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Abstract

Interferon alpha (IFNa) therapy, despite good efficacy in curing HCV infection, leads to major side effects, in particular
inducement of a strong peripheral T-cell lymphocytopenia. We here analyze the early consequences of IFNa therapy on
both thymic function and peripheral T-cell homeostasis in patients in the acute or chronic phase of HCV-infection as well as
in HIV/HCV co-infected patients. The evolution of T-cell subsets and T-cell homeostasis were estimated by flow cytometry
while thymic function was measured through quantification of T-cell receptor excision circles (TREC) and estimation of
intrathymic precursor T-cell proliferation during the first four months following the initiation of IFNa therapy. Beginning
with the first month of therapy, a profound lymphocytopenia was observed for all T-cell subsets, including naı̈ve T-cells and
recent thymic emigrants (RTE), associated with inhibition of intrathymic precursor T-cell proliferation. Interleukin (IL)-7
plasma concentration rapidly dropped while lymphocytopenia progressed. This was neither a consequence of higher
consumption of the cytokine nor due to its neutralization by soluble CD127. Decrease in IL-7 plasma concentration under
IFNa therapy correlated with the decline in HCV viral load, thymic activity and RTE concentration in blood. These data
demonstrate that IFNa-based therapy rapidly impacts on thymopoiesis and, consequently, perturbs T-cell homeostasis.
Such a side effect might be detrimental for the continuation of IFNa therapy and may lead to an increased level of infectious
risk, in particular in HIV/HCV co-infected patients. Altogether, this study suggests the therapeutic potential of IL-7 in the
maintenance of peripheral T-cell homeostasis in IFNa-treated patients.
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Introduction

The hepatitis C virus (HCV) causes persistent infection in

approximately two thirds of cases leading to chronic liver disease,

liver failure, and, eventually, hepatocellular carcinoma in a

substantial proportion of infected individuals. The most common

therapy for chronic hepatitis C consists of pegylated interferon-a
(IFNa) and ribavirin administration which results in viral

clearance in 43–46% (genotype 1) to 80%, (genotype 3) of treated

patients [1]. Interferon will continue to be a major component of

new direct acting antivirals for treatment of HCV [2].

IFNa is produced in large amounts during the acute phase of

many viral infections [3,4,5,6]. Direct activation of interferon-

stimulated genes enhances naı̈ve T-cell survival through increased

Bcl-2 and reduced Bax activation [7] and contributes to clonal

expansion of antigen-specific T-cells [8]. Recent data suggest that

early therapeutic intervention with pegylated IFNa rescues

polyfunctional memory T-cells expressing high levels of the IL-7

receptor alpha chain (CD127) and Bcl-2, allowing a higher rate of

sustained viral response [9]. However, despite good efficacy,

IFNa-based therapies lead to sustained anemia, thrombocytope-

nia, neutropenia and lymphocytopenia [10,11,12,13,14]. More-

over, pegylated IFNa therapy enhances the risk of infection in

older HCV-infected patients and HIV-infected individuals,

independently from neutropenia [15,16,17].

The mechanisms of action of IFNa include inhibition of

different hematopoietic growth factors [18,19], possibly affecting

lymphoid differentiation at an early stage [20], and modifications

in cell homing [12,21,22]. The mechanisms involved in IFNa
therapy-associated leukocyte depletion remain poorly understood.

Others and we have documented a strong reduction in the

ability of HIV-infected patients to sustain thymic production as a

direct consequence of a drop in intrathymic precursor T-cell

proliferation [23,24,25]. Similar thymic impact was also seen

during early SIV-infection in the rhesus macaque model [26]. The

capacity of the thymus to produce recent thymic emigrants (RTEs)

is, in large part, dependent on thymocyte proliferation [27].

Indeed, extensive thymocyte proliferation occurs between T-cell
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receptor beta (TCRB) and alpha (TCRA) chain rearrangements.

The extent of this proliferation directly correlates with thymic

export [28]. The extent of cell proliferation in the thymus can be

measured in patients through estimating, in peripheral blood cells,

the ratio (sj/bTREC ratio) between the frequency of signal joint

T-cell receptor excision circles (sjTREC), produced during the

excision of the TCRd locus prior to TCRa chain rearrangement,

and that of DbJbTREC T-cell receptor excision circles (TRECs)

produced during TCRBD to TCRBJ rearrangement [29]. These

by-products of TCR rearrangement processes are generated by

the circularization of the chromosomal DNA excised during TCR

rearrangements respectively occurring at the DN3 (DbJbTREC)

and DP (sjTREC) stages of differentiation. Due to the fact that

TRECs do not replicate during mitosis, increased proliferation

between DN3 and DP leads to the reduction of DbJbTREC

frequency in RTEs as compared to sjTREC frequency and

consequently to an increase of the sj/bTREC ratio [23]. The

correlation between initial plasma IFNa levels and the speed of

thymic dysfunction observed during HIV primary infection

suggested that IFNa, produced as part of the innate immune

response to infection, participates in the impairment of thymopoi-

esis. However, no direct evidence of the relationship between

IFNa production and thymic dysfunction was provided by these

studies. In contrast, Arizcorreta and colleagues showed that IFNa
and ribavirin therapy induces a substantial reduction of circulating

sjTRECs, in HIV/HCV co-infected patients, accompanied by

sustained naı̈ve CD4+ T-cell defect, suggesting thymic dysfunction

[10]. Similarly, in the SIV-infected rhesus macaque model, we

showed that IFNa therapy induced a strong decrease of circulating

RTE numbers as defined either by sjTREC frequency and

numbers or by CD31hi expression on naı̈ve T-cells [30].

Interestingly, in these animals, recombinant interleukin (IL)-7

therapy more than abrogated the deleterious effects of IFNa
therapy [30].

IL-7 is a key cytokine implicated at various levels of thymocytes

differentiation. It allows cell survival during the rearrangement

processes, and is implicated in the extensive thymocyte prolifer-

ation, in particular in intermediate single positive (ISP) and early

DP cells [31,32,33,34]. This proliferation participates in the

development of naı̈ve T-cell diversity [35]. While up regulated by

IFNa [36,37], the cyclin-dependent kinase inhibitor P27/Kip1 is

negatively regulated by IL-7 [38], allowing ISP and early DP

thymocytes to proliferate. Moreover, IFNa also inhibit IL-7

dependent proliferation through down modulation of the common

c chain, that participates, together with CD127 to the IL-7

receptor [39]. We here investigated the early impact of IFNa
therapy on thymic function and naı̈ve T-cell homeostasis in both

HCV-infected and HIV/HCV co-infected patients who started

IFNa therapy.

Results

IFNa treatment alters circulating naı̈ve T-cell subsets
We first evaluated the evolution of naı̈ve T-cell subsets in three

groups of HCV infected individuals: 1) Acute HCV infection

(n = 8), defined as ,6 months post estimated date of infection; 2)

chronic HCV infection (n = 8), defined as .6 months post

estimated date of infection; and 3) HIV/HCV co-infected

individuals (n = 10). In all groups, patients were enrolled at the

beginning of IFNa therapy and were followed for a total of

4 months. While, for any group of patient’s, naı̈ve CD4+ and

CD8+ T-cell counts were not significantly different from healthy

individuals (figure 1A), as early as one month following treatment

initiation, naı̈ve CD4+ T-cell counts were significantly reduced in

chronically HCV-infected patients (39%, 58%, 46% and 35%

decrease at M1, M2, M3 and M4 respectively; p#0.025;

Figure 1B, top central panel). A similar trend was also observed

in the CD8 compartment (40%, 39%, 33% and 33% decrease;

Figure 1B, bottom central panel). A comparable effect was also

observed in most co-infected patients (mean cell count declines

were 19%, 32%, 52% and 43% at M1, M2, M3 and M4 in the

CD4+ T-cell compartment and 9%, 21%, 41% and 42% in CD8+
T-cell subset; p#0.05 by M2–M3; Figure 1B, right panels). In

contrast, naı̈ve T-cell counts were only barely affected in acutely-

HCV infected patients under IFNa therapy (Figure 1B, left

panels). Similarly, central memory CD4+ T-cells (CD45 RA-

CCR7+; TCM) demonstrated 38% and 28% decrease in HCV

and HIV/HCV patients respectively (59% and 60% in CD8+
TCM) while effector memory (CD45RA2 CCR7–; TEM) CD4+
T-cell counts declined by 45% and 10% in the same groups (61%

and 65% in CD8+ TEM) (Figure S1).

Within CD4+ naı̈ve T-cells, RTEs can be identified by their

higher expression of the platelet endothelial cell adhesion

molecule-1 (PCAM-1 or CD31) [40]. While the number of RTEs

was similar in HCV-infected patients at study entry and healthy

individuals (Figure 2A, top panel), the proportion of CD31hi cells

in naı̈ve CD4+ (CD45RA+ CCR7+) T-cells was significantly

reduced by M1 in acutely HCV-infected patients (p,0.05 at all

time points). Together with the decline in naı̈ve T-cell counts, this

translated into reduced numbers of circulating RTE (p#0.05 by

M2; Figure 2B, top left panel). Similarly, chronically HCV-

infected patients demonstrated lower absolute numbers of CD31hi

naı̈ve T-cells by M1 (p#0.012; Figure 2B, central panel). In the

co-infected patients group, despite more limited variations in the

percentage of RTEs in naı̈ve T-cells (p#0.05 at M1 and M4), the

absolute RTE counts also declined with time under therapy

(p#0.05 at M2, M3 and M4; Figure 2B, right panel).

RTE concentration in blood can also be estimated through

quantification of the sjTREC content (sjTREC/mL, Figure 2,

bottom panels). sjTREC content was in the range of age matched

healthy individuals at baseline (figure 2A) but declined significantly

in both subgroups of HCV-infected patients by one month

following initiation of IFNa therapy (median = 5034, 4104, 2980,

2805 and 3076 sjTREC/mL at M0, M1, M2, M3 and M4

respectively in acutely HCV-infected patients; p,0.05 and

median = 3879, 1895, 2018, 1511 and 1040 sjTREC/mL at M0,

M1, M2, M3 and M4 respectively in chronically HCV-infected

patients; p,0.05; Figure 2B, left and central bottom panels). In

contrast, HIV/HCV infected patients demonstrated more stable

sjTREC/mL values that eventually declined at M4 (median

= 4192, 5215, 4420, 3871 and 1597 sjTREC/mL at M0, M1, M2,

M3 and M4 respectively (p = 0.046 at M4); Figure 2B, right

bottom panel).

These data demonstrate that, as early as one month following

treatment initiation, IFNa induces stronger alterations of naı̈ve T-

cell subsets, and more specifically in the RTE compartment than

in any other T-cell subset, suggesting a specific effect on

thymopoiesis. We thus analyzed the evolution of intrathymic

precursor T-cell proliferation, peripheral T-cell cycling, IL-7

plasma concentration and IL-7 receptor alpha chain (CD127)

expression, different factors affecting naive T-cell homeostasis.

IFNa therapy affects thymic function
Despite differences between the 3 groups at study entry, RTE

cycling rate, as estimated through measurement of Ki-67

expression, did not change significantly during the follow-up

period (Figure 3A). These data demonstrate that the observed

changes in sjTREC frequencies were not a consequence of

IFNa-Therapy Alters Thymopoiesis
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variations of RTE proliferation during IFNa therapy but more

probably due to reduced thymic production.

We thus estimated thymic output through quantification of the

sj/bTREC ratio in all groups of patients (Figure 3B). The sj/

bTREC ratio estimates the extent of thymocyte proliferation

between TCRB rearrangement and the excision of the T-cell

receptor delta (TCRD) locus [23]. This parameter directly reflects

the extent of thymic production and, contrarily to sjTREC values,

is independent from peripheral RTE proliferation or survival

capacity [28]. The sj/bTREC ratio was already low in HIV-

infected patients (p,0.005 as compared to healthy control donors;

Figure 3B bottom left panel) and did not evolve further under

IFNa therapy in co-infected patients (Figure 3B, bottom right

panel). In contrast, acutely HCV-infected patients demonstrated

higher than normal sj/bTREC ratio at baseline (p,0.05 as

compared to aged matched healthy controls), showed a significant

reduction in sj/bTREC ratio at M1 (p = 0.014) and M2

(p = 0.001; Figure 3B, top panel). Finally, a similar decline in the

sj/bTREC ratio was observed during IFNa therapy in chronically

HCV-infected patients (p,0.02 at M1, M2 and M3; Figure 3B,

central panel).

Reduction of IL-7 plasma levels under IFNa treatment
Precursor T-cell proliferation in the thymus is, at least in part,

dependent upon IL-7. We thus quantified plasma IL-7 concen-

tration in all groups of patients. At study entry, HCV- and HIV/

HCV-infected patients presented with elevated plasma IL-7

(median = 10.3 pg/mL, range (6.7–12.9) in acutely HCV-infected

patients; 8.3 pg/mL (6.3–10.5) in chronic HCV-infected patients

and 7.15 pg/mL (4.3–13.5) in co-infected subjects), as compared

to that observed in healthy control individuals (p,0.001 for any

patients’ group; Figure 4A). Surprisingly, while lymphocytopenia

established, IL-7 plasma concentrations significantly decreased in

both groups of HCV-infected patients (30, 54, 18 and 29%

decrease at M1 to M4 in acute infection, p,0.05; 25, 46, 26 and

16% decrease at M1 to M4 in chronic infection, p,0.05; Figure 4B

left and central panels). In contrast, IL-7 plasma levels did not

significantly evolve in co-infected individuals during the first

month of IFNa therapy (Figure 4B right panel). Only patients with

the highest IL-7 plasma levels showed a reduction in the

concentration of this cytokine.

Decreased plasma IL-7 concentrations could be a consequence

of reduced IL-7 production, increased consumption by T-cells or

sequestration by soluble IL-7 receptor (sCD127). In both HCV-

infected and HIV/HCV co-infected patients, neither sCD127

Figure 1. IFNa therapy leads to naı̈ve T-cell lymphocytopenia. (A) CD4+ (top panel) and CD8+ (bottom panel) naı̈ve T-cell counts were
quantified in peripheral blood cells from acutely HCV-infected (light grey symbols), chronically HCV-infected (black symbols) and HIV/HCV co-infected
(white symbols) patients at study entry, as compared to healthy donors (HCV-, dark grey symbols). (B) Evolution of CD4+ (top panels) and CD8+

(bottom panels) naı̈ve T-cell counts during the first 4 months of IFNa therapy in acutely HCV-infected (left panels), chronically HCV-infected (central
panels) and HIV/HCV co-infected (right panels) patients. Each line represents data from an individual patient. Statistical significances of the
differences to baseline values (time 0), calculated on the absolute naı̈ve T-cell counts in each individual sample, (Wilcoxon matched-pairs signed-ranks
test) are shown on top. The horizontal bars represent median values.
doi:10.1371/journal.pone.0034326.g001

IFNa-Therapy Alters Thymopoiesis
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plasma concentration (Figure 4C) nor CD127 expression by CD4+
or CD8+ T-cells (Figure 4D) significantly changed during IFNa
therapy.

Evolution of Thymic function parallels IL-7 plasma levels
Considering the variations in all the parameters we used to

evaluate thymic function, we then sought to evaluate the impact of

changes in IL-7 plasma levels on de novo production from the

thymus and on the number of both sjTREC and circulating CD4+
RTEs.

In a majority of patients, IL-7 plasma level, sj/bTREC ratio,

sjTREC/ml and blood RTE concentration fluctuated in parallel

(Figure S2). Variation of IL-7 plasma concentration (DIL-7)

during the first month of therapy correlated with variations in

naı̈ve T-cell counts (CD4+ + CD8+; DNaı̈ve T-cell counts) and

RTE CD4+ T-cell counts (DRTE T-cell counts) in both HCV

(r = 0.521, p = 0.039 and r = 0.595, p = 0.025; Figure 5A and 5B,

left panels) and, to a lesser extent, HIV/HCV co-infected patients

(r = 0.636, p = 0.048 and r = 0.539, p = 0.108; Figure 5A and 5B,

right panels). Moreover, in HCV-infected patients, DIL-7 also

correlated with variations in intrathymic precursor T-cell

proliferation (Dsj/bTREC ratio; r = 0.601, p = 0.020; Figure 5C).

Variations in plasma IL-7 levels also correlated with changes in

the proportions (D%Ki-67+ in CD4+RTEs; r = 0.806, p = 0.0002;

Figure 5D, left panel) and numbers (DKi-67+RTEs; r = 0.706,

p = 0.002; Figure 5E, left panel) of cycling RTEs in acute and

chronic HCV infected patients and with D%Ki-67+RTE counts in

co-infected patients (r = 0.709, p = 0.022; Figure 5E, right panel).

Overall, IL-7 concentration was associated with reduced thymo-

poiesis and RTE proliferation, lower consequently leading to

limited circulating RTE and naı̈ve T-cell counts. These data

strongly suggest that changes in IL-7 plasma levels during IFNa
therapy directly impact the homeostasis of RTEs.

Discussion

We herein demonstrated that IFNa-based therapy leads to

major lymphocytopenia in naı̈ve T-cell compartments, in

particular in the RTE subset. Several mechanisms could be

implicated in the establishment of such a lymphocytopenia [41].

Among these, enhanced apoptosis [42,43], cell sequestration in

lymphoid or non-lymphoid organs [12,21,22] and regulation of

peripheral T-cell homeostasis [20]. In our study, no major change

in cell survival (Bcl-2 expression) or T-cell activation (CD25 and

CD69 expression) was observed during the follow-up period (data

not shown). Moreover, we did not observe any significant

modification in Ki-67 expression in any T-cell subset during the

first month of therapy (data not shown and Figure 3). Finally,

Figure 2. IFNa therapy reduces recent thymic emigrant blood counts. (A) Recent thymic emigrant counts (RTE/ml, top panel) and sjTREC
concentration (TRECs/ml, bottom panel) were quantified in peripheral blood cells from acutely HCV-infected (light grey symbols), chronically HCV-
infected (black symbols) and HIV/HCV co-infected (white symbols) patients at study entry, as compared to healthy donors (HCV2, dark grey symbols).
(B) Evolution of (RTE/ml, top panels) and sjTREC concentration (TRECs/ml, bottom panels) during the first 4 months of IFNa therapy in acutely HCV-
infected (left panels), chronically HCV-infected (central panels) and HIV/HCV co-infected (right panels) patients. Each line represents data from an
individual patient. Statistical significances of the differences to baseline values (time 0), calculated on the absolute RTE CD4+ T-cell counts and sjTREC
levels in each individual sample (Wilcoxon matched-pairs signed-ranks test) are shown on top. The horizontal bars represent median values.
doi:10.1371/journal.pone.0034326.g002

IFNa-Therapy Alters Thymopoiesis

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e34326



IFNa-induced T-cell homing, although rapid and massive, is only

a transient process [22] suggesting that this mechanism marginally

contributes to the observed long lasting lymphocytopenia.

Interestingly, both sjTREC quantification (sjTREC/mL) and

intrathymic precursor T-cell proliferation (sj/bTREC ratio) were

affected very early on after initiation of therapy (Figures 2B and

3B). While sjTREC frequency and concentration in peripheral

blood can be affected by modifications of parameters that impact

on peripheral T-cell homeostasis (cycling, survival/apoptosis,

homing), the sj/bTREC ratio is a marker of the intrathymic

proliferation history of RTEs. Indeed, this parameter is generated

by cell proliferation that occurs between TCRb chain rearrange-

ment and the excision of TCRd locus. Further cell cycling after

TCRa chain rearrangement does not modify the sj/bTREC ratio

as both type of TRECs are similarly diluted upon cell

proliferation. Accordingly, while exported to the periphery, the

sj/bTREC ratio of mature T-cells cannot be modified. Therefore,

while the observed decrease in sjTREC concentration (figure 2)

can be a consequence of modifications of circulating T-cell

homeostasis, the decline of the sj/bTREC ratio observed during

the first months of IFNa therapy (figure 3) defines changes in

thymocyte proliferation, thus in thymic output [28]. Acutely

infected patients demonstrated a higher sj/bTREC ratio at

baseline than patients in the chronic phase. However, this group

was younger (Median = 31.5 (26–47)) versus Median = 53.5 (37–

61)) than the chronic group (p,0.01; data not shown) and

demonstrated normal sj/bTREC ratio for their age. Similar

evolution of thymic function and circulating T-cell subsets were

observed in both groups of HCV-infected patients, irrespective of

the development stage of HCV pathology. The lack of effect of

IFNa therapy in HIV/HCV co-infected patients might be due to

the fact that, as expected for chronically HIV-infected individuals,

these patients already had a low thymic function at study entry.

The impairment of thymopoiesis in HCV-infected patients under

IFNa therapy is reminiscent of that observed during the acute

phase of HIV-1 infection [23] which suggested that long term

production of IFNa, as part of the anti-HIV innate immune

response, may play a role in the observed thymic defect. The

Figure 3. IFNa therapy leads to major impairment of thymic function. (A) The frequency of Ki-67 expressing cells in the CD4+ RTE subset
(CD31hi naı̈ve T-cells) was measured in acutely HCV-infected (grey symbols, top panel), chronically HCV-infected (white symbols, top panel) and HIV/
HCV co-infected (bottom panel) patients (central panels) and HIV/HCV co-infected (right panels) patients. Each line represents data from an individual
patient. Statistical significances of the differences to baseline values (time 0), calculated on the absolute sj/bTREC ratio in each individual sample
(Wilcoxon matched-pairs signed-ranks test) are shown on top. The horizontal bars represent median values.
doi:10.1371/journal.pone.0034326.g003

IFNa-Therapy Alters Thymopoiesis
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correlation between decline in IL-7 plasma levels under IFNa
therapy and both thymic dysfunction and reduced T-cell counts,

in particular in the naı̈ve and RTE compartments (Figures 5A and

5B), confirms this hypothesis. Finally, in a recent study, we showed

that IFNa treatment leads to decreased sjTREC frequency as well

as reduced naı̈ve T-cell and RTE counts in SIV-infected rhesus

macaques [30]. Such an effect was accompanied by a 30–40%

decrease in IL-7 plasma levels in these animals and could be

counteracted by injection of recombinant simian IL-7 [30]. One

could expect that such an effect of type I IFNs is not restricted to

HIV-infection as many viral infections induce IFNa responses and

cause transient lymphocytopenia in the infected hosts [3,4,5,6].

Moreover, the IFNa-induced reduction of thymic function and its

probable consequences on naı̈ve T-cell diversity may contribute to

the higher infectious risk associated with IFNa therapy, in

particular observed in older patients [15,16,44]. There are

multiple sources for circulating IL-7 during viral infections

including lymphoid organs, epithelial cells and recently the liver

was identified as a major source of IL-7. Moreover, increased

plasma IL-7 levels can also be observed during viral infection in

non-lymphopenic individuals ([33] and unpublished data), sug-

gesting a role in the development of immune responses. Indeed,

this cytokine participates to T-cell homing in various lymphoid

and non-lymphoid tissues through stimulation of local chemokine

Figure 4. IFNa therapy leads to reduction in IL-7 plasma concentration. (A) IL-7 plasma levels were quantified in peripheral blood cells from
acutely HCV-infected (light grey symbols), chronically HCV-infected (black symbols) and HIV/HCV co-infected (white symbols) patients at study entry,
as compared to healthy donors (HCV-, dark grey symbols). **: p,0.001 for any HCV-infected patients group. (B) Evolution of plasma IL-7 levels over
the first 4 months of IFNa therapy in acutely HCV-infected (left panels), chronically HCV-infected (central panels) and HIV/HCV co-infected (right
panels) patients. Each line represents an individual patient. Statistical significances of the differences to baseline values (time 0), calculated on the
absolute IL-7 plasma levels in each individual sample (Wilcoxon matched-pairs signed-ranks test) are shown on top. (C) Soluble CD127 was quantified
in plasma from acutely HCV-infected (white symbols, top panel), chronically HCV-infected (black symbols, top panel) and HIV/HCV co-infected
(bottom panel) patients at baseline (0) and M2. (D) CD127 expression was measured on circulating CD4+ (top panel) and CD8+ (bottom panel) and
expressed as mean fluorescence intensity (left panels) and percentages of positive cells (right panels) over the 4 first months of IFNa therapy.
doi:10.1371/journal.pone.0034326.g004

IFNa-Therapy Alters Thymopoiesis
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productions [45]. Increased IL-7 plasma levels in lymphopenic

individuals is likely due to reduced consumption [46] yet

augmented production to counteract lymphopenia cannot be

excluded [33]. The recent identification of the liver as an IL-7

producing tissue upon TLR stimulation [47] makes it tempting to

speculate that HCV-infection can also, through TLR activation,

stimulate IL-7 production by the liver. Indeed, non-lymphopenic

HCV-infected patients demonstrate similar IL-7 plasma levels

than lymphopenic HIV-infected individuals [33,48] suggesting

that most of the IL-7 production in untreated HCV-infected

patients was not linked to circulating T-cell counts. The reduction

of IL-7 plasma levels while lymphocytopenia establishes under

IFNa therapy, the absence of a correlation between IL-7 plasma

levels and CD127 expression and the concomitance of decreases in

IL-7 plasma levels and HCV viral load under therapy suggest that

viremia might be driving IL-7 production before initiation of

therapy. Our data suggest that, before initiation of IFNa therapy,

actively replicating HCV leads to the overproduction of IL-7.

Subsequent reduction of IL-7 production upon initiation of

therapy probably reflects the elimination of IL-7 producing

HCV-infected hepatocytes. This sudden reduction of IL-7 plasma

levels may lead to diminished thymopoiesis. The fact that IL-7

plasma levels did not reach normal levels when HCV became

undetectable may suggest that, after the initial decline that follows

the drop in viremia, IL-7 plasma levels were regulated, as in HIV-

infected patients [33] and in IFNa-treated SIV-infected rhesus

macaques [30], as a consequence of lymphocytopenia through

either reduced consumption or increased production in lymphoid

organs [49]. Future studies with a longer follow-up period, in

particular after the end of IFNa therapy and recovery from

lymphocytopenia are required to further elucidate this point.

We herein demonstrated that a substantial reduction in thymic

export was observed in HCV-infected patients, during the first

months of IFNa therapy. This effect directly paralleled IFNa-

induced lymphocytopenia and decreased IL-7 plasma levels,

initially high in HCV-infected patients. These data suggest that

IL-7 production by the liver, a consequence of active HCV

replication, was reduced while patients controlled HCV viremia.

Restricted IL-7 plasma levels might, in association with the anti-

proliferative effect of IFNa, limit T-cell production in the thymus.

Our study highlights the therapeutic potential of IL-7 as a

complement to the standard IFNa based treatment to help HCV-

infected patients to sustain normal circulating T-cell counts, and

restore the diversity of the peripheral T-cell repertoire through its

central thymopoietic effect. Restoring the breadth and intensity of

T-cell control over the HCV virus might be immediately beneficial

for the HIV/HCV co-infected population and offer new

promising avenues for chronic HCV in the context of massive

drop of HCV viral load after short term treatment with new

antiviral compounds that will continue to be administered in

combination with IFNa [50].

Patients and Methods

Patients characteristics
Sixteen HCV-infected patients (C-1 to C-16) and ten HIV/

HCV co-infected patients (I-1 to I-10) naı̈ve to IFNa therapy were

enrolled in this study. A summary of the virological and

immunological status of patients at baseline is shown in table 1.

All the HIV/HCV co-infected patients but one were under

HAART with undetectable viremia (,40 HIV copies/mL).

Chronically infected patients (C-9 to C-16 and I-1 to I-10)

initiated pegylated IFNa/ribavirin treatment (IFNa-2a: Pegasys,

180 mg weekly, Ribavirin: Copegus, 800 mg to 1000 mg daily) and

were followed over a 4 months period. Patients included in the

acute phase of HCV infection (C-1 to C-8) were treated with

pegylated IFNa (IFNa-2a: Pegasys, Roche, 180 mg weekly)

[51,52]. Blood samples were taken monthly on EDTA. Two

milliliters of total blood were 2-fold diluted in FCS/20%DMSO

frozen at 280uC and conserved in liquid nitrogen. These total

blood samples were subsequently used for flow cytometry analyses.

Plasma was separated from the remaining eight milliliters and

mononuclear cells were purified on Ficoll Hypaque (Eurobio,

Courtaboeuf, France) and frozen for further analyses. Patients

from the HCV mono-infection group were followed at the Centre

de Recherche du CHUM, Hôpital Saint Luc, Montreal, QC,

Canada and its collaborators as previously described [9,53].

Patients from the HIV-HCV groups were followed at the Hôpital

Henri Mondor, Creteil, France. Clinical protocols conformed to

Figure 5. Variations in IL-7 plasma levels correlate with
evolution of RTE production. Correlations. between variations in
IL-7 plasma levels (DIL-7) and either variations in (A) total (CD4+ + CD8+)
naı̈ve T-cell counts (Dnaı̈ve T-cell counts), (B) RTE defined as CD31hi

naı̈ve CD4+ T-cells (DRTE CD4 counts), (C) the sj/bTREC ratio (Dsj/bTREC
ratio), (D) the frequency of Ki-67+ cells in the RTE CD4+ T-cell subset
(D%Ki-67+ in CD4+ RTEs) or (E) the number of circulating Ki-67+CD4+

RTEs (DKi-67+ RTE counts) between study entry and month 1 of therapy
were calculated for acutely (black symbols) and chronically (white
symbols) HCV-infected patients (left panels) and HIV/HCV co-infected
patients (right panels). Correlation coefficients (Spearman’s r) and the
associated probabilities (p) are shown.
doi:10.1371/journal.pone.0034326.g005
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ethical guidelines of the authors’ institutions and the US

Department of Health and Human Services’ human experimen-

tation guidelines. This study was approved by both the Ethical

committee of Centre Hospitalier de l’Université de Montreal

(CHUM) and the ethical committee of Hôpital Henri Mondor,

Créteil, France. Samples were obtained with the written subjects’

informed consent.

Immunophenotyping and flow cytometry analysis
FACS analyses were performed on cryopreserved samples. After

thawing blood cells were incubated for 15 minutes at 4uC with

conjugated monoclonal antibodies (mAbs). For intracellular

labeling, cells were permeabilized with the Cytofix/Cytoperm

Kit (Becton Dickinson) before incubation with specific mAbs

according to the manufacturer’s instructions. Samples were then

washed, fixed in 2% paraformaldehyde phosphate-buffered saline

(PBS/PFA 2%) and acquired using a Cyan cytofluorometer (Dako)

and analyzed with FlowJo 8.7 software.

The monoclonal antibodies used in this study were: CD3-pacific

blue (PB) (clone UCHT-1; Dako, Trappes, France), CD4-peridin

chlorophyll protein-cyanine 5.5 (PerCP-Cy5.5) (clone L200; BD,

Le-Pont-de-Claix, France), CD45RA-phycoerythrin (PE) (clone

HI100; BD), CCR7-allophycocyanin (APC) (clone 150503; R&D

Systems Europe, Lille, France); CD8-phycoerythrin-cyanine 7

(PE-Cy7) (RPA-T8; BD), CD31-biotin (clone WM59; AbDSer-

otec, Düsseldorf, Germany); Ki-67-fluorescein isothiocyanate

(FITC) (clone MIB-1; Dako), Bcl-2-FITC (clone 124; Dako) and

strepatavidin-PE-Texas-RED (BD).

IL-7 plasma quantification
IL-7 was quantified in the plasma using the IL-7 Quantikine HS

kit according to the manufacturer’s instructions (R&D Systems

Europe). Plasma soluble-CD127 quantification Soluble plasma IL-

7 receptor (sCD127) quantification was performed as previously

described [54].

TREC quantifications
Parallel quantification of the sjTREC and the 13 DJbTRECs,

together with CD3c gene (used as a housekeeping gene) was

performed for each sample using LightCyclerTM technology

(Roche Diagnostics) with a technique adapted from [29].

Table 1. Patients’ characteristics.

Patient Code Gender Age at Tx start HCV genotype HCV stage Baseline Viral loada,b 12 weeks Viral load

C-1 F 33 3a Acute 2.4E+4b ,50c

C-2 M--.F 30 1 Acute 2.8E+4b ,50c

C-3 M 39 2b Acute ,1000b ,50c

C-4 M 26 3a Acute 4.78E+6b ,50c

C-5 M 26 1a Acute ,600a ,50c

C-6 M 31 1b Acute ,600a ,50c

C-7 M 46 3a Acute 1.56E+4b ,50c

C-8 M 45 1a Acute 1,21E+06 b ,50c

C-9 M 36 1b Chronic 8,50E+06a ,50c

C-10 M 39 1a Chronic 1,28E+07a ,50c

C11 F 46 1a Chronic 8,26E+06a ,50c

C-12 M 52 1b Chronic 2,70E+06a ,50c

C-13 M 55 1a Chronic 4,79E+06a 4,69E+03a

C-14 M 58 1a Chronic 1,73E+07a ,50c

C-15 M 61 1a Chronic 3,70E+05a ,50c

C-16 M 61 1b Chronic 3,00E+06a 3,47E+04a

I-1 M 42 3 Chronic NA ,12d

I-2 M 48 3a Chronic 1.51E+6 ,12d

I-3 M 39 3 Chronic 7.6E+5 ,12d

I-4 M 48 3a Chronic 6.4E+4 ,12d

I-6 F 53 2a/2c Chronic 3.0E+6 ,12d

I-7 M 43 2a/2c Chronic 4.3E+6 ,12d

I-8 M 41 1 Chronic 6.7E+5 2.4E+5

I-9 M 43 1 Chronic 1.8E+6 ,12d

I-10 M 41 4 Chronic 6.6E+5 1.6E+5

I-11 M 39 1 Chronic 7.7E+5 1.6E+4

aCOBAS Amplicor HCV Monitor test, Version 2.0 (sensitivity 600 IU/ml).
bIn house real time quantitative PCR assay (sensitivity 1000 IU/ml).
cQualitative COBAS AmpliPrep/COBAS Amplicor HCV test, version 2.0 (sensitivity 50 IU/ml).
dAbbott RealTime HCV assay (sensitivity 12 IU/ml).
NA: Not available.
doi:10.1371/journal.pone.0034326.t001
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Intrathymic precursor T-cell proliferation was evaluated through

calculation of the sj/bTREC ratio as described [23].

HCV RNA quantification
HCV RNA quantification was performed using an in-house

quantitative real-time reverse transcription-PCR assay as previ-

ously described [9], COBAS Amplicor HCV Monitor testTM,

Version 2.0 (sensitivity 600 IU/ml)), qualitative COBAS Ampli-

Prep/COBAS Amplicor HCV testTM, version 2.0 (sensitivity

50 IU/ml) or Abbott RealTime HCV assay TM (sensitivity 12 IU/

ml).

Statistical analysis
Statistical analyses (Spearmans rank correlations and Wilcoxon

matched -paired signed-rank tests) were performed using the

Stata/IC 10.0 (Stata corporation, College Station, Tx U.S.A.).

Due to the exploratory nature of the study there was no correction

for multiple comparisons, and calculated p values are reported

herein.

Supporting Information

Figure S1 IFNa therapy leads to T-cell lymphopenia in
memory compartments. Evolution of (A) CD4+ TCM (top

panels) and CD4+ TEM (bottom panels) T-cell numbers, as well as

(B) CD8+ TCM (top panels) and CD8+ TEM T-cell counts

(bottom panels), quantified in peripheral blood cells from acutely

and chronically HCV-infected (left panels white and grey symbols

respectively) and HIV-HCV co-infected (right panels) patients

under IFNa therapy. Horizontal bars represent median values.

Statistical significance (Wilcoxon matched-pairs signed-ranks test)

to baseline values (M0) are shown on top.

(TIF)

Figure S2 IL-7 plasma level parallels RTE concentra-
tion and thymic function. IL-7 plasma levels (grey squares),

RTE (CD31Hi naı̈ve CD4+ T-cell blood counts; open diamonds),

thymic function (sj/bTREC ratio; close diamonds) and sjTREC

concentrations (sjTREC/ml; grey diamonds) were longitudinally

quantified in IFNa-treated HCV and HIV-HCV infected patients

over a 4 month period. Representative examples of HCV-infected

(A) and HIV-HCV co-infected (B) patients are shown.

(TIF)
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