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ABSTRACT Longitudinal studies on the gut microbiome that follow the effect of a
perturbation are critical in understanding the microbiome’s response and succession
to disease. Here, we use a dextran sodium sulfate (DSS) mouse model of colitis as a
tractable perturbation to study how gut bacteria change their physiology over the
course of a perturbation. Using single-cell methods such as flow cytometry, bioorthogonal
noncanonical amino acid tagging (BONCAT), and population-based cell sorting combined
with 16S rRNA sequencing, we determine the diversity of physiologically distinct fractions
of the gut microbiota and how they respond to a controlled perturbation. The physiologi-
cal markers of bacterial activity studied here include relative nucleic acid content, mem-
brane damage, and protein production. There is a distinct and reproducible succession
in bacterial physiology, with an increase in bacteria with membrane damage and diversity
changes in the translationally active fraction, both, critically, occurring before symptom
onset. Large increases in the relative abundance of Akkermansia were seen in all physio-
logical fractions, most notably in the translationally active bacteria. Performing these anal-
yses within a detailed, longitudinal framework determines which bacteria change their
physiology early on, focusing therapeutic efforts in the future to predict or even mitigate
relapse in diseases like inflammatory bowel diseases.

IMPORTANCE Most studies on the gut microbiome focus on the composition of this
community and how it changes in disease. However, how the community transitions
from a healthy state to one associated with disease is currently unknown. Additionally,
common diversity metrics do not provide functional information on bacterial activity.
We begin to address these two unknowns by following bacterial activity over the course
of disease progression, using a tractable mouse model of colitis. We find reproducible
changes in gut bacterial physiology that occur before symptom onset, with increases in
the proportion of bacteria with membrane damage, and changes in community compo-
sition of the translationally active bacteria. Our data provide a framework to identify
possible windows of intervention and which bacteria to target in microbiome-based
therapeutics.

KEYWORDS bacterial physiology, high nucleic acid, low nucleic acid, flow cytometry,
colitis, BONCAT, longitudinal

The diversity of the gut microbiota has been characterized in a range of settings,
leading to an increased understanding of the critical and complex roles that it has

in host health (1–7). While the mechanisms underlying the role of the gut microbiome
in disease are beginning to be unraveled, developing microbiome-targeted therapeu-
tics remains challenging. This may be due in part to the wealth of cross-sectional stud-
ies that focus on determining significant bacterial compositional changes and the
search for specific taxa associated with disease. Indeed, cross-sectional studies of
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disease-associated gut microbiomes do not provide information on the microbial suc-
cession underlying disease progression, a requisite for successful microbial interven-
tion. Based on the steady-state framework of microbiomes, once the microbiome is in
a steady state, whether homeostasis or an altered composition associated with disease,
the microbial community has a high level of resilience (8–10). This makes it very diffi-
cult to introduce sustained changes in the microbial community (see Sommer et al. [8]
for an excellent review).

Longitudinal studies are essential to identify time frames when the microbiome is
not yet in steady state and thus most amenable to modulation. A reliable and repro-
ducible perturbation model is also critical for characterizing gut microbial succession
to disease. The dextran sodium sulfate (DSS) model of colitis is well established in
mice, with various prognoses based on genetic background (11, 12). C57BL/6 mice ex-
hibit signs of intestinal colitis, such as intestinal inflammation, a shortened colon with
mucosal damage, and rectal bleeding, typically after 3 to 7 days of DSS administration
in their drinking water. The gut microbiome is heavily implicated in colitis: its presence
is required for a robust colitis, its transfer can induce colitis, and its composition and di-
versity are altered during the inflammatory period (13–15). After DSS cessation, mice
recover from the intestinal damage, inflammatory markers decrease (12), and the gut
microbiota returns to baseline diversity levels, although not fully (16). The changes in
bacterial community composition are consistent, with decreases in the short-chain
fatty acid (SCFA) producers Clostridiales and increases in the more oxygen-tolerant and
proinflammatory Enterobacteriaceae (16, 17). These DSS colitis-specific and consistent
changes can be considered a dysbiosis, defined as when “the microbiota crucially con-
tributes to the manifestation or continuation of a given disease that cannot be attrib-
uted to a single bacterial species” (8). This dysbiosis has been suggested to be an alter-
native steady state of the microbiome (9), which correlates with disease severity and
inflammation (16–19). Given the difficulties in inducing long-term changes in a micro-
biome at steady state, it is crucial to characterize the functional succession to dysbiosis
to identify bacterial targets for modulation. However, the changes undergone by mi-
crobial communities between these distinct steady states (homeostasis and dysbiosis)
remain poorly described.

Recent efforts have aimed at characterizing the longitudinal dynamics of the gut
microbiome in colitis, with a focus on its links to disease severity, remission outcome, and
treatment response; yet these studies have been unable to find biomarkers of relapse or
remission (20–25). All but one (21) of these studies focused on bacterial community com-
position and potential metabolism through metagenomics, as opposed to actual micro-
bial functionality through metatranscriptomics or metabolomics. To characterize the dy-
namics of the gut microbiota and its succession to dysbiosis, a focus on bacterial activity,
rather than community composition, is needed. Indeed, changes in bacterial functionality
are not always reflected in changes in diversity or metabolic pathways, as bacteria can
modulate their activity through transcriptional, translational, and posttranslational modi-
fications typically missed in DNA-focused approaches (26–30). Certain ’omics techniques,
such as metatranscriptomics, provide functional information on bacterial communities,
but they remain limited by incomplete databases and often cannot link a given function
to specific taxa. In addition, next-generation sequencing loses quantitative information,
transforming diversity into a compositional framework without information on clonal dif-
ferences (31, 32). The inability to link bacterial activity to diversity limits our understand-
ing of bacterial interactions in complex communities and their response to perturbations.
Determining the longitudinal functional changes of bacterial communities between alter-
native stable states and linking them to specific bacterial taxa would provide a causative
framework for targeted interventions focusing on activity and community resilience,
which is currently lacking.

Single-cell methods can rapidly isolate and identify physiologically distinct bacteria
from communities, potentially allowing us to link physiology to taxonomic identity, without
cultivation (27, 33). Fluorescence-activated cell sorting and subsequent sequencing (FACS-Seq)
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is able to rapidly discriminate bacteria based on optical characteristics, such as size, shape,
intracellular density, and fluorescent properties of various physiological dyes (34–37). Here,
we seek to determine the microbial functional succession to dysbiosis in a DSS mouse
model of colitis by following three distinct markers of bacterial activity at a fine temporal
scale: (i) nucleic acid content, (ii) membrane damage, and (iii) protein production through
bioorthogonal noncanonical amino acid tagging (BONCAT). These markers encompass
broad, yet distinct, physiological traits that are closely linked to bacterial metabolic activity
(35, 38–41). When stained with nucleic acid dyes that stain both DNA and RNA (42), bacteria
cluster into two main cytometric populations according to their nucleic acid content and
resulting levels of fluorescence. Multiple studies suggest that the highly fluorescent bacteria
are metabolically more active than their less fluorescent counterparts (33, 39, 43–45), sup-
porting the use of this broad physiological marker of metabolic activity. Membrane damage
can be identified through membrane exclusion dyes, which stain damaged or dead bacteria
(46), while BONCAT detects translationally active cells through the incorporation of nonca-
nonical amino acids and fluorescent labeling with click chemistry (41). This allows for
unbiased, single-cell resolution of translationally active bacteria while they are still in their
complex community. By sorting and sequencing these cytometric populations multiple
times along the progression of DSS-induced colitis, we quantitatively and qualitatively
monitored the microbial succession to dysbiosis. Our data show a distinct reproducible
physiological succession to a dysbiosis typically associated with colitis, led first and fore-
most by the translationally active bacteria. These microbial functional alterations occurred
prior to the development of inflammatory symptoms and progressed with increased rela-
tive abundances of Akkermansia muciniphila. Our work provides insight into the dynamics
of bacterial interactions during alternative steady states, providing more sensitive informa-
tion than diversity metrics alone. Understanding how bacteria change their physiology
and activity in response to perturbations may elucidate a critical window during which
microbiome-targeted therapeutics would be most effective.

RESULTS
DSS-induced colitis causes transient changes in the proportions of physiologically

distinct bacteria. Two cages of five C57BL/6 male mice each (cages A and C) and one
cage of five female mice (cage B) were independently exposed to 2% DSS in drinking
water for 5 days to induce colitis (Fig. 1A). Fecal samples were collected prior to (2 to 4
samples), during (5 samples), and after (5 samples) colitis, until the mice had no more
blood in stool. The onset of colitis was determined for each mouse on each sampling
day with the disease activity index (DAI), encompassing weight loss, stool consistency,
and the presence of blood in stools (Fig. 1B; see also Fig. S1 in the supplemental material),
and these results were complemented by determining increases in fecal lipocalin 2 levels
(Fig. 1C). Based on these results, the longitudinal study was broken up into four disease
states: baseline, presymptomatic, symptomatic, and recovery. Baseline corresponds to the
days before DSS administration (days 23 to 0), the presymptomatic state is when the
mice are exposed to DSS but have minimal symptoms (DAI , 5), the symptomatic state is
when the mice have a DAI of .5 and increased lipocalin 2 levels, and recovery days are
identified when the mice have no more blood in their stool (DAI, 5). After recovery, there
are two weekly follow-up sampling days (W1 and W2).

Three aspects of bacterial physiology were monitored: (i) relative nucleic acid con-
tent, (ii) membrane damage, and (iii) protein production. Relative nucleic acid content
was assessed through two fractions discriminated by flow cytometry: bacteria with a
high nucleic acid content (HNA) and bacteria with a low nucleic acid content (LNA).
Within a given system, the HNA bacteria have higher levels of metabolic activity than
their LNA counterparts (39, 44). Membrane damage is monitored through staining with
propidium iodide (PI), a membrane exclusion dye, and protein production is monitored
through BONCAT labeling.

Total cell counts and the proportions of cells in each physiological fraction were
determined through flow cytometry, and the data represent means of results from all 3
cages to limit cage effects and highlight the reproducibility of results. While there were
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no significant changes in bacterial load over time or between cages (P . 0.1) (Fig. 2A), the
proportions of each physiological fraction changed before or during symptom onset. There
was a significant increase in the proportion of bacteria with membrane damage during the
presymptomatic phase compared to that at baseline, from 11.8 6 7.4% to 15.2 6 8.6%
(q = 0.014) (Fig. 2B). There was a decrease in the proportion of translationally active bacteria
during the presymptomatic phase, from 76%6 14% to 61%6 24% (Fig. 2C). The proportion
of HNA bacteria decreased during DSS administration from 49.3 6 15.8% at baseline to
43.7 6 17.5% at the peak of symptoms (slope m = 25.07; P , 0.05). The proportion of HNA
cells then began to recover to baseline levels (m = 3.67; P = 0.08) (Fig. 2D, left). As the distinc-
tion between HNA and LNA cytometric populations were not always clear during the DSS per-
turbation, the median fluorescence intensity (MFI) of the entire bacterial community was also
calculated. The MFI decreased simultaneously with the proportion of HNA bacteria, repre-
senting a total loss in nucleic acid content of the cells between baseline and the presympto-
matic state (m =21663; P, 0.0001) (Fig. 2D, middle). The RNA-to-DNA ratios measured by
fluorometric quantification follow similar trends, albeit once the mice are symptomatic, with
the largest drop in the RNA/DNA ratio occurring at peak symptom severity (Fig. 2D, right).

As sex-specific responses have been noted in DSS-induced colitis before, a break-
down by sex is in Fig. S2 (47). While there are differences in how bacterial physiology
changes in response to DSS perturbation, we stress that due to the low sample sizes for
each sex, we cannot attribute these differences to sex-specific effects; further experiments
with larger sample sizes would be needed to confirm the differences seen here. Overall,
sex accounted for 4.4% and 8.76% of the variation in the proportion of propidium iodide-
positive (PI1) bacteria and BONCAT-labeled bacteria, with no significant effect of sex on
the proportion of HNA bacteria over time.

In addition, regressions were performed for each physiological fraction to deter-
mine changes over time. Regressions using a Bayesian linear mixed model indicate a
reduction in HNA, PI, and BONCAT cells during the symptomatic disease state. Cage
and intermouse effects were modest, explaining little of the variation, with time being

FIG 1 Two percent DSS consistently and reproducibly induces colitis. (A) Sampling timeline with disease states identified; (B) disease activity index for each
mouse on each sampling day; (C) fecal lipocalin 2 concentrations in cage C only. Error bars represent standard deviations.
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the largest explanatory variable, again signifying that the succession to disease is dis-
tinct and reproducible. Overall, changes in bacterial physiology occur before or in con-
cordance with the onset of symptoms.

DSS causes consistent changes in bacterial diversity across physiological groups.
All physiological groups of bacteria monitored (HNA, LNA, PI, and BONCAT) were
sorted, and the V4-V5 region of the 16S rRNA gene was sequenced to determine the
composition changes in each physiological fraction during a perturbation. The ordina-
tions of beta diversity distances between physiological groups show significant cluster-
ing based on the disease state for each physiological fraction, except for PI1 bacteria
(Fig. 3), indicating that these different physiologies are dynamic in response to DSS-
induced colitis. As the PI population is low (mean, 12.4% across all days), PI sorting was
pooled by cage and day, lowering the power for PI diversity analyses.

As disease state had a clear effect on the diversity of each physiological fraction, we
next wanted to determine how much the communities were changing compared to
baseline. Pairwise beta diversity distances were calculated from each disease state to
baseline. Similar trends were seen for each physiological fraction, with communities
diverging further away from baseline as disease progressed and with diversity starting
to return to baseline during recovery (Fig. 4A). Most physiological fractions were still
different from baseline even once symptoms had disappeared (weekly follow-ups were
not included), suggesting that gut microbial communities remain altered even after
host recovery and loss of symptoms. To focus on the succession to colitis and the asso-
ciated dysbiosis, we analyzed the changes in the presymptomatic disease state to
determine which physiological group was changing the most. Comparing the levels of
divergence between the presymptomatic state to baseline, the BONCAT fraction
changed the most, notably more than the whole community (Fig. 4B). This suggests

FIG 2 Proportions of physiologically distinct bacteria change prior to symptom onset. (A) Average bacterial abundance per gram of feces from all mice
(n = 15). (B) Proportion of bacteria with membrane damage. (C) Proportion of translationally active bacteria. (D, left) Proportion of HNA bacteria; (center)
median fluorescein isothiocyanate (FITC) fluorescence of the entire bacterial population; (right) RNA/DNA ratios of the whole community. The slope for
each disease state, as well as the statistical significance, is indicated at the top. (C, center and right) Data are from one representative experiment; all other
panels represent the averages of results from 3 experiments (n = 15 total), and error bars represent standard deviations. Color-coding represents the
disease state according to DAI and lipocalin 2 assays (blue: baseline, yellow: presymptomatic, red: symptomatic, grey: recovery, with recovery divided into
immediate recovery and the two weekly follow-ups [W1 and W2]). Paired, mixed-effects analyses were performed to test for statistical significance against
baseline values, correcting for multiple comparisons using the Geisser-Greenhouse correction. ns, not significant; *, P , 0.05; **, P , 0.005; ***, P , 0.0005;
****, P , 0.0001.
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that while each physiological fraction follows the same trend over time, the earliest
changes occur primarily in the translationally active bacteria, and these changes are
more pronounced than in the whole community.

Unique taxa are associated with colitis between physiological groups. We next
wanted to determine which bacteria were changing in abundance across disease
states and physiological fractions. While physiological groups are distinct from one
another in each disease state (R2 = 0.049; P , 0.001) (Table 1), they maintain similar
trends in diversity over time. These trends include increases in the numbers of mem-
bers of the Bacteroidetes (Bacteroides) and Verrucomicrobia (Akkermansia) and
decreases in Firmicutes (Lachnoclostridium, Lachnospiraceae, Dubosiella, Turicibacter)
(Fig. 5). The bacterial community remained stable during baseline at the phylum, ge-
nus, and amplicon sequence variant (ASV) levels (P . 0.1, by permutational multivari-
ate analysis of variance [PERMANOVA] of physiology to day) and began to change
within 48 h of DSS administrations. Peak changes in community structure were concur-
rent with peak inflammation, with a return to baseline levels by the end of the experi-
ment (Fig. 5). Across physiological groups and disease states, all major phyla are differen-
tially abundant (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Tenericutes, and
Verrucomicrobia; by analysis of composition of microbiomes II [ANCOM II], W statistic = 5,
cut-off = 0.9). At the genus level, 60 genera out of 67 were considered differentially

FIG 3 Disease state has an effect on the beta diversity of physiological fractions. Principal-component analysis (PCoA) of weighted UniFrac distances by
physiological fraction. Samples are colored based on disease state. PERMANOVA results of the effect of the disease state on variation are included within each
ordination plot. Whole community, unsorted original sample; BONCAT, click-labeled protein-producing bacteria; HNA, high-nucleic-acid-content bacteria; LNA,
low-nucleic-acid-content bacteria; PI, propidium iodide-stained bacteria with membrane damage; W1, weekly follow-up 1; W2, weekly follow-up 2.
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abundant across physiological groups and disease states (using the most stringent cutoff
of 0.9) (Table S2). These phylum- and genus-level dynamics are consistent with what has
previously been described for DSS-induced colitis (16, 17).

As the BONCAT fraction changed the most in the presymptomatic disease state, we
next set out to identify which bacteria changed their activity before disease onset
(Fig. 6A). Akkermansia, the most prevalent genus within the Verrucomicrobia phylum,
increased significantly in the BONCAT fraction as well as the whole-community, HNA,
and LNA fractions (Fig. 6B; Table 2). Alongside the increase in Akkermansia organisms,
Bifidobacterium (Fig. 6C), Clostridiales vadin, and an uncultured Lachnospiraceae orga-
nism (Fig. 6D and E) increased as well, while two members of the Firmicutes decreased
in relative abundance (Fig. 6A).

Given the large changes in community composition at the phylum level, there were
significant changes in the other physiological fractions occurring as well between the
presymptomatic and baseline states. In the HNA fraction, 7 of 9 taxa that significantly
decreased in abundance were members of the Clostridiales, and the only taxa that sig-
nificantly increased were members of the Clostridiales and Akkermansia. In the LNA
fraction, Eubacterium decreased and a Ruminococcus species decreased in the PI frac-
tion. All differentially abundant taxa are depicted in Fig. S3. In the whole community,
12 taxa increased, including Erysipelotrichaceae, Akkermansia, and many Firmicutes.
Twelve taxa decreased, five of which were members of the Lachnospiraceae. Overall, in
multiple physiological states, taxa belonging to the Clostridia had variable responses,

FIG 4 Physiological fractions diverge in beta diversity from baseline. (A) Weighted UniFrac distances within each disease state per physiological fraction.
Dunn’s test for multiple comparisons to baseline. (B) Weighted UniFrac distances within each physiological fraction during the presymptomatic period, with
Dunn’s test for multiple comparisons to results for the whole community. *, P , 0.05, by PERMANOVA. Whole community, unsorted original sample;
BONCAT, click-labeled protein-producing bacteria; HNA, high-nucleic-acid-content bacteria; LNA, low-nucleic-acid-content bacteria; PI, propidium iodide-
stained bacteria with membrane damage.
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with some taxa increasing and others decreasing, emphasizing the variable response
within the Firmicutes phylum, previously seen in DSS colitis (17).

DISCUSSION

In this study, we applied a well-characterized perturbation resulting in dysbiosis to
study the succession in bacterial physiology, as determined by nucleic acid content,
membrane damage, and protein production of individual bacteria while still in their
natural assemblage. Combining single-cell techniques and population-based sorting
and sequencing (FACS-Seq), we report reproducible changes in these fractions prior to
symptom onset in mice and before the gut microbiota reaches a dysbiotic stable state.

These changes are led by the translationally active bacteria, confirming that the gut
microbiota is not homogeneous in its functional response to perturbations (16, 27, 29,
48, 49). Proportions of bacteria with membrane damage increase early on after DSS
administration, indicating that the inflammatory intestinal environment is likely re-
sponsible, as this was not a direct cause of the microbial cells being exposed to DSS
(see Fig. S4 in the supplemental material). The composition of this PI fraction did not
change over time, suggesting that the same bacteria remain susceptible to damage.
As described elsewhere (50–52), these bacteria are probably capable of membrane

TABLE 1 PERMANOVA results for weighted UniFrac distances of the effect of physiology
during each disease state

Disease state R2 P value
Baseline 0.27 0.001
Presymptomatic 0.17 0.001
Symptomatic 0.14 0.001
Recovery 0.11 0.001
Follow-up 0.12 0.001

FIG 5 Relative bacterial community composition in each physiological group over time. (A) Phylum level. (B) Genus level, with the top 10 genera plotted
(n = 15) (3 experiments, 5 mice each). The period of DSS administration is highlighted with a green line. WC, whole community, the unsorted original
sample; BONCAT, click-labeled translationally active bacteria; HNA, high-nucleic-acid-content bacteria; LNA, low-nucleic-acid-content bacteria; PI, propidium
iodide-stained bacteria with membrane damage.
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repair, ensuring that they remain in the gut ecosystem, as seen here. The decrease in
the abundance of HNA bacteria is consistent with results for other systems in which
the HNA bacteria are more susceptible to damage (27, 53–55), while the LNA bacteria
have been found to be more resilient (55, 56). These differences in susceptibility to
damage may be a taxonomic characteristic for gut microbial communities, as the
Firmicutes have previously been suggested to be more susceptible to perturbations
than the Bacteroides (57).

The increase in the proportion of Akkermansia seen in the translationally active frac-
tion has previously been reported in DSS mouse models of colitis (15–17, 58).
However, this increase is in direct contrast to data from patients with inflammatory
bowel diseases (IBD), in whom Akkermansia is commonly depleted (59, 60). DSS is com-
monly used in mouse models of IBD, a chronic disease characterized by periods of
acute inflammation interspersed with periods of remission. While the reasons for the

FIG 6 Differentially abundant taxa in the BONCAT1 fraction. (A) Differentially abundant taxa in the BONCAT1 fraction, comparing the presymptomatic
disease state to baseline. Wald test, the significance cutoff is a P of ,0.05 after false-discovery rate (FDR) correction. (B to D) Relative abundances over
time of Akkermansia (B), Bifidobacterium (C), Clostridiales Family XIII (D), and Lachnospiraceae (E) organisms. Trends over time are shown with the local
polynomial regression (loess) for each physiological fraction. Physiological fractions where the taxon was significantly differentially abundant are depicted
as solid lines and where the taxon was not significantly differentially abundant between the presymptomatic period and baseline as dashed lines.

TABLE 2 Relative abundance of Akkermansia in each physiological fraction in each disease
state

Physiology

% abundance during indicated disease state

Baseline Presymptomatic Symptomatic Recovery
Whole community 0.37 14.16 23.37 13.57
BONCAT1 0.97 24.94 33.89 16.04
HNA 0.67 2.85 8.48 5.98
LNA 0.70 5.00 12.62 5.06
PI1 0.34 3.02 11.83 4.32

Avg 0.616 0.26 9.996 9.56 18.046 10.48 8.996 5.41
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discrepancy in Akkermansia dynamics are unclear, differences between the DSS model
of colitis and IBD are most likely at play. Functional differences between strains of
Akkermansia in DSS colitis have been described (61) and may have an effect on disease
outcome (14). Another possible explanation for the increased prevalence and activity
of Akkermansia during DSS administration and colitis may be its competitive advant-
age during periods of low nutrient acquisition. The mice lose significant weight during
colitis, with a decrease in nutrient acquisition and chow consumption. Previous studies
on starvation report blooms of Akkermansia, possibly due to its ability to use mucin as
a sole carbon and nitrogen source, providing it with a competitive advantage during
low nutrient availability (62–65). There is increased oxygenation of the epithelium in
DSS colitis (66), and Akkermansia has recently been shown to be able to adapt to these
low levels of oxygen. These adaptations include an increased growth rate upon oxygen
exposure, another possible competitive advantage against the luminal bacteria during
inflammation (67). Lastly, a report on protein expression in a mouse model of colitis
also demonstrated that Akkermansia had significantly increased protein expression
during colitis compared to that at baseline. However, the increase in the relative abun-
dance of Akkermansia was more mild (to 5%) than what we observed (an increase of
16.37%) (68). The role of Akkermansia in DSS-induced colitis is intriguing and warrants
further study, as other reports have found that excessive mucin degradation may exac-
erbate colitis by allowing increased access to the epithelium and host immune system
for other bacteria (69, 70).

Other bacteria that increased in the presymptomatic period include members of
the Ruminococcaceae family. These include Ruminiclostridium 5, Eubacterium, and other
undefined members. While the Ruminococcaceae family is typically decreased in IBD,
members of the Ruminococcaceae family are mucin degraders, with Ruminococcus gna-
vus previously associated with IBD and known to produce a proinflammatory cytokine
(71–74). The increased abundance and activity of Bifidobacterium have previously been
reported in colitis as well (58, 75), yet this is surprising, as they are more commonly
associated with health for their SCFA-producing properties (76, 77). The increase in the
SCFA producers Clostridiales Family XIII is similarly interesting.

We have provided a detailed time series of gut microbial physiology during the pro-
gression to dysbiosis and recovery in DSS colitis. Previous longitudinal studies on DSS-
induced colitis have focused either on active disease with minimal sampling before dis-
ease onset or on the recovery period by determining the effect of previous inflammatory
episodes (16, 78, 79). A metatranscriptomics study that included one time point before
symptom onset found minor changes in the transcriptional response of the gut micro-
biome (16). None of the changes before disease onset were significant, yet the trends
were starting to appear, with downregulation of flagellar machinery and butyrate produc-
tion in the Clostridiales and an increase in mucin-degrading enzymes in the Bacteroidales
(16). Our work cannot discriminate which specific metabolic pathways are modified, but
the more regular sampling allowed us to identify which bacteria are significantly altered,
and how, before symptom onset. Importantly, the BONCAT technique can be expanded
upon and combined with proteomics to glean insights into specific functionality.
Limitations with PI as a marker of bacteria with membrane damage have been well dis-
cussed in previous work, as PI has been shown to also stain metabolically active cells.
However, this appears to be limited, with no clear phylogenetic bias (36, 50, 52, 80, 81).
Similarly, the biological complexities associated with nucleic acid content as a proxy for
bacterial activity have been discussed elsewhere (49).

In the case of IBD, we hypothesize that the gut microbiota changes its activity and
physiology in response to an environmental trigger, which then results in changes in
composition detectable only at disease onset. As dysbiosis correlates with disease se-
verity, we expect that changes in bacterial physiology and activity would occur before
the onset of a flare and may represent a possible window of intervention or an early
diagnostic tool. Here, we demonstrate how these are reproducible changes, which can
be monitored in a rapid and efficient manner by using flow cytometry and monitoring
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relative nucleic acid content, protein production, and membrane damage. Critically,
many of these physiological changes would have been missed by traditional sequenc-
ing approaches. Monitoring of the translationally active bacteria identified taxa that
increased or decreased their activity levels and, thus, are potential therapeutic targets.
Indeed, through the targeted improvement of bacterial metabolism, the progression
to dysbiosis may be minimized. Specifically, the active role of Akkermansia in disease
progression, which seems to thrive in the inflammatory milieu induced by DSS, warrants
further investigation.

Conclusions.We report a clear and reproducible succession in bacterial physiology in
response to a DSS-induced perturbation; an increase in bacteria with membrane damage
occurs before the onset of symptoms, concomitantly with strong changes in the diversity
of the translationally active bacteria. These bacteria may become potential biomarkers of
an upcoming dysbiosis, allowing for mitigation interventions before dysbiosis sets in and the
gut microbiota reaches a new alternative stable state. Specifically in DSS-induced colitis, many
of these changes in community composition and diversity are driven largely by Akkermansia.
Overall, this work demonstrates the use of single-cell and population-based methods to iden-
tify changes in the gut microbiome otherwise missed by whole-community sequencing and
cross-sectional surveys. By identifying functional changes in bacterial physiology prior to dis-
ease onset, this work furthers the goals of targeted gut microbiome therapies.

MATERIALS ANDMETHODS
DSS-induced colitis mouse model.Wild-type C57/BL6 mice were purchased from Jackson Laboratory

at 5 weeks of age and left to acclimatize to our animal facility for 2 weeks before the start of the experi-
ment. Colitis was induced with 2% dextran sodium sulfate (DSS) in drinking water for 5 days (molecular
weight, 36 to 50 kDa; MP Biomedicals). Mice were housed under specific-pathogen-free conditions at the
Goodman Cancer Center at McGill University (animal ethics protocol 2018-7999). The experimental setup
was independently completed 3 times, with 5 mice per cage each time.

The disease activity index was assessed based on the presence of blood in stool, stool consistency,
and change in body weight (82). The presence of blood in stool was assessed daily for each mouse using
the Hemoccult Sensa kit (Beckman Coulter). Body weight was measured daily. Fecal lipocalin 2 was
assessed with the mouse lipocalin 2 DuoSet enzyme-linked immunosorbent assay (ELISA) (R&D).
Samples were prepared according to the method of Chassaing et al. (83) and diluted 2-fold to 2,000-fold
depending on experimental day (83). ELISA was performed according to the manufacturer’s instructions.

Fecal sample preparation and BONCAT. Fecal samples were collected from mice daily and trans-
ferred to anaerobic conditions within 1 h of collection. Sample preparation was performed in an anaerobic
chamber (Coy Laboratory Products; 5% H2, 20% CO2, 75% N2); flow cytometry acquisition and cell sorting
were performed aerobically. Gut microbiota sample preparation was carried out as previously described
(80). For the bioorthogonal noncanonical amino acid tagging (BONCAT) incubations, bacteria were diluted
1/10 in 50% (vol/vol) of the supernatant retained from the first 6,000 � g centrifugation and the remaining
volume of reduced phosphate-buffered saline (PBS). Bacteria were incubated at 37°C for 2 h with a 2 mM
final concentration of L-homopropargylglycine (HPG). A no-HPG incubation control was included, and each
sample was incubated in duplicate. Bacteria were fixed with 80% ethanol to a final concentration of 50%
(vol/vol) and stored at 4°C until processed with the click reaction that same day.

For the click reaction, bacteria were pelleted and resuspended in the click reaction solution (Click-iT Cell
buffer kit; ThermoFisher Scientific) containing 5 mM Alexa-647 azide and incubated in the dark at room tem-
perature for 30 min. A no-Alexa-647 azide control was included. Samples were then centrifuged at 8,000 � g
for 5 min, washed with 80% ethanol, and resuspended in PBS for flow cytometry acquisition and cell sorting.

Flow cytometry acquisition and cell sorting. Acquisition to determine cell concentrations and pro-
portions of different bacterial physiologic fractions was performed on a BD FACSCanto II equipped with
a 488-nm laser and 530/30 and 585/42 detection filters. Fecal samples were collected from mice daily
and transferred to anaerobic conditions within 1 h of collection. For each mouse, the freshly collected
fecal samples are put in solution and split into different FACS tubes for individual staining to minimize
stain interference and overlap. Cells are either stained with SYBR green I (Invitrogen; 1� final concentration)
for 15 min to detect the more active (high nucleic acid content [HNA]) and less active (low nucleic acid content
[LNA]) physiological fractions or with propidium iodide (Sigma) for 10 min (0.08 mg � ml21

final concentration)
to detect membrane damage. All staining was performed in the dark under anaerobic conditions.

For flow cytometry acquisition, rainbow fluorescent particles of 3.0 to 3.4 mm (BD Biosciences) were
added to each sample before acquisition in sufficient volume (10 to 30 ml) to acquire bead events equiv-
alent to ;1% of total events. Rainbow fluorescent particle concentration and total counts were deter-
mined after acquisition with 7-mm CountBright absolute counting beads (Life Technologies), as per pre-
vious studies (80). Cell sorting was performed on a FACSAria III (BD Bioscience) equipped with a 488-nm
laser and the appropriate detection filters, using a 70-mm nozzle at 70 lb/in2 and at a flow rate that
would lead to less than 5% coincidence events. Positively stained cells were determined from debris and
unstained cells using unstained controls. One hundred eighty thousand events were sorted using a 70-
mm nozzle for each population in each individual and frozen at 280°C for later DNA extraction. Sheath
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fluid was collected at the end of every sorting day as a negative control to detect contaminant DNA.
Data files were analyzed using FlowJo V7 software (FlowJo LLC). Cell count data were analyzed as previ-
ously reported (80). Cell count and proportional data were analyzed with a mixed-effects analysis model
with repeated measures.

DNA extraction and 16S rRNA gene amplicon bioinformatics analysis. The V4-V5 hypervariable
region was amplified with the 515F/926R primers (84). Preprocessing was performed with the quantita-
tive insights into microbial ecology (QIIME2) platform (85). Trimming, alignment of paired-end reads,
and quality filtering were performed by DADA2 per sequencing run (86). Taxonomic alignment was per-
formed with a pretrained naive Bayes classifier using the SILVA 132 database on 99% operational taxo-
nomic units (OTUs). Prevalence-based filtering was done per experiment. Reads present in fewer than 3
samples and reads present fewer than 10 times were removed. Reads present in the sheath fluid but
absent in the whole-community samples were identified as contaminants and removed. Sequencing
runs were then merged.

Bioinformatics analysis was performed with phyloseq (v1.3) in R (v3.6.1). Relative abundance data were
used for beta diversity analysis. Beta diversity was assessed on weighted UniFrac distances calculated using
rbiom (v1.0). Pairwise PERMANOVAs were calculated with 999 permutations to test for significance using
adonis in the vegan package (v2.5). Differential-abundance testing was performed after phylogenetically
agglomerating taxa based on a phylogenetic tree length of 0.1. The statistical analysis package corncob (v0.1)
was used for differential abundance testing, which performs beta-binomial regression models to determine dif-
ferentially abundant and dispersed relative abundances (87). Beta diversity dissimilarities between physiological
groups or disease states were compared using the Kruskal-Wallis test with Benjamini-Hochberg (BH) correction
for multiple comparisons in the rstatix package (v0.5). Differential-abundance testing across all groups was per-
formed with ANCOM II, with BH correction for multiple comparisons (88).

Ethics. The study was approved by the McGill Ethics Research Board (animal protocol 2018-7999),
Montreal, QC, Canada.

Data availability. Bacterial 16S rRNA gene sequencing data can be accessed in the SRA database
under accession number PRJNA719860. Code related to the analysis has been deposited in GitHub
(https://github.com/MTaguer).
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