs

Further analysis with the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) functional

enrichment of these DEGs through the R package cluster-

Profiler was performed to explore their biological functions,

and the threshold was set at P < 0.05. As shown in Fig. 2C,

D, the DEGs were enriched in many important cancer-

related pathways, such as the T-cell activation pathway.

Construction of Seven-Gene Signature

According to the Materials & Methods section, 556 RNAs

were identified as candidate genes in the RF model. Four

hundred and twenty-two RNAs were selected as candidate

genes in the SVM model. The marker genes obtained from

the RF and SVM models were intersected, and 50 marker

genes were identified for subsequent analysis (Fig. 3A, B).

Fig. 2. Identification of Differentially Expressed Genes and functional analysis. (A) Heat map of differential genes. Genes highly expressed in
the samples are in red, while the others are in blue. The expression of genes in the cancer group and the paracancerous group were
quantified into two obvious panels. (B) Volcano map of differential genes, the abscissa is log2FC, the ordinate is �log10Pvalue, and different
points represent different RNAs. Genes highly expressed in the samples are in red, while the others are in blue. (C) Gene Ontology
enrichment analysis. (D) Kyoto Encyclopedia of Genes and Genomes enrichment analysis.
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These genes are closely related to the occurrence and devel-

opment of kidney cancer, but too many genes are not

conducive to clinical testing and will also increase the bur-

den of patients. Therefore, we further reduce the number of

genes.

The glmnet package was used to perform LASSO cox

analysis on these candidate genes. First, the change trajec-

tory of each independent variable was analyzed as shown in

Fig. 3C. It can be seen that as the lambda gradually

decreases, the number of independent variable coefficient

tends to 0 is gradually increasing. We use 10-fold cross-

validation to analyze the CI under each lambda as shown

in Fig. 3D. It can be seen that the model reaches optimal

when ln(l)¼�2.56. We select the seven genes (RNASET2,

EZH2, FXYD5, KIF18A, NAT8, CDCA7, and WNT7B) at

this time as the target genes to construct the seven-gene

signature. The risk scores were calculated with the

expression profile of the seven genes: (0.00134 * expression

level of RNASET2)þ (0.00968 * expression level of EZH2)

þ (0.00261 * expression level of FXYD5) þ (0.17314 *

expression level of KIF18A) þ (0.00001 * expression level

of NAT8) þ (0.12862 * expression level of CDCA7) þ
(0.00001 * expression level of WNT7B).

The seven-gene signature is different from the existing

stage system, which evaluates the prognosis of patients from

the perspective of molecular biology. In clinical use, only the

expression levels of these seven genes need to be detected,

according to the risk score formula.

The distribution of risk score Z correction values was

plotted. The results showed that patients in the high-

expression group (red) had significantly higher risk scores

than patients in the low-expression group (blue), and the

density distribution chart was shifted to the right (Fig.

4A). The seven-gene signature risk scores of each patient

Fig. 3. Construction of multigene signatures. (A) Error graph of the random forest (RF) models. (B) Support vector machine (SVM) models.
(C) The trajectory of each independent variable, the horizontal axis represents the log value of the independent variable lambda, and the
vertical axis represents the coefficient of the independent variable. (D) The CI at different lambda values.
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were calculated in the TCGA training set, and the median

risk score was used as the cutoff. The patients were divided

into the low-risk group (n ¼ 262) and high-risk group (n ¼
263). Patients in the high-risk group had significantly shorter

overall survival (OS) than those in the low-risk group (Fig.

4B). The red line represents the high-risk group, and the blue

line represents the low-risk group. The P value between

groups was 0.0015.

Fig. 4. The performance of the seven-mRNA model. (A) The Z correction value of risk score distribution, the risk score density
distribution, and the seven gene expression heat maps. (B) Survival analysis. (C) The Z correction value of risk score distribution, risk
score density distribution, and seven gene expression heat maps in the validation set. (D) Survival analysis.
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The TCGA validation set was used for verification. The

P value between groups was <0.05, and the distribution

map and density distribution of risk score Z correction val-

ues were basically consistent with those of the training

set. Fig. 4C-D shows that this model had a quite good

repeatability.

Using this seven-gene based risk score prognostic model,

the patient’s prognostic score was evaluated. When the

patient’s risk score is greater than 0, the patient is at high-

risk. The clinician can change the patient’s treatment plan

according to the predicted results of the model to realize the

individualized treatment of patients. Strategies should be

developed to prevent or detect recurrence early in high-

risk groups. Therefore, high-risk groups should be followed

more frequently.

Univariable and Multivariable Cox Regression Analysis
of the Seven-Gene Signature

To prove the prognostic value of seven-gene signature in

kidney cancer patients, the univariable and multivariable

Cox regression analyses were performed on seven-gene risk

score, age; sex, clinical stage, and pathological tumor, node,

metastasis (TNM) stage.

Hazard ratios and 95% CIs were calculated. Results with

a P value < 0.05 were considered statistically significant.

The results are shown in Fig. 5A, B. The seven-gene risk

score was significantly associated with prognosis in both the

univariable and multivariable analyses, and it was an inde-

pendent risk factor for kidney cancer prognosis (P < 0.001,

hazard ratio ¼ 3.784).

Both age and stage had P < 0.05, indicating that they were

important prognostic factors, and there was no significant

difference in the TNM stage or sex.

To eliminate the confounding factors of age and clinical

stage, the sample was divided into early stage (stage I, stage

II), advanced stage (stage III, stage IV), younger age (<65

years), and older age (�65 years) groups. The results showed

that after excluding age and stage, there were still significant

differences between the two groups (P < 0.05), and the

seven-gene signature distinguished the high-expression

group from the low-expression group (Fig. 5C-F).

Evaluation of the Clinical Applicability of the Seven-
Gene Signature

In order to determine the patient’s disease progression and

be able to make a personalized diagnosis of the patient, a risk

prediction nomogram integrating the seven-gene signature,

age, stage, TNM stage, and sex was plotted (Fig. 6A). Fig.

6B shows that the calibration of the nomogram worked well

compared with the actual model. Decline curve analysis was

Fig. 5. Analysis of univariable and multivariable cox regression of seven-gene signature. (A) Forest plots of univariable cox model; (B) forest
plot of the multivariable cox model. (C-F) Survival analysis of different subgroups assessing the independence of seven-gene signatures.
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Fig. 6. Evaluation of the clinical applicability of the seven-gene signature. (A) The nomogram for predicting the proportion of patients with 3-
year OS and 5-year OS. (B) The calibration plots for predicting patient 3-year OS and 5-year OS. Nomogram-predicted probability of
survival is plotted on the x-axis; actual survival is plotted on the y-axis. (C) DCA for assessment of the clinical utility of the nomogram. The x-
axis represents the percentage of threshold probability, and the y-axis represents the net benefit. (D) Pathway profiles. Rows represent
pathways, and columns represent patients. Each grid represents a score of pathway activity calculated by single-sample GSEA. The upper
horizontal bar marked the information related to every patient, including its risk group (ranked from low to high). (E) ROC analysis of the
sensitivity and specificity of the survival prediction by the seven-gene risk score. DCA: decision curve analysis; GSEA: gene set enrichment
analysis; OS: overall survival; ROC: receiver operating characteristic.
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used to evaluate the clinical applicability of the nomogram.

The results showed that our line chart model had a better net

benefit (Fig. 6C). The receiver operating characteristic curve

is shown in Fig. 6E. The model with the stage alone had a

minimum area under the curve (AUC) of 0.65. The risk score

had an AUC of 0.772. A combination of risk score and stage

had the highest AUC (0.801).

The low-expression and high-expression groups were

used for classification, and enrichment analysis was per-

formed using a single-sample gene set enrichment analysis

(ssGSEA), as shown in Fig. 6D. Some biochemical-related

pathways had higher enrichment scores in the low-

expression group, while tumorigenic-related pathways had

higher enrichment scores in the high-expression group,

which justified the previous results.

Validation of the Expression of the Seven-Gene
Signature

The HPA database was used to analyze the protein expres-

sion levels of the seven genes. Among them, EZH2 and

KIF18A were not significantly different between cancer and

normal tissue, RNASET2 and FXYD5 were relatively highly

expressed in cancer, NAT8 was relatively lowly expressed in

cancer, and CDCA7 and WNT7B had no corresponding pro-

tein expression (Fig. 7A-E).

We then measured the expression levels of the seven

genes in three pairs of kidney cancer and normal tissue.

We found that compared with normal controls, RNASET2

and FXYD5 were significantly highly expressed in cancer,

and NAT8 was relatively lowly expressed in cancer. There

was no difference in expression between tumor tissue and

adjacent tissue in EZH2, KLF18A, CDCA7, and WNT7B,

and the experimental results were almost consistent with our

data analysis (Fig. 8).

Genetic Alterations of the 7 Genes

The mutations of the seven genes were analyzed in the cBio-

Portal database. The gene with the highest mutation propor-

tion was EZH2, accounting for 0.8%, and its mutation types

were amplification and point mutation (Fig. 9A–H).

Discussion

The expression level of mRNA might be related to the devel-

opment of various types of tumors30. Some mRNAs are

considered potential biomarkers for predicting kidney cancer

prognosis, such as the fat mass and obesity-associated

(FTO), ferritin heavy chain (FTH1), and thioredoxin

domain-containing 5 (TXNDC5) genes, and so on31. How-

ever, existing prognostic biomarkers for clinical application

still have great limitations, such as insufficient samples, too

few mRNAs, or lack of independent validation32. The relia-

bility and usefulness of biomarkers require further verifica-

tion. To build a more reliable mRNA prognostic model,

existing gene expression databases were searched to screen

for mRNAs with prognostic significance. In this research,

two models (RF and SVM) were used. RF is a tree-based

classification algorithm that can be applied for classification

and regression33. SVM is a powerful classification tool based

on statistical learning theory. It can be used to create a

boundary between two categories, and so it can predict tar-

gets based on one or more feature vectors; it is thus suitable

for performing classification and regression and probability

estimations34. These two algorithms have played an increas-

ingly important role in the detection of cancer, the explora-

tion of changes in specific functions of different cancer

types, and so on35. In this study, by exploring the correlation

between mRNA expression profiles in the GSE53757 dataset

and clinical kidney cancer prognosis, a seven-gene indepen-

dent prognostic model significantly correlating with kidney

cancer prognosis was constructed.

First, kidney cancer differential genes were screened from

the dataset. To further understand the biological functions of

these differential genes, functional enrichment analysis was

performed. Biological functions are mainly enriched in

terms of small molecule catabolic processes, T-cell activa-

tion, and other aspects. Small molecule inhibitors and

hormone-like drugs have been used in the treatment of can-

cer36. Small molecule metabolites can be used as potential

biomarkers of liver cancer and better distinguish liver cancer

from other bile duct diseases with bile duct tumor thrombo-

sis37. The activation of effector CD8 T cells can initiate an

immune response that is positively associated with breast

cancer survival and be used as a marker for personalized

immunotherapy38. Biological functions are also enriched in

various biological behaviors of leukocytes, such as regula-

tion of leukocyte activation, leukocyte cell-cell adhesion,

leukocyte migration, regulation of leukocyte proliferation,

and leukocyte proliferation. Neutrophils account for 50%
to 70% of all white blood cells and can reflect the state of

inflammation, which is an important sign of cancer, in the

host39,40. Neutrophils are involved in different stages of the

cancer process, including tumorigenesis, growth, prolifera-

tion, and metastasis, and they can be used as biomarkers or

therapeutic targets for prognosis41,42. Neutrophils can pro-

mote tumor proliferation by weakening the body’s immune

system43. They can also promote tumorigenesis by releasing

reactive oxygen species or proteases44 and stimulate metas-

tasis and tumor spread by inhibiting natural killing functions

and promoting tumor cell exudation45,46. Gene-related path-

ways are mainly concentrated in the carbon metabolism,

phagosome, cytokine-cytokine receptor interaction, cell

adhesion molecule, and chemokine signaling pathways.

Cells need a carbon atom unit for nucleotide synthesis. These

pathways are closely related to the high proliferation rate of

cancer cells. Drugs targeting carbon metabolism have been

employed in clinical cancer treatment47. Delayed phago-

some maturation retains antigenic peptides for presentation

to T cells and initiates adaptive immune responses, and adap-

tive immune resistance is an important process for cancer to
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evade immunity by changing its phenotype48,49. Cytokines

play an immunoregulatory role and are essential for the

development of human biology and disease50. For example,

in the interactions of many cytokines with cytokine recep-

tors, interleukin (IL)-21 exerts effective antitumor effects51.

Chemokines are a family of small molecule cytokines whose

main function is to attract immune cells to the corresponding

site of inflammation. The chemokine signaling pathway is

closely related to the growth, proliferation, invasion, and

metastasis of cancer cells52–55. Cell adhesion molecules are

also involved in cancer progression and metastasis, and they

can be potential predictors of tumor recurrence56–58. The

pathways enriched by GO and KEGG are involved in the

genesis and development of tumors, which further validates

the correlation between the differential genes screened and

tumor biological behavior, suggesting that these differential

genes might be related to prognosis.

To further identify the genes most closely related to kid-

ney cancer prognosis, RF and SVM models were con-

structed, and seven hub mRNAs were screened out by

lasso cox analysis. Finally, we determined a seven-gene

prognostic signature, which is different from the existing

stage system, which evaluates the prognosis of patients from

the perspective of molecular biology.

Previous studies have shown that these genes are involved

in tumor development. The RNASET2 gene is the only

member of the T2 extracellular ribonuclease family that has

been localized in humans. It was found to be rearranged in a

variety of cancers and is often considered a tumor suppressor

gene59–62, yet there are currently few studies of this gene in

Fig. 8. Protein and mRNA expression of seven-gene signature in three pairs of renal cell carcinoma and paracancerous tissues.
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relation to kidney cancer. EZH2 is a pleiotropic molecule,

and its basic function is to participate in epigenetic gene

suppression as a component of the poly-comb repressive

complex 2 (PRC2)63. Phosphorylated EZH2 is also a co-

activator of key transcription factors64. EZH2 has been

widely studied in cancer prognosis, and its expression level

is closely related to the prognosis of tumors such as lung

adenocarcinoma, breast cancer, glioma, and intrahepatic

cholangiocarcinoma65–68. The expression level of EZH2 is

elevated in BAP1 mutant renal carcinoma, and it is related to

the poor prognosis of renal carcinoma69. FXYD5 is a type I

membrane protein and an important member of the FXYD

family. FXYD5 is an aggressive biomarker of endometrial

cancer and closely related to the prognosis of ovarian cancer,

but its biological role in kidney cancer is not clear70–72.

KIF18A is a member of the kinesin superfamily, and its

overexpression is associated with the poor prognosis of pri-

mary hepatocellular carcinoma73,74. KIF18A can also pre-

dict the OS rate of patients with papillary renal cell

carcinoma and be used as a prognostic target for papillary

renal cell carcinoma75. CDCA7 can promote lung adenocar-

cinoma proliferation by regulating the cell cycle, and its

overexpression suggests a poor prognosis for triple-

negative breast cancer76,77. In addition, CDCA7 can promote

the invasion and migration of lymphoma by regulating

cytoskeletal dynamics78. Wnt7b is a ligand of the Wnt fam-

ily and is involved in the formation of many organs and

tissues79. Upregulation of Wnt7b expression levels is indi-

cative of a poor prognosis for breast cancer80. Although

these seven key genes are closely related to the development

of cancer, their biological role in kidney cancer is still not

completely clear. Therefore, the roles of these genes need

further study.

The results of the further stratified analysis showed that

the prognostic ability of the seven-gene model was related to

age and stage, and age and stage are important prognostic

factors for kidney cancer that may provide reliable prognos-

tic information and help determine the effective treatment

for patients. This is consistent with recent research

results81,82.

Because the seven-gene model in this study could distin-

guish patients with a high risk of recurrence from those with

low risk, it was considered that this model might be related to

signaling pathways affecting kidney cancer prognosis.

GSEA was performed, and the results showed that the low-

expression group was mainly enriched in some biochemical-

related pathways, while the tumorigenic-related pathways

had higher enrichment scores in the high-expression group,

which is consistent with previous results. The IL-6/Janus

kinase (JAK)/signal transducer and activator of transcription

3 pathway is abnormally activated in many types of cancer

and is often associated with poor clinical prognosis83–85. The

mediators and effectors of inflammation are important parts

of a tumor’s local environment. It can promote the prolifera-

tion of malignant cells and angiogenesis, interfere with the

adaptive immune response, and affect the body’s response to

chemotherapy86. Interferon (IFNg is mainly produced by T

cells and natural killer cells in response to inflammation or

immune stimulation, and plasma IFNg levels are reduced in

patients with lung cancer87,88. Epithelial-to-mesenchymal

transition plays a vital role in tumor biology and is consid-

ered a potential therapeutic target and prognostic factor for

kidney cancer89. The main role of pancreatic beta cells is to

synthesize and secrete insulin. A decrease in pancreatic beta

cells is closely related to the occurrence and development of

diabetes. Pancreatic islet b cells expressing LGR5 and Nanog

markers may be the starting cells of pancreatic cancer90,91.

Protruding from the apical surface of epithelial cells are

characteristic morphological features, such as microvilli.

These substances promote epithelial function by expanding

the surface area of the epithelium. Disturbance of these struc-

tures during their formation can lead to various diseases92.

Bile acid metabolism is an important pathway for cholesterol

catabolism93. Stool bile acid levels in patients with cancer are

higher than in healthy controls or those with other diseases94.

Intestinal microbes can use bile acids as messengers to reg-

ulate the antitumor immunity of patients with liver tumors95.

As the main coordinator of the immune response, IFNg is a

pleiotropic cytokine with antitumor and immunomodulatory

properties96. It plays a key role in tumor immune surveillance

and stimulating antitumor immunity97,98. Coagulation is

closely related to the occurrence and development of gastric

cancer, lung cancer, colon cancer, and ovarian cancer99–101.

Angiogenesis is a hallmark of cancer. Tumor growth requires

blood vessels to provide nutrients and oxygen for the growth

of proliferating cancer cells. Tumor blood vessels are the key

targets of cancer treatments102,103. This discussion not only

further proves the reliability and clinical applicability of the

model but also provides references for understanding the

molecular mechanism of kidney cancer progression and

prognosis.

To the best of our knowledge, these seven genes’ poten-

tial as biomarkers has not been studied before, though stud-

ies would provide new guidance for kidney cancer

prognosis. In routine clinical practice, pathological staging

is a key prognostic determinant for oncologists and patients

with kidney cancer. However, the different clinical out-

comes of patients with kidney cancer at the same stage indi-

cate that the current clinical staging system is insufficient for

prognosis, as it is based entirely on the anatomic scope and

staging system of the disease and cannot fully reflect the

biological heterogeneity of patients with kidney cancer.

These problems might affect the predictive accuracy of tra-

ditional systems in patients with kidney cancer.

Our findings suggest that the nomogram constructed by

combining seven gene signature can clearly display the

degree of risk and overall survival according to the patient’s

clinical stage, age, and other factors. This may be helpful for

patient counseling, decision-making, and follow-up schedul-

ing. In short, the predictive model we developed will enable

patients with kidney cancer to be managed more accurately

Tian et al 13



in clinical practice. At the same time, it can help clinicians

choose personalized treatment for patients.

We measured the expression of seven genes in three pairs

of kidney cancer and normal tissue. Compared with normal

tissue, RNASET2 and FXYD5 were highly expressed in

tumor tissue, while NAT8 expression was relatively low in

tumor tissue. Furthermore, there was no difference in EZH2,

KLF18A, CDCA7, or WNT7B expression between tumor

tissue and adjacent tissue.

In summary, existing genomic data in databases were

integrated with bioinformatics technology to identify DEGs

related to kidney cancer prognosis, and an mRNA prognostic

model more reliable than a single-mRNA model was estab-

lished. This model could well distinguish patients with high

relapse risk from those with low risk, and its predictive

performance was independent of age and stage. The model

may not only raise new ideas for predicting the risk of kidney

cancer recurrence, but it may also provide a reference for

individualized treatment. However, further studies are still

needed to validate the clinical applicability of the model.
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96. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ.

Interferon-gamma at the crossroads of tumor immune surveil-

lance or evasion. Front Immunol. 2018;9:847.

97. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z,

Yang J, Wang B, Sun H, Xia H. Exosomal PD-L1 contributes

to immunosuppression and is associated with anti-PD-1

response. Nature. 2018;560(7718):382–386. doi:10.1038/

s41586-018-0392-8.

98. Xu YP, Lv L, Liu Y, Smith MD, Li WC, Tan XM, Cheng M,
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