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Abstract
Fragment-based drug design is an established routine approach in both experimental and computational spheres. Grow-
ing fragment hits into viable ligands has increasingly shifted into the spotlight. FastGrow is an application based on a 
shape search algorithm that addresses this challenge at high speeds of a few milliseconds per fragment. It further features 
a pharmacophoric interaction description, ensemble flexibility, as well as geometry optimization to become a fully fledged 
structure-based modeling tool. All features were evaluated in detail on a previously reported collection of fragment grow-
ing scenarios extracted from crystallographic data. FastGrow was also shown to perform competitively versus established 
docking software. A case study on the DYRK1A kinase, using recently reported new chemotypes, illustrates FastGrow’s 
features in practice and its ability to identify active fragments. FastGrow is freely available to the public as a web server at 
https://​fastg​row.​plus/ and is part of the SeeSAR 3D software package.

Keywords  Fragment-based drug design · Molecular shape · Fragment growing · Fragment evolution · Structure-based drug 
design · Molecular docking

Introduction

Fragment-based drug design or discovery (FBDD) has 
become a mature paradigm in both the hit generation, as 
well as the lead optimization parts of early phase pharma-
ceutical research [1]. Three distinct pillars underpin FBDD 
techniques: fragment library design, fragment screening, and 
optimizing fragments into lead compounds, typically using 
linking, merging, and growing [2]. Computational methods 
have emerged to support each of these three areas specifi-
cally [3–6]. There is a special focus on the optimization of 
fragments to leads [7, 8], due to its methodological overlap 
with the general hit-to-lead optimization problem. A more 

general overview of FBDD and computational methods sup-
porting FBDD can be found in dedicated reviews [2, 9, 10].

FBDD is frequently, if not almost exclusively, a struc-
ture-driven approach, meaning it relies on experimentally 
resolved or modeled structures of fragments that are bound 
to the target of interest. One popular method to progress 
from a low affinity fragment hit to a more traditional hit or 
lead is fragment growing [2, 11]. In fragment growing a 
molecule bound to a target is extended by attaching a suit-
able additional fragment. This is a common scenario in drug 
design that has inspired both academic developers as well 
as software suppliers to create specialized fragment growing 
software [12–15].

Structure-based fragment growing software is often based 
on docking methodology [8, 10, 13], which was initially 
developed with full-sized ligands in mind. Furthermore, 
there is very little consensus on how fragment growing 
should be validated. A few attempts have been made to 
standardize the validation of docking fragments into empty 
pockets [16, 17], but fragment growing validation is per-
formed heterogeneously. This leads to a situation where it 
is unclear how appropriate and successful individual meth-
odologies used for fragment growing actually are.
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In this work we will describe our fragment growing work-
flow FastGrow based on the Ray Volume Matrix (RVM) 
shape descriptor [18], a pharmacophoric interaction descrip-
tion, and JAMDA geometry optimization [19]. Its features 
will be statistically evaluated on a previously reported data 
set of fragment growing steps extracted from crystallo-
graphic data [18] and compared to DOCK, a well-known, 
open source docking suite [20].

Furthermore, we will demonstrate FastGrow’s capa-
bilities in the context of an FBDD campaign on the target 
DYRK1A (Dual Specificity Tyrosine-phosphorylation-reg-
ulated Kinase 1A). DYRK1A is a kinase implicated in vari-
ous forms of cancer, neurodegenerative disease, and Down’s 
Syndrome. We will focus on the publications by Walmsley 
et al. [21] and Weber et al. [22].

Methods

FastGrow workflow

The FastGrow workflow is a combination of several recog-
nizable or previously described features that in combina-
tion facilitate efficient structure-based fragment growing. 
Beginning at pose generation and scoring those poses with 
an empirical scoring function, FastGrow is also capable of 
searching with interaction constraints and built-in ensemble 
flexibility.

Ray volume matrix pose generation

FastGrow is primarily based on the Ray Volume Matrix 
(RVM) shape descriptor [18]. RVM shape screening is a 
fast way to generate accurate poses for thousands of frag-
ments in a few seconds. In short, it uses a shape description 
symmetric to both pockets and fragments, to perform rapid 
comparisons and orient fragment conformations in a binding 
site. The input is a pre-calculated fragment database and a 
fragment bound to its target. The RVM is very fast and gen-
erates accurate poses, but it is limited to shape comparison.

JAMDA scoring and optimization

A remedy to this limitation is the inclusion of an interaction 
aware scoring function. Here we chose the JAMDA scoring 
function [19], an empirical scoring function that is modeled 
after well-known scoring functions such as PLANTS [23], 
ChemScore [24], and the original Böhm scoring function 
[25]. Thus, the JAMDA scoring function contains many 
similar score contribution terms. Its main novelty is its lim-
ited step length gradient-based optimization, which results 
in stable and consistent geometry optimizations.

In FastGrow JAMDA can perform the role of rank-
ing fragments in the final output hit list and optimizing 
the poses that the RVM search produces, especially with 
respect to intermolecular interactions. JAMDA has sev-
eral common interaction terms and can compensate for 
minor orientation errors in interacting groups with geom-
etry optimization. FastGrow mostly performs restrained 
JAMDA geometry optimization. A restrained JAMDA 
geometry optimization tries to keep the position of the 
input core more or less the same as it optimizes the exten-
sions. This is achieved with a quadratic penalty term that 
is applied if a core moves more than 0.5Å away from its 
input position.

Interaction constraints

A set of optional interaction constraints, which are modeled 
after generic pharmacophore features, can be used to guide 
the pose generation and filter fragments that cannot fulfill 
all interactions. The pharmacophore features can encode a 
number of types, most prominent of which are hydrogen 
bond donors, hydrogen bond acceptors, and hydrophobic 
points. Hydrophobic points refer to geometric points that 
abstract hydrophobic complementarity in a pharmacophoric 
way. Interaction constraints are represented by a point with 
a type and a tolerance radius. They will be referred to as 
search points. This is one of the most effective ways through 
which the user can directly interact with the workflow.

In the FastGrow web application, hydrogen bond acceptor 
and donor search points are generated according to inter-
action geometries defined by Nittinger et al. [26]. Hydro-
phobic search points are generated based on the definition 
in JAMDA [19], which is itself based on the ChemScore 
definition [24]. Search points are built from the predicted 
protein-ligand interactions and are placed on the ligand side 
of the interaction.

Ensemble flexibility

An input fragment can be positioned in multiple aligned 
binding sites so that it can be simultaneously screened 
against a database of fragments. This means multiple con-
formations of amino acid side chains and even backbone 
movements can be mimicked when generating the growing 
hits. When a fragment is scored against an ensemble only 
the best score of a fragment with respect to a member of the 
ensemble is used to position it on the hit list. This means that 
if a fragment conformation clashes with an amino acid side 
chain in three out of four conformations of the binding site, 
then the score of the fourth non-clashing, and by implication 
highest scoring, binding site will be used.
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Feature validation

All statistical validation was done on either the cross-grow-
ing data set that was established in the previous paper on 
the RVM [18] or subsets of this data set selected for specific 
properties of the protein-ligand complexes.

The test cases of the cross-growing set simulate grow-
ing one ligand in a PDB structure using only the structural 
information of another, related PDB structure and its ligand. 
Both of these ligands are crystallized in the same binding 
sites, measured by sequence identity, and have a common 
core structure. The difference between them is one substitu-
ent/fragment with one single bond to the common core. 
The PDB structure of one ligand is used to create the test 
ligand by cutting it down to the common core and attach-
ing the necessary fragment. The pose of the test ligand can 
then be compared to the reference crystal structure of that 
ligand, which has remained unused until this point. Around 
300 such cases were generated for the PDBbind refined set 
v.2019 in the original publication, which contains more 
detail about the generation procedure [18].

The main evaluation metric used was the atom RMSD 
and whether it was above or below the conventional thresh-
old of 2Å. Only the RMSD of the fragment atoms was meas-
ured. Confidence intervals were estimated by exploiting the 
binomial nature of a binary less than 2Å RMSD classifier, 
which can be approximated by a normal distribution. Further 
information on statistical methods can be found in Sect. 2 of 
the Supplementary Information. All feature specific valida-
tion test cases were compared to corresponding test cases in 
the cross-growing set.

Maintaining interactions

The real-world use case that was simulated by the interac-
tion test cases is that a FastGrow user aims to maintain an 
important interaction when replacing or extending a sub-
stituent due to previous experience or external information. 
To this end, interactions were generated using the model 
discussed in the Interaction Constraints Sect. [19, 26] for the 
test cases of the cross-growing set. These were used as input 
and then regenerated later for the resulting pose. Interactions 
generated for the reference structure and the resulting pose 
were compared to see whether the input interactions could 
be maintained.

To ensure these interactions were stable across both bind-
ing site structures included in the cross-growing, search 
points were generated from interactions in the growing 
binding site and the reference binding site. The JAMDA/
ChemScore [19, 24] definition of hydrophobic interactions is 
quite permissive and may lead to many hydrophobic search 
points. In validation we only consider fully hydrophobic 
rings and terminal hydrophobic groups. A search point that 

was generated in one binding site structure was considered 
stable if a search point of the same type could be gener-
ated in the other structure within 2Å of it. The generated 
search points were then available as an input to FastGrow. 
A comparison was then performed of growings of FastGrow 
without search point information, with search point infor-
mation, and with additional restrained optimization. The 
resulting poses were compared with respect to how well 
they maintained the interactions by also generating search 
points for the grown poses. If the grown poses regenerated 
the search point within 2Å of the input search point, they had 
succeeded in maintaining the interaction.

Water replacement

In the second case that was used to validate interaction 
constraints, a user utilizes water molecules visible in crys-
tallographic structures to either create new hydrogen bond 
interactions or to simply “push” a water out of a binding 
site. A subset of cross-growing test cases was extracted by 
checking whether a water was replaced in the course of the 
growing. This was detected by calculating van der Waals 
(vdW) radii overlaps between waters in the binding site 
that was used for growing and the ligand to be grown. If 
the ligand to be grown and a water exceeded a 60% vdW 
overlap threshold, the water was considered to have been 
replaced by the ligand to be grown. Search points were gen-
erated for replaced waters and the ligand. If a search point 
that was generated by a water molecule was within 2Å of a 
search point of the same type being generated by the ligand, 
then the search point of the water was used as a query for 
the water replacement growing. For the purposes of steric/
hydrophobic water replacement, waters generated dummy 
hydrophobic interactions, in addition to the more physical 
hydrogen donor and acceptor interactions. The input for a 
water replacement was therefore the typical cross-growing 
input of a core in a binding site, as well as the search points 
generated by the replaced waters.

Handling binding site flexibility

To evaluate FastGrow’s ensemble flexibility implementa-
tion, we simulated a scenario where a user generates a set 
of representative binding site conformations and uses these 
to perform a growing. RMSD clustered ensembles of bind-
ing sites from the PDB were generated for all test cases of 
the cross-growing set using SIENA [27]. SIENA was run in 
the “docking” configuration, which implies, for example, 
binding site sequence identity. SIENA output was limited to 
five binding site conformations using the built-in all-atom 
clustering. The SIENA query binding site was the input 
binding site of the cross-growing test case in question, not 
the reference binding site. A minimum of two binding site 
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conformations was necessary for a test case to be included 
in the ensemble flexibility subset. Note that the reference 
binding site containing the ligand to be grown is excluded 
from the binding site ensemble.

Comparison to docking

To establish FastGrow in the larger context of structure-
based tools, it was compared to the well-known docking pro-
gram DOCK [20]. DOCK is a high-profile [28] open-source 
suite of tools that has been validated in similar scenarios [20, 
29]. The pose re-prediction capabilities of DOCK version 
6.9 were compared to FastGrow using the cross-growing 
set in two configurations: a full flexible cross/re-docking 
of the ligand to be grown and a fixed anchor docking that 
receives the common core of the two ligands as an input, just 
as FastGrow does.

The protein-ligand complexes for docking were prepared 
in the same way as in the internal FastGrow workflow, which 
involves removing all crystal waters as well as molecules that 
clash with the input core from the binding site. Binding sites 
were re-protonated using protoss [30], which replaces the 
protonation scheme that is used by the PDBbind refined set. 
The active site for docking was defined as all atoms within 
15Å of the native ligand. The binding site was chosen to be 
rather large so as to avoid any stability issues at its edges 
for the sphere generation. Spheres were generated by either 
the sphgen version included in the source code distribution 
or sphgen_cpp [31] when necessary. Those spheres within 
10Å of the native ligand were selected for docking. Docking 
grids were generated using the GRID implementation that 
was provided with DOCK. Unless otherwise specified, all 
parameters were set to defaults originating either from the 
software package, DOCK publications [20, 29], and/or the 
DOCK fans mailing list [32]. The scripts that were used to 
automate this process are available at https://​github.​com/​
rarey​lab/​dock_​scrip​ts. Only the actual call to DOCK after all 
input data had been pre-calculated was included in runtime 
measurements.

Anchored docking as implemented in DOCK handles 
input coordinates differently than FastGrow. FastGrow either 
freezes input coordinates or allows a minimal amount of 
movement in restrained JAMDA optimization. DOCK finds 
the largest rigid structure that is connected to a specified 
atom in the anchor. Unfortunately, as of DOCK 6.9 [33], it 
is not possible to rigidify structures manually, which means 
that in the worst case DOCK will still sample degrees of 
freedom in the input core. The atom specifying the anchor in 
our validation scenarios with anchored docking was always 
chosen to be the atom neighboring the linker atom. This was 
done to ensure the degrees of freedom of the growth vector 
were as comparable as possible to FastGrow. In the fragment 
growing enrichment case study the complete anchor was 

rigid, which meant that DOCK was not expected to sample 
any more degrees of freedom than FastGrow, and runtime 
comparison could be performed fairly.

DYRK1A case study

The first part of the DYRK1A case study simulated a frag-
ment hit optimization from a micromolar fragment (PDB 
code: 7A4R) to a nanomolar ligand (PDB code: 7A5N). 
Three fragment growings were performed that roughly cor-
responded to three areas of optimization in the publication 
by Walmsley et al. [21]. The three fragment growings were 
performed with FastGrow and with DOCK by full re-dock-
ing, as well as anchored docking. The generated poses were 
compared and discussed.

The second part of the DYRK1A case study described 
screening libraries of fragments with FastGrow. The idea of 
this enrichment study was to measure how well FastGrow 
could pick out fragments known to be very active from a col-
lection of generic fragments. Multiple high affinity ligands 
produced by collaborators at Vernalis and Servier contain 
a 2,6-diaminopyridine moiety. The diaminopyridine frag-
ment from PDB code: 7AJW was extended by a collection 
of known active fragments generated from Servier/Vernalis 
ligands, as well as a collection of property matched generic 
fragments created by BioSolveIT [34].

Three workflows were used for growing: FastGrow’s 
pose scoring, FastGrow with restrained JAMDA optimiza-
tion, and anchored docking with DOCK. All methods had 
to generate a pose for all fragments before these poses could 
then be scored. The workflow was designed to measure both 
the quality of the pose generation, as well as the screening 
power. Only fragments for which all methods could generate 
a pose were included in the statistics. After all fragments had 
been scored, the enrichment of all workflows was first com-
pared to the enrichment achievable by sorting with “Rule of 
Three” properties [35], which served as the baseline, and 
then to each other. Confidence intervals were calculated 
using bootstrap re-sampling similar to the procedure pre-
sented in Stein et al. [36]. Further information on statisti-
cal methods can be found in Sect. 2 of the Supplementary 
Information.

Results

The cross-growing set was regenerated on the PDBbind 
refined set v.2020 [37]. The procedure was the same as pre-
viously described [18], but resulted in more test cases due to 
the growth of the PDBbind. The previous cross-growing set 
contained 326 test cases and 155 unique fragments, whereas 
the new cross-growing set contained 425 test cases and 176 
unique fragments.

https://github.com/rareylab/dock_scripts
https://github.com/rareylab/dock_scripts
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The shape-based growing has improved slightly since the 
original publication [18] and recreated 66.8 ± 4.5% (95% 
confidence interval) of ligand poses at an RMSD less than 
2Å. Restrained JAMDA optimization at 70.8 ± 4.3% showed 
minor improvements in RMSD (Fig. S1). As shown in the 
section below, the changes it performed seemed to be more 
beneficial to individual interaction geometries than to the 
pose as a whole.

The small position changes a restrained JAMDA opti-
mization performed at the core atoms occasionally led to 
slightly higher RMSD. JAMDA was used in a restrained 
configuration that applied a quadratic penalty term to move-
ment of the core atom. These are assumed to already be 
in the correct position, but a certain amount of movement 
was necessary for correct optimization. A full run of the 
cross-growing set took around half an hour without JAMDA 
optimization and three and a half hours with optimization, 
as can be seen in Table 1.

Maintaining interactions

Search points were generated for all 425 test cases of the 
cross-growing set. 252 of these test cases generated at least 
one interaction that was stable across both binding site con-
formations. 85 acceptor search points and 21 donor search 
points were found in the cross-growing set. There were 
almost five times as many hydrophobic search points (a total 
of 532), than there were donor and acceptor search points, 
even though only terminal hydrophobic groups and “fully 
hydrophobic” rings were included. This was largely due to 
the very permissive definition according to ChemScore [24] 
in comparison to the geometrically constrained hydrogen 
bonds. The largest contributors to the number of hydropho-
bic search points were hydrophobic ring systems.

In general, the pose generation performance of grow-
ings with search points was better than for those without 
( 77.0 ± 5.2% vs. 64.3 ± 5.9% , see Sect. 4 of the Supplemen-
tary Information). It is, however, more meaningful to evalu-
ate the interaction geometries themselves that growings with 

search points produce. Figure 1 shows what percentage of 
interactions could be maintained by the grown poses. The 
purely shape-based growing conserved 62.4 ± 12.0% of the 
hydrophobic interactions, but had significant difficulties 
maintaining hydrogen bond acceptor and donor interactions 
at 30.6 ± 9.8% and 28.6 ± 19.4% , respectively. Shape-based 
growing had no way of telling where to place hydrogen bond 
interactions because it did not receive any search point infor-
mation and the RVM descriptor does not contain any elec-
trostatic information [18].

FastGrow using search points and FastGrow using 
restrained JAMDA optimization as well as search points 
both outperformed purely shape-based growing in conserv-
ing acceptors. FastGrow using search points had a success 
rate of 55.3 ± 10.6% and FastGrow using search points with 
optimization had a success rate of 68.2 ± 9.9% . Furthermore, 
hydrogen bond donor functionalities, as the most geometri-
cally constrained interactions in this set, seemed to profit the 
most from restrained JAMDA optimization after a search 
point query with 76.2 ± 18.2% of them being conserved. The 
upper bound to maintaining any interactions was the perfor-
mance of the pose generation. Search points with JAMDA 
optimization showed a very similar ability to maintain inter-
actions as the pose generation performance.

Water replacement

Water replacement test cases could be extracted for 162 
cross-growing test cases. 81 cases generated one search 
point for the water replacement query. 58 cases generated 

Table 1   Overview of the performance and runtime of FastGrow on 
the cross-growing set

FastGrow screens every unique fragment in the cross-growing set 
against every test case, which means the runtime per fragment is the 
full runtime first divided by 425 test cases and second divided by 176 
unique fragments. Machine specifications can be found in Sect. 1 of 
the Supplementary Information

Success rate Runtime [h] Runtime per 
fragment 
[ms]

Growing 66.8 ± 4.5% 0:31 24
Optimized growing 70.8 ± 4.3% 3:16 158

Fig. 1   Percentage of stable interactions that could be maintained in 
the cross-growing set by different methods. “Growing” represents 
purely shape-based growing. “Search Points” and “Optimized Search 
Points” represent growing with search points with or without subse-
quent restrained JAMDA optimization. The y-axis denotes what per-
centage of input interactions could be maintained during growing. 
The three most prominent interaction types are color coded according 
to the legend. The error bars are 95% confidence intervals
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two search points, which implied that in these test cases two 
waters were replaced by the ligand to be grown. The highest 
number of waters replaced by a ligand was four. Figure 2 
shows a few examples of the ligand to be grown overlapped 
with water in the binding site used for growing. While some 
of these waters were replaced by hydrophobic substructures, 
some were in positions that the ligand subsequently occu-
pied to make directed interactions with the binding site.

Although there was a difference in pose generation 
between purely shape-based growing with a 64.2 ± 7.4% 
success rate and water replacement with subsequent optimi-
zation at 72.8 ± 6.8% , it was not significant. The somewhat 
small effect may in part be a symptom of the comparatively 
few test cases. Water replacement does not seem to confer a 
significant general advantage and may be more useful in spe-
cific systems. Figure 3 shows a side chain of a quinolinone-
6-sulfonamide derivative crystallized in PDB code: 6MA4 

being grown into 6MA5. The purely shape-based growing 
without water replacement did not know about any of the 
interactions the carboxylic acid could make with the back-
bone and turned it away. Using the waters in the binding site 
led to the side chain fully stretching out and interacting with 
the backbone.

Ensemble flexibility

Ensemble test cases with at least two binding site confor-
mations, not including the reference PDB, could be gener-
ated for 246 cross-growing test cases. Almost half of the 
ensemble test cases (120) contained five binding site con-
formations. 29 ensemble cases had only two binding site 
conformations. Except for five test cases, the average all 
atom RMSD of the ensemble binding sites to the SIENA 

Fig. 2   Water replacement test 
cases that were extracted from 
the cross-growing set. The 
replaced waters are shown with 
the interactions that were used 
in the query to replace them. 
Yellow spheres are hydrophobic 
interactions and green cylinders 
hydrogen bond interactions. 
Binding site residues are light 
blue. The ligands are non-native 
to the binding site. The darker 
blue part of a ligand will be 
grown in a water replacement 
test case. a The ligand of 5ULT 
in 3GI6 (Gag-Pol polyprotein). 
b The ligand of 4AGO in 
4AGM (Cellular tumor antigen 
p53). c The ligand of 6MA4 in 
6MA5 (O-GlcNAc transferase). 
d The ligand of 6PGA in 6PG4 
(WD repeat-containing protein 
5). All 3D molecule images 
were made with the NGL 
viewer[38]

Fig. 3   Growing with and 
without water replacement. The 
purely shape-based growing 
is to the left and the one using 
water replacement is to the 
right. The binding site is from 
PDB code: 6MA5. The ligand 
of 6MA4 in gray is aligned to 
the binding site and used as a 
reference for RMSD calcula-
tion. The grown ligands are in a 
darker blue
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query was between 0 and 1.5 Å distributed around a mean 
RMSD of 0.74 Å.

Automatically generated binding site ensembles did not 
show a strong statistical improvement of the pose genera-
tion performance ( 69.3 ± 5.7% vs. 75.2 ± 5.4% , see Sect. 6 
of the Supplementary Information). It is well-known that 
ensembles tend to cause false positive hits in docking [39] 
and while many systems profited from ensembles, a similar 
amount generated poses with higher RMSDs.

When used appropriately, ensemble flexibility can make a 
significant difference [40]. Conformational changes of bind-
ing site residues may obstruct growing of a ligand bound 
in a different structure of that binding site. Figure 4 shows 
a shikimate precursor mimicking ligand from PDB code: 
3N76 that was grown into 3N7A and an ensemble of 4B6O 
and 4KIU. FastGrow could not grow the phenolic substitu-
ent of 3N76 into the groove that was defined by 3N7A. It 
needed information about the flexibility of the loop and the 
movement of a conserved Tyrosine to calculate a successful 
pose with less than 2 Å RMSD.

Docking comparison

The pose re-prediction performance of FastGrow was com-
pared to DOCK [20] on the cross-growing set. Only test 
cases where both methods could generate at least one pose 
were included in the statistics and only the top poses com-
pared. Anchored docking could not generate poses for 12 test 
cases and FastGrow could not generate poses for 5 test cases. 
One of these test cases overlapped, so 16 (4%) of the 425 test 
cases were excluded. A discussion of why molecules failed 
can be found in Sect. 7 of the Supplementary Information.

Figure 5 shows the performance of DOCK cross-dock-
ing and anchored docking versus FastGrow growing and 
growing with subsequent restrained JAMDA optimiza-
tion. Anchored docking with a success rate of 54.3 ± 4.8% 

outperformed cross-docking at 33.3 ± 4.6% , which is to be 
expected. Anchored docking received more input informa-
tion, i.e., the core of the cross-growing test case, which sig-
nificantly reduced the degrees of freedom in the system and 
therefore the potential for error. It is nonetheless an impor-
tant point to make that using all the input information avail-
able can significantly impact the correctness of a prediction.

Both growing at 67.5 ± 4.5% and growing with optimi-
zation at 71.4 ± 4.4% significantly outperformed anchored 
docking. It was unexpected to see FastGrow outperforming 
anchored docking. Both systems received the same input 
information and had been validated for this task. The dif-
ference probably arose in how sensitive both systems were 
to steric clashes with the binding site. FastGrow has a com-
paratively high clash tolerance in the initial pose generation, 
which produced many poses a typical docking workflow 

Fig. 4   Growing in a binding site with a highly flexible loop [41]. 
To the left in purple is PDB code: 3N7A. To the right are 4KIU in 
orange and 4B6O in blue. All are structures of the 3-dehydroquinate 
dehydratase. The conserved TYR24 is in light blue. The ligand atoms 

in darker blue were grown by FastGrow in the 4KIU/4B6O ensemble, 
which was not possible in 3N7A alone. The reference ligand from 
3N76 is in gray

Fig. 5   Performance comparison of DOCK in a “Cross Docking” and 
an “Anchored Docking” to FastGrow with or without subsequent 
restrained JAMDA optimization. The error bars are 95% confidence 
intervals
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would have rejected [18]. Restrained JAMDA optimization 
then resolved these clashes with minor geometry adjust-
ments. The permissiveness of the pose generation may have 
been able to sample the sometimes uncomfortable fit of a 
non-native ligand better than a more clash sensitive system.

DYRK1A case study

DYRK1A is one member of the Dual Specificity Tyrosine-
phosphorylation-regulated Kinases. Its expression pattern 
suggests a role in the central nervous system [42], which 
supports its implication in neurodegenerative disease [43] 
and Down’s Syndrome [44]. Furthermore, DYRK1A is sus-
pected to be involved in some of the pathways that lead to an 
increased cancer risk for individuals with Down’s Syndrome 
[45]. Servier and Vernalis recently published a collection of 
novel and highly active inhibitors for DYRK1A that were 

produced in a collaborative FBDD campaign in Walmsley 
et al. [21] and Weber et al. [22].

Growing a ligand from a fragment

Walmsley et al. discovered fragment 1 (PDB code: 7A4R) 
as one of their micromolar hits (DYRK1A cKi 1.5 � M) 
from a fragment screening that was performed on DYRK1A 
using the Vernalis fragment library [21, 46, 47]. Toward 
the end of the publication they focused on compound 34 
(PDB code: 7A5N), a nanomolar ligand (DYRK1A IC

50
 7 

nM) that they described as “[...] a potent, in vivo-tolerated, 
selective inhibitor of DYRK1A kinase” [21]. Both fragment 
1 and compound 34 can be seen in Fig. 6. Both fragment 1 
and compound 34 exhibited canonical hinge binding [48] 
and compound 34 retained the central ring core of fragment 
1. Compound 34 could therefore be grown from fragment 
1 by exchanging the amine close to the hinge to a methyl, 
growing into the salt-bridge region, and using the vector 
defined by the carbonyl at the ring of fragment 1 to address 
the glycine loop. These three steps were performed with 
FastGrow and DOCK.

Exchanging the amine of fragment 1 to a methyl was an 
important step towards the selectivity of compound 34. The 
uncommon position of the LEU241 carbonyl opened up 
space near the hinge, which was specific to DYRK1A [21]. 
Computationally, the switch from amine to methyl should 
be trivial. Figure 7 shows the poses that were generated by 
DOCK and FastGrow. Both the anchored docking approach 
using DOCK and FastGrow generated a realistic pose for 
fragment 1 with a methyl. Cross-docking with DOCK, which 
was not constrained by the position of the core atoms, gener-
ated a pose that drifted out of the pocket. Clearly, not using 
the available information of the core atoms led to a poorer 
quality pose. Although the change in RMSD is minor, sev-
eral interaction geometries shifted into the unphysical range.

A hydrogen position at the pyrrole substructure of the 
pyrrolopyrimidine could be used to grow into the salt-bridge 

Fig. 6   Fragment 1 and compound 34 in a structure of DYRK1A. The 
structure and fragment 1 coordinates in gray are from PDB code: 
7A4R and compound 34 in orange comes from PDB code: 7A5N 
and is aligned to the binding site using SIENA [27]. The cartoon for 
the residues GLU160 to ASP178 was removed for clarity as it is in 
Walmsley et  al. [21]. All 3D molecule images were made with the 
NGL viewer [38]

Fig. 7   Amine to methyl exchange of fragment 1. Fragment 1 from PDB code: 7A4R is in grey. To the left are poses that were generated by 
DOCK cross-docking in light green and anchored docking in yellow. To the right is the pose that was generated by FastGrow in a darker blue
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region. The pyridine nitrogen of the aminopyridine to be 
placed there was expected to interact with LYS188, while 
the amine was expected to interact with GLU203. Figure 8 
shows the poses generated by the three methods. Using an 
anchored docking or a cross-docking configuration led to 
significantly different poses in this case. The cross-docking 
generated a pose very close to the eventual orientation the 
aminopyridine has in compound 34 (i.e., PDB code: 7A5N). 
Despite receiving the coordinates of the full methylated frag-
ment 1 as an input, the anchored docking optimized its pose 
out of the pocket. This could have been an overreaction of 
the underlying scoring function and optimization to minor 
clashes. Cross-docking did find a good pose, proving that 
both the scoring function and optimization could support 
one, however some strong effect perceived by the optimiza-
tion led to a poorer pose for anchored docking.

All methods initially placed the amine of the aminopyri-
dine away from GLU203. There are structures that support 
this as at least a reasonable position. Weber et al. modeled 
the ligand of PDB code: 7AJ2 with multiple conformations 
one of which has an aminopyridine that points away from 
GLU203. Most structures reported by Walmsley et al. and 
Weber et al., however, were modeled so that the aminopyri-
dine pointed toward GLU203. We could achieve a pose more 
consistent with the other structures by using the position of 
the water HOH603 to estimate a reasonable position for the 
amine to interact with GLU203. HOH603 was then removed 
as usual in the growing process. We could also use the posi-
tion of the amine in a different structure to achieve the same 
result. A search point with the correct type at that position 
guided FastGrow to place the amine near GLU203.

The last growing step involved replacing the carbonyl in 
the now modified fragment 1 with a difluoro-benzylamine, 
which interacts with the glycine loop. Figure 9 shows that all 
methods agreed on this step. The anchored docking, cross-
docking, and FastGrow all reproduced the conformation of 
the difluoro-benzylamine of compound 34 in 7A5N.

Each of the three growing vectors considered above 
resulted in at least one series of compounds in the publica-
tion by Walmsley et al. [21]. While this case study was there-
fore reductive, it demonstrated the three methods: DOCK 
cross-docking and anchored docking, as well as FastGrow, in 
a practical application. Cross-docking generated good poses 
for the two larger modifications but exhibited unnecessary 
pose drift in the methylation. Anchored docking incorpo-
rated template information but seemed to have stability 
issues when confronted with clashes. FastGrow generated 
realistic poses for all three parts of the incremental growing. 
In one case the pose generation could be improved by using 
a crystallized water or external information to place a search 
point as guidance.

Fragment growing enrichment

A number of ligands from Walmsley et al. [21] and Weber 
et al. [22] had common cores that could be used to grow 

Fig. 8   Growing the aminopyridine into the salt-bridge region. The 
core of methylated fragment 1 that was used as an input to FastGrow 
and anchored docking is in grey. To the left are the poses that were 
generated by DOCK cross-docking in green and anchored docking in 

yellow. To the right are two poses produced by FastGrow in darker 
blue. The pose with the amine towards GLU203 was guided by plac-
ing a search point at the position of HOH603

Fig. 9   Poses of compound 34 that were grown from fragment 1 in 
PDB code: 7A4R. In green and yellow are the DOCK cross-docking 
and anchored docking poses, respectively. The FastGrow pose is in a 
darker blue. The compound 34 reference structure aligned to 7A4R is 
in orange
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other ligands. The diaminopyridine moiety of the ligand in 
PDB code: 7AJW was used as the growing seed or core 
for the enrichment case study. Figure 10 shows the ligand 
of 7AJW with the diaminopyridine highlighted in green. 
Any fragment growing from this core would initially point 
directly to the hinge region.

Many ligands of DYRK1A, especially those from Weber 
et al. had a conserved diaminopyridine moiety. Filtering all 
diaminopyridine-containing ligands down to only the ones 
with affinities of less than 10 nM resulted in 77 ligands. 
These 77 ligands were fragmented at the bond to the diami-
nopyridine. The Rule of Three [35] properties of these frag-
ments were inspected to detect outliers far outside of the 
property distribution. Nine fragments were discarded as out-
liers. There was a large group of fragments with exactly the 
same TPSA, which had to be downsampled to avoid biasing 
the screening. This lead to a collection of 40 highly active 
fragments. A comparison of properties before and after the 
filtering can be found in the Supplementary Information, 
Sect. 8.

The set of 40 known highly active single-digit nanomolar 
fragments was combined with a set of generic fragments 
assumed to be not as active. 2653 property-matched generic 
fragments were generated using the BioSolveIT fragment 
set [34]. The fragments were property matched using “Rule 
of Three” properties [35]. After property matching, sorting 
by molecular weight was chosen as a comparison baseline. 
Molecular weight retained some residual discriminative 
power despite property matching and was therefore cho-
sen as a comparison baseline instead of an idealized null 
baseline. This is discussed further in Sect. 8 of the Supple-
mentary Information. For evaluation we used the receiver 

operating characteristic (ROC) and the area under the curve 
(AUC). The ROC curves and AUCs of the three methods 
(FastGrow’s pose scoring, FastGrow with restrained JAMDA 
optimization and anchored docking with DOCK) can be seen 
in Fig. 11.

All methods outperform the molecular weight baseline. 
The methods themselves all performed similarly and very 
well. Most surprising is that the FastGrow pose scoring 
function, which was never parametrized or evaluated for 
this purpose, performed almost on par with the other more 
sophisticated scoring functions. The FastGrow pose scoring 
function is made up of three terms: filled volume, number 
of close contacts, and clash [18]. Clash is the only term it 
shares in common with the other two scoring functions and 
therefore must be the driving force behind the general high 
performance. To substantiate this we repeated the experi-
ment with all terms of the pose scoring function set to zero 
except for clash. Figure S7 shows that the pose scoring 
function with just clash performed comparably to the other 
scoring functions. 3D clash, and by extension shape com-
plementarity, seemed to be a very discriminative property in 
this particular system, which leads to the high performance 
of all three of these methods.

Table 2 shows the time it takes for each of the three meth-
ods to generate poses for all fragments in the enrichment 
screening and score them. There was a factor five difference 
in speed between DOCK anchored docking and FastGrow 
with restrained JAMDA optimization. There was a factor 

Fig. 10   The fragment screening enrichment core generated from PDB 
code: 7AJW. The diaminopyridine many of the ligands in the data set 
have in common is in light green. The bond between the gray and the 
green substructures is cut and the green structure used for growing. 
The growing direction will therefore be towards the hinge region

Fig. 11   ROC curves and AUCs of DOCK anchored docking, Fast-
Grow with JAMDA, the FastGrow pose scoring function and sorting 
by descending molecular weight. The annotated errors on the AUCs 
describe a 95% confidence interval
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500 difference in speed between anchored docking and using 
FastGrow’s pose scoring function. Of the 2 s FastGrow and 
its pose scoring function spent screening, half was spent 
in the input-output operations of extracting 2693 fragments 
from the screening database and writing the hits. The hun-
dred-fold increase in runtime between the simple FastGrow 
pose scoring function, which performed competitively in this 
case study, and the more sophisticated scoring functions was 
disproportional to the apparent gain in performance.

Conclusions

FastGrow is a novel and very fast approach for structure-
based fragment growing. It achieved competitive pose re-
prediction performance and enrichment compared to other 
well-known docking workflows but significantly outper-
formed these in speed. FastGrow can be used not only to 
screen larger collections of fragments, but also to reveal 
trends in fragment types and poses that are not visible in 
shorter hit lists. Besides the purely shape-based growing, 
FastGrow has been equipped with optional pharmacophore-
like constraints, which can also be used to displace water 
molecules. Moreover, it may read in and work with an 
ensemble of protein structures to describe the flexibility of 
a target.

Our validation showed that we could maintain impor-
tant interactions during growing. Success varied depend-
ing on the type of interaction, but modeling interactions 
as pharmacophore-like search points generally led to an 
improvement in pose re-prediction. Especially the more 
geometrically constrained interactions profited from 
restrained JAMDA optimization. We validated displacing 
waters by using those visible in crystal structures as hints 
for potential interactions, which improved pose generation 
in some scenarios. The ubiquitous tendency towards false 
positives in ensemble flexibility approaches meant that 
we could not find a pronounced statistical improvement 
when using ensemble flexibility. However, it was shown 

that some systems profited from or even required multiple 
structures to describe binding properly.

A growing case study on a DYRK1A FBDD campaign 
demonstrated the advantages and shortcomings of both 
DOCK and FastGrow in iterative growing. Using the posi-
tion of a fixed fragment as input had clear advantages in 
both the statistical evaluation on the cross-growing set, 
as well as the case study. Anchored docking with DOCK 
encountered stability issues in the case study, which could 
not happen with FastGrow, due to its restrained optimi-
zation and the inherent stability of the JAMDA scoring 
function [19]. We could also demonstrate FastGrow’s pose 
generation being guided by including external interaction 
information in the query.

The enrichment case study on DYRK1A demonstrated 
a scenario that could largely be solved by clash or in 
other words shape complementarity. A general statisti-
cal evaluation should however also include examples that 
require electrostatic complementarity in addition to shape 
complementarity. Building up a balanced dataset of such 
cases without biasing it by the methods to be evaluated is 
a significant challenge and beyond the scope of this work. 
A more general analysis will be necessary to address the 
lingering questions of how to incorporate shape and inter-
actions into a scoring function of appropriate complexity.

As is often the case, the inclusion of external and 
inferred information is generally more successful than 
building a generalized model that encodes this informa-
tion. It is for this reason we have focused on interactive, 
intuitive and quickly iterable approaches in FastGrow. Its 
ability to generate new ligands is comparable to estab-
lished approaches and it would be interesting to see its 
sampling improved and compared to newer machine learn-
ing based generative models. FastGrow is already in use 
for current projects at Servier, as well as other organiza-
tions, and we hope it will enable further interesting results 
in the near future.
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in Sect. 1 of the Supplementary Information

Method Screening time 
[s]

Runtime per 
fragment 
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FastGrow + Pose scoring 2 0.70
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