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ABSTRACT

Most proteins in nature contain multiple folding
units (or domains). The revolutionary success of
AlphaFold2 in single-domain structure prediction
showed potential to extend deep-learning tech-
niques for multi-domain structure modeling. This
work presents a significantly improved method,
DEMO2, which integrates analogous template struc-
tural alignments with deep-learning techniques for
high-accuracy domain structure assembly. Starting
from individual domain models, inter-domain spa-
tial restraints are first predicted with deep resid-
ual convolutional networks, where full-length struc-
ture models are assembled using L-BFGS simula-
tions under the guidance of a hybrid energy func-
tion combining deep-learning restraints and anal-
ogous multi-domain template alignments searched
from the PDB. The output of DEMO2 contains deep-
learning inter-domain restraints, top-ranked multi-
domain structure templates, and up to five full-length
structure models. DEMO2 was tested on a large-scale
benchmark and the blind CASP14 experiment, where
DEMO2 was shown to significantly outperform its
predecessor and the state-of-the-art protein struc-
ture prediction methods. By integrating with new
deep-learning techniques, DEMO2 should help fill
the rapidly increasing gap between the improved
ability of tertiary structure determination and the
high demand for the high-quality multi-domain pro-
tein structures. The DEMO2 server is available at
https://zhanggroup.org/DEMO/.

GRAPHICAL ABSTRACT

INTRODUCTION

Deep-learning techniques have dramatically promoted the
progress of protein structure prediction (1–4), especially
the end-to-end sequence-to-structure AlphaFold2 (5) has
achieved unprecedented modeling accuracy in the protein
structure prediction (6,7). Based on the analysis of Al-
phaFold2 models for all human proteins, the confidence
score of the AlphaFold2 model is highly correlated with
whether the target has homologs in the Protein Data Bank
(PDB) or not (8). However, many proteins have no homol-
ogous full-length templates, especially for proteins contain-
ing multiple folding units (called domains). In fact, most
proteins in nature consist of more than two domains (9).
Due to the much higher degree of freedoms in domain-
orientation space and the stability of full-length struc-
tures often involving interactions with other protein cofac-
tors, the majority of the multi-domain proteins have been
solved as single-domain proteins, and only 35.3% of pro-
teins in the PDB contain multiple domains (10). As a result,
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many methods, including the end-to-end deep-learning ap-
proaches, can correctly build the domain models but cannot
accurately predict the domain orientations (6).

We previously developed a pipeline, DEMO (11), for
constructing multi-domain protein structures by docking-
based domain assembly simulations, with inter-domain ori-
entations determined by the distance profiles from anal-
ogous templates as detected through domain-level struc-
ture alignments. Taking advantage of the complementary
information deduced from the structural analogous tem-
plates and the physics-based steric potentials, DEMO out-
performed other domain assembly programs and struc-
ture modeling methods, especially for the cases without ho-
mologous full-length templates (11,12). Due to the robust-
ness of the results and user-friendly server design, DEMO
server (since September, 2019) has assembled structures
for > 3,000 proteins submitted by > 1,000 users from 42
countries. Given the rapid development of deep learning
techniques in the field, however, the previous DEMO server
may no longer represent the state-of-the-art, and the rev-
olutionary success of AlphaFold2 in single-domain struc-
ture prediction showed potential to extend deep-learning
techniques for multi-domain structure modeling. In addi-
tion, the DEMO simulation was built on iterative assem-
bly of pair-wise consecutive domains, which can often be
biased to the order of domain assembly, without detect-
ing the optimal domain orientations for proteins with three
or more domains. Therefore, an upgraded version of the
server integrating deep learning technology and with the
ability to simultaneously optimize the orientations of all do-
main models is urgently needed. It should be noted that
although AlphaFold2 could generate multi-domain mod-
els from query sequence with reasonable accuracy (5), it is
not designed to assemble full-length models directly from
domain structures, which is a long-time problem faced by
many researchers in the community.

In this work, we developed a significantly improved
method, DEMO2, which integrates analogous tem-
plate alignments with deep-learning techniques for
high-accuracy domain structure assembly. Starting from
individual domain models, inter-domain spatial restraints
are first predicted with deep residual convolutional net-
works, where full-length structure models are constructed
by simultaneously searching for the optimal positions
and orientations of all domains using Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) simula-
tions, under the guidance of a hybrid energy function
combining deep-learning restraints and analogous tem-
plate alignments. The results on the large-scale benchmark
and CASP blind tests showed that DEMO2 significantly
improves the performance compared to its predecessor
and outperforms the best linker-based domain assembly
methods and the state-of-the-art structure modeling tools.

MATERIAL AND METHODS

Pipeline of DEMO2 server

DEMO2 is a pipeline for automated assembly of full-length
structural models of multi-domain proteins by integrat-
ing analogous template structural alignments with deep-
learning predicted inter-domain spatial restraints. As shown

in Figure 1, starting from individual domain sequences and
structures, multiple sequence alignments (MSA) are first
constructed by iteratively searching the query against the
meta-genome sequence database and two whole-genome
databases using DeepMSA (13). Here, the MSA is con-
structed based on the full-chain sequence merged accord-
ing to the domain order or provided by users, rather than
searching/combining the MSA of each domain indepen-
dently. Next, the full-chain MSAs are fed into a deep
residual convolutional neural network, DeepPotential (14),
to predict the inter-domain spatial restraints, including
residue-residue distances, torsion angles, and hydrogen-
bonding networks. Meanwhile, the global and local multi-
domain structure templates, which have similar component
domains to the query, are identified by structurally thread-
ing the input domains through a non-redundant multi-
domain structural library. Full-length models are then as-
sembled by a fast L-BFGS based rigid-body domain struc-
ture assembly simulation, which is guided by a hybrid en-
ergy function consisting of inter-domain deep-learning re-
straints, inter-domain distance profiles collected from the
top-ranked analogous full-length templates, and physics-
based steric potentials (as well as the cross-linking and cryo-
EM density map data if available). The L-BFGS assem-
bled models are further submitted for linker reconstruction
followed by atomic-level refinement with fragment-guided
molecule dynamics (FG-MD) simulations (15), with the
low-energy conformations returned as final models.

New developments in DEMO2

Compared to the previous DEMO (11), four major develop-
ments were introduced to DEMO2, including global tem-
plate identification, deep-learning inter-domain geometric
restraints, fast L-BFGS simulation for domain orientation
modeling, and cryo-EM data guided domain rigid-body as-
sembly and flexible refinement for high accurate modeling.
In the following, we briefly describe these improvements.

Global templates identification. In addition to the local
templates for the pairwise consecutive domains employed
in DEMO, global templates that cover as many domains as
possible are introduced to DEMO2. The global templates
are identified from the multi-domain protein structure li-
brary through a local evaluation followed by a global eval-
uation based on the analogous structural alignments (Sup-
plementary Figure S1A). For each template in the library,
the local evaluation (Supplementary Figure S1B) is firstly
performed by structurally aligning each domain model to
the template through TM-align (16), where the overlap be-
tween the alignments of different domains is allowed. The
harmonic mean of the TM-scores of all domains is defined
as the score of the template:

TM − scoreh = Ndom
∑Ndom

d=1
1

TM−scored

(1)

where Ndom is the total number of domains to be assem-
bled; TM − scored is the TM-score between the dth do-
main model and the template structure. According to the
TM-scoreh, the top 500 templates are then selected to per-
form the global evaluation, where the overlap between the
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Figure 1. Flowchart of the DEMO2 pipeline. The procedure mainly includes global and local templates identification, inter-domain spatial restraints pre-
diction by DeepPotential, domain model assembly through fast L-BFGS simulation, and side-chain repacking and domain-domain linker reconstruction.

alignments of different domains is not allowed (Supplemen-
tary Figure S1C). The domains in the global evaluation are
aligned from the N to C terminal and from C to N terminal,
respectively, and the alignment with the higher TM-scoreh
is considered as the global template. If the best global tem-
plate with the highest TM-scoreh cannot cover all domains
(e.g. one of the domains has the TM-score < 0.5), the tem-
plates of the two broken parts will be independently de-
tected (Supplementary Figure S1D). Meanwhile, the local
templates for every two consecutive domains are also ob-
tained if the target contains ≥3 domains. Finally, the top
10 global templates and local templates are selected respec-
tively to build multiple initial full-length models according
to a sliding-window based procedure since the aligned re-
gions of the domains separately detected by TM-align may
be far away from each other. Details of the procedure for
initial conformation construction can be found in Supple-
mentary Text S1 and Supplementary Figure S2.

Incorporating deep-learning restraints. Four deep-learning
inter-domain geometric restraints predicted by DeepPo-
tential (14) are introduced into DEMO2, including inter-

domain distances, domain-domain interface contacts, inter-
domain orientations, and hydrogen-bond networks (17).
Here, the domain-domain interface contact maps are gen-
erated by summing the cumulative probability of Cα dis-
tances < 18 Å in the predicted distances maps. These four
restraints are incorporated with the DEMO inherent energy
items including local domain orientation restraints from the
initial domain-template superposition, inter-domain dis-
tance restraints deduced from the top templates, inter-
domain steric clashes, a generic inter-domain contact po-
tential, and a domain boundary connectivity restraint, to
build a hybrid energy function to guide the assembly. The
full energy function is described in detail in Supplementary
Text S2.

L-BFGS simulation for domain assembly. Instead of iter-
atively assembling every two consecutive domains through
the replica-exchange Monte Carlo (REMC) simulations in
DEMO, DEMO2 performs an L-BFGS simulation to si-
multaneously assemble all domain structures. Starting from
the initial full-length model built from the template, the full-
length structure decoy is created according to the corre-
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sponding inter-domain rotation angles and translation vec-
tors, as sampled by the L-BFGS simulation for each do-
main (Supplementary Text S3), which is guided by the hy-
brid DEMO2 energy function. For each of the ten initial
models generated by the top global templates and ten initial
models created by the top local templates, the L-BFGS sim-
ulation is independently performed with 200 steps, and the
final full-length model is built according to the translation
vector and rotation angles with the lowest energy (Supple-
mentary Text S3).

Cryo-EM data assisted domain rigid-body and flexible as-
sembly. When the cryo-EM data is available for the tar-
get, DEMO2 employs a new strategy to process the rigid-
body domain assembly simulation. Instead of fitting the ini-
tial full-length model created by the template into the den-
sity map in DEMO, DEMO2 creates the initial model by
matching each domain model into the density map based
on the best position and orientation identified by L-BFGS,
where the L-BFGS simulation is purely guided by the den-
sity correlation (11) between the domain model and the den-
sity map. Starting from multiple initial models generated
by combining the top poses of each domain, a second L-
BFGS simulation is performed to optimize the orientations
of each domain under the guidance of the inherent DEMO2
energy and the cryo-EM density correlation score. Accord-
ing to the density correlation score between the full-length
model and the density map, the top models from the rigid-
body L-BFGS assembly are selected to perform the atom-,
segment-, and domain-level refinements using REMC sim-
ulations, under the guidance of an atomic-level force field
combining the QUARK knowledge-based force field (2),
DeepPotential predicted inter-domain restraints, and the
density correlation score. Finally, the lowest-energy decoy
is selected to construct the final model, with the side-chain
atoms repacked by FASPR (18) followed by the FG-MD
(15) refinements.

Model quality estimation. In order to facilitate the in-
terpretation of the predicted models, the estimated TM-
score (eTM-score) and RMSD (eRMSD) are introduced
to DEMO2 to estimate the accuracy of the assembled
model. They are calculated according to the significance
of the templates identified by analogous structural align-
ments using all domain models, the consistency between the
deep-learning predicted inter-domain distances/contacts
and those in the assembled model, the convergence of the
domain model assembly simulations, and the estimated ac-
curacy of the individual domain models by ResQ (19).
Details for the eTM-score and eRMSD calculation can
be found in Supplementary Text S4. The eTM-score and
eRMSD was tested over the DEMO benchmark set of 356
non-redundant multi-domain proteins with different do-
main types. The Pearson correlation coefficient (PCC) be-
tween eTM-score and the actual TM-score is 0.85 (Supple-
mentary Figure S3A), corresponding to an average error
of 0.07. The PCC between eRMSD and actual RMSD is
0.82 (Supplementary Figure S3B), where the average error
is 2.2Å. When an eTM-score cutoff of 0.5 is used to select
models with correct global topologies (20), both the false-
negative and false-positive rates are < 0.15, indicating the

Table 1. Results of full-length models built by different methods over 461
test multi-domain proteins. Bold font highlights the best results. P-value is
calculated between DEMO2 and the control methods through two-tailed
Student’s T-test

TM-score rTM-score RMSD (Å) P-value

AIDA 0.52 0.23 16.2 3.02E-51
DEMO 0.63 0.38 12.6 1.77E-09
DMPfold 0.57 0.34 14.0 8.11E-23
trRosetta 0.64 0.41 11.2 5.86E-07
DEMO2 0.71 0.48 9.4 -

quality prediction by eTM-score is correct for > 85% cases.
It should be noted that RMSD is sensitive to the local vari-
ations as it uses the same weight for all residue pairs in the
calculation (Supplementary Text S5), which results in the
improper evaluation for the global topology (21). In this
regard, we recommend using TM-score as a more reliable
measurement for the model accuracy assessment.

RESULTS

Comparison with other domain-structure assembly methods

To evaluate DEMO2, we tested it on a comprehensive
benchmark set which is extended from the original DEMO
benchmark set (11) and with a sequence identity < 30% to
the proteins in the training set of DEMO2. Meanwhile, all
proteins overlapped with the DeepPotential training dataset
have been excluded. This benchmark set contains 461 pro-
teins (Supplementary Table S1) with 2 to 10 domains, in-
cluding 260 proteins with continuous domains and 201 pro-
teins with ≥ 1 discontinuous domains (see examples shown
in Supplementary Figure S4). The structures of individual
domain models were modelled by D-I-TASSER (12), where
all homologous templates with a sequence identity > 30%
to the query have been excluded; this resulted in the TM-
score of domain models ranging from 0.17 to 0.97 with an
average TM-score = 0.77.

We first compare DEMO2 with its predecessor DEMO
(11) and the linker-based domain assembly method AIDA
(22). Table 1 summarizes the results of full-length mod-
els assembled by AIDA, DEMO, and DEMO2, using the
same domain models. On average, DEMO2 models ob-
tain a higher TM-score and a lower RMSD than mod-
els constructed by the control methods for all categories
of domain structures (Supplementary Table S1). Overall,
DEMO2 models achieve an average TM-score of 0.71,
which is 36.5% and 12.7% higher than that built by AIDA
(0.52) and DEMO (0.63), respectively. The Student’s t-test
P-values are 3.02E-51 and 1.77E-09 for DEMO2 vs. AIDA
and DEMO2 vs. DEMO, respectively, indicating statisti-
cally significant differences between the methods. In addi-
tion, as a more stringent examination of inter-domain ori-
entations, DEMO2 models achieve a much higher rTM-
score (0.48) than either AIDA (0.23) or DEMO (0.38). Here,
rTM-score is a metric to evaluate the domain orientation
and calculated according to the TM-score with only one-
time alignment for the two models (see Eq. S16 in Supple-
mentary Text S5).

Figure 2A and B present the head-to-head compari-
son of DEMO2 versus DEMO and AIDA on the TM-
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Figure 2. Comparison of DEMO2 with AIDA and DEMO. (A) Head-to-head TM-score comparison of models assembled by DEMO2 and that created
by DEMO. (B) Head-to-head TM-score comparison of models generated by DEMO2 and that built by AIDA. (C and D) representative examples are
showing DEMO2 builds better full-length models than DEMO and AIDA. Gray and color cartoons are native structures and DEMO assembled models,
respectively, and different domains in the assembled models are represented by different colors. (C) 1vz6A. (D) 4ewtA.

score, respectively. DEMO2 obtains a higher TM-score
than DEMO and AIDA in 369 and 413 out of 461 proteins,
respectively. Accordingly, DEMO2 models achieve correct
global topologies (TM-score > 0.5) (20) on 388 cases, which
is 17.2% and 41.6% higher than that of DEMO (331) and
AIDA (274), respectively. Interestingly, proteins with dis-
continuous domains are usually difficult to model as they
have several motifs separated in the sequence which in-
creases the difficulty in both individual domain modeling
and inter-domain restraints prediction. However, proba-
bly because the inserted domains provided additional an-
chor restraints on domain orientations, DEMO2 assem-
bled models with the correct global fold on 87.6% cases of
discontinuous domains, which is higher than that of pro-
teins with continuous domains (79.2%); this rate is 8.6%
and 32.3% higher than that of DEMO (80.6%) and AIDA
(66.2%), respectively.

Figure 2C and D illustrate examples from Ornithine
Acetyltransferase (PDBID: 1vz6A), a protein with two con-
tinuous domains, and methicillin resistant Staphylococcus
aureus (PDBID: 4ewtA), a protein that consists of a contin-
uous domain and discontinuous domain, respectively. For
1vz6A (Figure 2C), although D-I-TASSER correctly cre-
ated all domain models (TM-score = 0.94 and 0.88), the

best analogous template detected based on the domains ob-
tained a TM-score = 0.66 to the native structure, which re-
sulted in a final model with TM-score = 0.72 by DEMO
as its assembly is mainly based on the templates. However,
DEMO2 correctly modelled the domain orientation and
obtained a final model with TM-score = 0.93 since Deep-
Potential correctly predicted the inter-domain distance with
an average error of 0.76 Å. Because AIDA is a linker-based
modeling method that usually leaves the domain orienta-
tions largely random, the final model obtains a TM-score
of 0.68; this relative reasonable TM-score for the AIDA
is mainly due to the correct domain models from D-I-
TASSER, as the rTM-score is 0.31, which is significantly
lower than that of the DEMO2 model (0.85). For 4ewtA
(Figure 2D), a promising analogous template with TM-
score = 0.75 to the native structure was detected from the li-
brary. Based on the template, DEMO slightly improved the
model and resulted in a final model with TM-score = 0.77.
When combining the template with the inter-domain re-
straints predicted by DeepPotential, the final model was
significantly improved with TM-score increased to 0.90 by
DEMO2. AIDA also failed to determine the domain ori-
entation, resulting in a final model with TM-score = 0.71.
Again, the rTM-score of the DEMO2 model (0.83) is sig-
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nificantly higher than both models from DEMO (0.63) and
AIDA (0.40). These results further reinforce the advantage
by integrating analogous templates with deep-leaning inter-
domain restraints.

Comparison with deep-learning structure prediction methods

In this section, DEMO2 is compared with two widely deep-
learning structure modeling tools, trRosetta (23) and DMP-
fold (24). The results of full-length models directly gener-
ated by trRosetta and DMPfold are also summarized in Ta-
ble 1, Figure 3A and B. The average TM-score of DEMO2
models (0.71) is 24.6% higher than that of DMPfold (0.57)
and 10.9% higher than that of trRosetta (0.64); the Student’s
t-test P-value is 8.11E-23 and 5.86E-07, respectively, relative
to DMPfold and trRosetta, showing statistical differences.
Meanwhile, the average rTM-score is also higher than that
of DMPfold and trRosetta, showing better domain orien-
tations modelled by DEMO2 compared with the control
methods.

Supplementary Figure S5A and S5B show the head-to-
head comparisons of the TM-score of the DEMO2 model
versus those generated by DMPfold and trRosetta, respec-
tively. It can be found that DEMO2 obtains a higher TM-
score than DMPfold and trRosetta in 440 and 411 proteins,
while DMPfold and trRosetta achieves a higher TM-score
in only 21 and 50 cases, respectively. As a result, DMP-
fold and trRosetta models have TM-score > 0.5 on 269
and 326 cases, which is 44.2% and 19.0% lower than that
of DEMO2 (388), respectively. In addition, Figure 3A and
B also display the TM-score distribution and the rTM-
score histogram of different methods, which again show
that DEMO2 can predict more accurate domain orienta-
tions and thus resulting in better full-length models.

In addition, we also compared DEMO2 with DMPfold
and trRosetta on a subset of 162 proteins for which all
proteins with sequence identity > 30% to the DeepPoten-
tial training set have been excluded. As shown in Supple-
mentary Figure S6, DEMO2 still obtains reasonable mod-
els with a better accuracy than DMPfold and trRosetta.
On average, DEMO2 achieves a TM-score of 0.70, which
is 23.8% and 11.1% higher than that of DMPfold and tr-
Rosetta, respectively. The respective P-values on Student’s
t-test are 3.43E-11 and 4.63E-05, indicating statistically sig-
nificant differences between the methods. DEMO2 mod-
els achieve correct global topologies on 136 cases, which
is 47.8% and 23.6% higher than that of DMPfold (92) and
trRosetta (110), respectively. In the aspect of inter-domain
orientations, DEMO2 models also obtain a higher rTM-
score (0.48) than either DMPfold (0.33) or trRosetta (0.41).

Given that both DEMO2 and trRosetta/DMPfold simu-
lations utilized the deep-learning restraints, these results re-
flect the advantage of the DEMO2 protocol which split the
proteins into domains and then model the domain structure
individually. Since the deep-learning methods are trained
mainly on the single-domain proteins (-because most pro-
teins in the PDB are solved as individual domains), this may
result in the incorrect folding for some domains when di-
rectly modelling full-length structures of the multi-domain
proteins. Since the D-I-TASSER deep-learning model is
also trained through single-domain proteins, the DEMO2-

based domain split allows it to construct better models for
individual domains. In Supplementary Figure S7, we com-
pare the individual domain models (1202) from all test pro-
teins by different methods, where the TM-score of the mod-
els by D-I-TASSER ( = 0.77), which are used by DEMO2,
is 28.3% and 10.0% higher than that of DMPfold (0.60)
and trRosetta (0.70), respectively. Interestingly, if we addi-
tionally excluded all templates with a TM-score > 0.5 to
the target structure in the individual domain modeling, the
quality of the D-I-TASSER models is only marginally re-
duced (TM-score = 0.76), probably due to the utilization
of the deep-learning component of D-I-TASSER which is
independent upon the quality of PDB templates. Accord-
ingly, when feeding these domain models into the DEMO2,
the quality of full-chain model is almost unchanged with
the average TM-score ( = 0.70), which is again higher than
the full-length models by DMPfold (0.57) and trRosetta
(0.64). Additionally, the analogous templates detected by
the domain-level structural alignments, which use the D-I-
TASSER domain models as probes, can provide additional
restraints, which are complementary to the deep-learning
inter-domain restraints, to guide the domain assembly sim-
ulations of DEMO2.

Figure 3C and D present two representative exam-
ples from the NKT TCR-CD1d-alpha- galactosylceramide
analogue-OCH (PDBID: 3arbA) and the Endoglucanase 9G
(PDBID: 1g87B). For 3arbA, all methods correctly mod-
elled the individual domain structures with TM-score > 0.8.
However, the domain orientations were not correctly pre-
dicted by DMPfold and trRosetta as indicated by the rTM-
score (0.31 and 0.29), which resulted in the full-length
model with a relative low TM-score = 0.61 for both DMP-
fold and trRosetta (Figure 3C). DEMO2 correctly modelled
the domain orientations and obtained a full-length model
with rTM-score/TM-score = 0.78/0.88. For 1g87B, DMP-
fold misfolded the smaller-size domain (TM-score = 0.3)
and resulted in the incorrect overall domain orientation
with rTM-score = 0.32 and TM-score = 0.70 for the full-
length model (Figure 3D). Although trRosetta correctly
predicted all domain models (TM-score = 0.9 and 0.76),
the inter-domain orientations were not correctly gener-
ated, resulting in a full-length model with a poorer rTM-
score/TM-score = 0.38/0.71. DEMO2 model obtains an
rTM-score/TM-score = 0.82/0.91 since it correctly gen-
erates inter-domain orientations based on the accurate
domain models (TM-score = 0.92 and 0.87) created by
D-I-TASSER, under the guidance of the complementary
template and deep-learning restraints. The results further
demonstrate the advantage of the DEMO2 protocol for
multi-domain protein full-length structures modeling.

Blind test of DEMO2 on the CASP14 targets

DEMO2 was also used to assemble structures of all multi-
domain targets in the most recent community-wide CASP
experiment for the Zhang group servers (‘Zhang-Server’
and ‘QUARK’) in fully automated protein structure pre-
diction categories. Here we take Zhang-Server as an exam-
ple since it utilized the D-I-TASSER algorithm to build
the domain level models. Since both DeepPotential and
DEMO2 were trained before CASP14, none of the CASP14
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Figure 3. Comparison of DEMO2 with DMPfold and trRosetta. (A) Violin plot plus box plot for the TM-score of the final full-length model, where IQR
means the interquartile range of the TM-score. (B) Histogram of the rTM-score of the final full-length model, where the vertical line indicates the outlier
of the TM-scores. (C and D) representative examples are showing DEMO2 creates more accurate models than DMPfold and trRosetta. Gray and color
cartoons are native structures and DEMO2 assembled models, respectively, and different domains in the assembled models are represented by different
colors. (C) 3arbA. (D) 1g87B.

targets was included in their training dataset. Supplemen-
tary Figure S8 presents a summary of the best five servers in
CASP14 after excluding the other Zhang group servers, in
which the servers were sorted according to the average TM-
score of the full-length models for all multi-domain proteins
with at least one template-free modeling (FM) or template-
free modeling/template-based modeling (FM/TBM) do-
mains. Since the domain structures of all target proteins
are unknown when participating in the CASP, the domain
boundaries of all targets were predicted from the sequence
by a deep-learning contact-based program FUpred (19)
and a threading template-based method ThreaDom (20)
in Zhang-Server, which resulted in an average normalized
domain overlap (NDO) score (25) of 0.86. On average,
DEMO2 full-length models obtained the highest TM-score
(0.575) among all these servers, which was 7.9% higher than
that of the second-best server ROSETTA (0.532).

DEMO2 is also compared with the latest version of Al-
phaFold2 (5) and RoseTTAFold (3) on all CASP14 multi-
domain targets. It should be noted that the AlphaFold2
models were regenerated using its latest standalone pack-
age rather than from the results reported in CASP14. On
average, AlphaFold2 models achieve a considerably higher
TM-score ( = 0.842) than that of DEMO2 (0.575), which

is probably mainly because of the lower quality of the do-
main models built by D-I-TASSER. When feeding the do-
main models predicted by AlphaFold2 into DEMO2, how-
ever, DEMO2 obtains a comparable (or slightly higher)
TM-score ( = 0.849) to AlphaFold2. If we further input
the experimental structure of individual domains, DEMO2
achieved an even higher TM-score ( = 0.891). These re-
sults demonstrated that although the overall model qual-
ity of DEMO2 relies on the quality of individual do-
mains, DEMO2 has the ability to assemble the domain
orientation significantly beyond the state-of-the-art neural-
network models when starting from correct domain mod-
els. DEMO2 models also obtain a higher TM-score than
the RoseTTAFold (0.516), where DEMO2 constructs bet-
ter models than RoseTTAFold on 70.6% cases. In addi-
tion, compared to the deep-learning based end-to-end mod-
els which are largely a block box to both developer and
users, DEMO2 reports the analogous templates and query-
template alignments used to assemble the full-length pro-
tein, which can help users better understand where the pre-
dictions come from and therefore provide functional in-
sights for further studies on the protein. DEMO2 is also
helpful for saving the computational resource for model
large-size proteins since it allows the program to split pro-
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teins into domains for independent modeling followed by
domain assembly. This is very important for the extremely
large-size proteins that usually cannot be handled by the
end-to-end method.

WEB SERVER

Server input

The mandatory input for the DEMO2 server is the indi-
vidual domain structures in PDB format. Users can click
the button ‘Add domain’ (label 1 in Supplementary Figure
S9) to add the input box if they have more than two do-
mains needing to be assembled, and the input box also can
be removed by clicking ‘Remove domain’ (label 2 in Sup-
plementary Figure S9) if users add a wrong box. In case
that users only have sequences, it is suggested that users
can submit their sequences of individual domains to the
structure prediction servers such as D-I-TASSER (https:
//zhanggroup.org/D-I-TASSER/), and then upload the do-
main models into DEMO2 server for full-length structure
assembly. A checkbox (label 3 in Supplementary Figure S9)
is also provided for inputting the full-chain sequence, which
is not required but recommended as the sequence can be
used by DEMO2 for dealing with many complex condi-
tions (e.g. missing residues, overlap residues, and wrong do-
main orders) for domain assembly. Users are also encour-
aged to provide an email address (but is not required) (label
4 in Supplementary Figure S9) to receive the results when
the job is completed. The server will automatically send an
email notification containing the link to the results page.
Users also can optionally provide a name (label 5 in Sup-
plementary Figure S9) of the target protein. Otherwise, the
protein will be named ‘query protein’. The server also pro-
vides three advanced options to allow users to design their
experiments: (1) provide multiple full-length templates in
PDB format to guide the domain assembly; (2) either keep
all templates or exclude homologous templates from the li-
brary for the domain assembly; (3) upload experiment data
including cross-linking and cryo-EM density map data to
assist the domain assembly and refinement. All files should
be prepared using the format that can be recognized by the
server. Details can be found in the instructions by click-
ing ‘explanation’ for each advanced option. Users can click
‘Run DEMO’ (label 6 in Supplementary Figure S9) to sub-
mit the job when all inputs are completed.

Sever output

Once the job is successfully submitted, the browser will be
directed to a new page showing confirmation of the num-
ber of domains, the sequence length of the full-chain target,
and an estimated time to complete the job (Supplementary
Figure S10). Users are recommended to bookmark this link
if they do not provide the email address. The results will be
displayed on this page when the job is finished. Generally,
a medium-size protein (∼300–500 residues) requires 3–8 h
for the DEMO2 server. But the actual processing time may
be longer if many jobs are pending in the queue.

The results page consists of 5 sections, including the full-
length sequence and domain boundaries, user submitted
domain models, the deep-learning predicted residue-residue

distance and contact maps, the top full-length structurally
analogous templates, and the top final full-length models
assembled by DEMO2. Figure 4 shows an example pro-
tein from the periplasmic ferric siderophore binding (PDBID:
1efdN), where the model is assembled by selecting the op-
tion of ‘remove templates from protein sharing > 30% se-
quence identity with target’. The result page of the example
is available at https://zhanggroup.org/DEMO/example/.

As shown in Figure 4A, the first section shows the job ID
of the target and a link to download the tarball file which
contains all results reported on the page. The full-length
amino acid sequence submitted by the user or translated
from the user input domain models is displayed below the ti-
tle, where the sequence of each domain is represented by dif-
ferent colors. The illustration of the color and the sequence
range of each domain are given below the sequence. For ex-
ample, ‘1–94’ indicates the first domain consists of residues
from 1 to 94.

The second section (Figure 4B) shows the 3D model of
each domain submitted by the user in an independent JS-
mol applet (26). Users can rotate and zoom the model by
dragging the mouse on the image. The model can also be
downloaded by clicking on the ‘download domX.pdb’ link
below the image of each domain model.

As shown in Figure 4C, the third section presents the dis-
tance and contact maps predicted by DeepPotential. The
first and second columns show the inter-residue distance
maps with Cα and Cβ distances < 20Å, respectively. The
third and fourth columns are the inter-residue Cα and Cβ

contact maps, respectively. Users can click the link labeled
‘Download XXX map’ below each figure to download the
corresponding map.

The fourth section (Figure 4D) summarizes the top 10
structurally analogous templates identified from the multi-
domain protein library by TM-align using domain models
as probe. In the left panel of the JSmol applet, the DEMO2
assembled full-length model is superposed to each template
where the DEMO2 model is shown in the cartoon and the
template is displayed using backbone trace. The right panel
lists the information of all templates, where the proteins are
ranked according to the TM-scoreh reported in the fourth
column of the table. The subsequent three columns of the
table show the TM-score, RMSD, and sequence identity be-
tween the DEMO2 assembled model and the templates. The
eighth column is the coverage rate of the aligned regions
determined by TM-align. These parameters indicate the
conservation of spatial motifs in the model and the struc-
turally analogous proteins. Users can download the PDB
file with the DEMO2 model structurally aligned to the cor-
responding template by clicking the link in the last column
of ‘Download Alignment’.

The last section (Figure 4E) presents the top five full-
length models assembled by DEMO2. The 3D model of the
protein is displayed in the JSmol applet of the left panel,
where different colors indicate different domains, and the
color is consistent with that illustrated in the first section.
The table on the right panel summarizes the five models.
Users can click the circle in the first column to display the
corresponding model in the JSmol applet. The second col-
umn is the estimated TM-score (shown as ‘eTM-score’) for
each full-length model. Similar to the standard TM-score,

https://zhanggroup.org/D-I-TASSER/
https://zhanggroup.org/DEMO/example/


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W243

Figure 4. Example of the DEMO2 results page. (A) Title of the results page, link to download all results, FASTA sequence, and domain boundaries of the
target. (B) The user provided domain models for the assembly. (C) Predicted residue-residue distance maps and contact maps for domain model assembly.
(D) The top ten analogous templates identified by the analogous structural alignment. (E) Top five final full-length models assemble by the server and the
estimated accuracy of the model, where different domains are represented by different colors.

the eTM-score ranges from 0 to 1, where a higher score
reflects a model of better quality, and models with eTM-
score > 0.5 generally have a correct global fold. The subse-
quent column reports the estimated RMSD (as ‘eRMSD’)
to the native structure. It should be noted that although the
first model has a better quality in most cases, it is also pos-
sible that the lower-rank models may have a better quality
than the higher-rank models as observed in our benchmark
tests (27). Users can click on the ‘Download model’ link
given in the last column of ‘PDB file’ to download the cor-
responding model. In addition, users can also view more
information about the eTM-score and eRMSD by clicking
the link labeled ‘More about eTM-score’.

CONCLUSION

This work presents a significantly extended server, DEMO2,
which integrates analogous template alignments with deep-
learning techniques for high-accuracy multi-domain pro-
tein structure assembly. Instead of constructing the full-
length model by iteratively assembling pair-wise consecu-
tive domain models in the previous DEMO, DEMO2 ex-
tended the pipeline to build the full-length model by si-

multaneously modeling the optimal positions and orienta-
tion of all domains through an L-BFGS simulation. Ac-
cordingly, the global analogous templates that cover mul-
tiple domains are identified in DEMO2 to guide the initial
model construction and the assembly simulation. Mean-
while, the inter-domain spatial restraints predicted by the
deep residual convolutional networks were coupled with the
inter-domain distance profiles collected from the analogous
multi-domain templates, and physics-based steric potentials
to guide the L-BFGS simulation. In addition, a new confi-
dence score system is introduced to DEMO2 to facilitate the
use and interpretation of the assembled models.

DEMO2 was tested on a comprehensive benchmark set
of 461 non-homologous proteins containing various num-
bers and types of domain structures. The results showed
that DEMO2 assembled more accurate full-length mod-
els with an average TM-score 12.7% and 36.5% higher
than DEMO and the linker-based domain assembly method
AIDA, respectively. If we compare the rTM-score which
counts for the inter-domain orientations more specifically
(Eq. S16), the improvement of DEMO2 will be 26.3% and
108.7% over DEMO and AIDA, respectively. DEMO2 was
also compared with two widely used deep-learning struc-
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ture modeling methods, DMPfold and trRosetta. DEMO2
correctly predicted the full-length structure with a TM-
score > 0.5 in 84.2% cases, which is 44.2% and 19.0% higher
than the full-length models directly modelled by DMPfold
and trRosetta, respectively. DEMO2 was also used to as-
semble structures of all multi-domain targets for ‘Zhang-
Server’ in CASP14, which achieved the best performance
on the protein modeling among all server groups in the ex-
periment.

To better guide the user to use the method through
the online server, we optimized the server interface which
includes (i) updating the option for cryo-EM and cross-
linking data assisted modeling, (ii) rearranging the result
page by adding the superposition of the assembled model,
analogous templates, and the accuracy estimated system for
the final model. The result page now includes five sections
to display the query sequence and domain boundaries, the
individual domain models, the residue-residue distance and
contact maps, the analogous templates, and the final full-
length models.

Despite the progress, the DEMO2 server could be fur-
ther improved in several aspects. First, the current inter-
domain restraints are predicted by DeepPotential, which
is developed for the residue-residue restraints prediction
for the full-length protein. A specific deep-learning net-
work for predicting the inter-domain restraints should im-
prove the performance. Second, the test of AlphaFold2 has
shown the ability to predict the global structure of multi-
domain proteins. Although the accuracy of multi-domain
models is still considerably worse than that of the individ-
ual domains (6), it could be used as new restraints, com-
plementary to the analogous template and DeepPotential
restraints, to guide the DEMO2 domain structure assem-
bly. Third, the current DEMO2 server keeps the domain
models rigid in the L-BFGS simulations and may limit
the range of motion as the predicted domain models often
have local errors. The flexible domain assembly combined
with specific restraints predicted by deep-learning networks
may provide the potential to improve the performance. Fi-
nally, the correct inter-domain orientations may be inferred
from the protein-protein complex structure library as many
multi-domain proteins are evolved from the protein chain
fusion/fission (28). Efforts along these lines will continue to
improve DEMO as a robust server for multi-domain struc-
ture assembly.
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