
EDITORIALS

Maternal Allergen Exposures and Development of Asthma: Kids Are
Airways Nervy

Asthma is a chronic inflammatory lung disease that is influenced by
both genetic and environmental factors (1). Studies show that both
not only contribute to the development of asthma but also may
influence severity (1, 2). For the fetus, exposures within the maternal
environment are believed to have a long-lasting impact on lung
immune responses and airway function in the offspring. Several
maternal factors, including atopy, asthma, smoking, obesity, stress,
and environmental exposures, are among the immunological and
physiological factors that influence asthma development (3–6). The
underlying mechanisms by which maternal asthma contributes to the
development of asthma in offspring remain poorly defined. One
reason is the lack of established animal models to interrogate the
likely complex immunological responses and interactions between
mother and fetus.

In this issue of the Journal, Lebold and colleagues (pp. 89–98)
report on their investigations of allergic airway inflammation and
airway hyperresponsiveness (AHR) in mouse pups born from
allergen-challenged dams (7). In the model, female mice were
chronically challenged with PBS or a common household allergen,
house dust mite (HDM), before and during pregnancy. Subsequently,
newborn pups were sensitized and challenged with PBS or HDM,
allowing an opportunity to understand how established maternal
asthma affects the development of allergic airway inflammation in the
offspring. The authors found that maternal HDM before, during, and
after pregnancy resulted in enhanced immune cell infiltration and
AHR in offspring. Although it is not clear which period is most
important for these augmented responses, the authors do provide a
model that can be used to determine the potential underlying
mechanisms involved.

Interestingly, HDM-challenged pups fromHDM-challenged
dams exhibited increased T-helper cell type 1 (Th1) and Th17
signatures with less robust type 2 inflammation. This complex
immune environment has increased Th1 and/or Th17 cells and
neutrophil infiltration, which are associated with more severe asthma
endotypes (8). Given the known effects of HDM challenge on type 2
inflammation, it is interesting that the offspring develop a skewed
Th1/Th17 inflammatory profile (9). However, these interpretations
are largely based on gene expression; thus, the immune cell
composition within the lung remains to be confirmed. Nonetheless,
these data suggest that maternal allergen exposure may contribute to
a predisposition to increased asthma severity in offspring. Because
Th1/Th17 inflammation is associated with corticosteroid
insensitivity, maternal asthmamay also have implications for
managing asthma symptoms in children born to mothers with
asthma. These findings also raise the question whether new biological
therapies targeting type 2 inflammation in maternal asthma could
have an impact on the development of asthma in children (10).

In addition to airway inflammation, maternal and postnatal
HDM exposure induced greater airway sensory nerve innervation,
which is important for airway inflammation and AHR. Increases in
airway nerve density promote eosinophil recruitment and airway
smooth muscle hypercontractility, impacting airway tone (11, 12).
The contributions of type 2 inflammation to airway nerve innervation
are highlighted by studies showing increased airway nerve density in
mice overexpressing IL-5 (13). Furthermore, increased maternal IL-5
expression also increases airway nerve density, which results in
sustained AHR in mouse pups (14). In the study by Lebold and
colleagues, the PBS-challenged pups born to HDM-challenged dams
also exhibited increased airway innervation. This suggests that
maternal asthma can influence airway nerve plasticity and
potentially predispose to asthma in the absence of allergen
sensitization and/or atopy.

Neurotrophins, neuropeptides, and other nerve growth–related
signaling pathways play key roles in nerve innervation in the
developing lung (11). To understand mechanisms associated with
increased airway innervation, the gene expression of NGFs (nerve
growth factors) and related signaling pathways was measured.
Expression of several genes involved in nerve development, neuronal
proliferation, and sensory axon growth was found to be increased in
pup lungs exposed to maternal and postnatal HDM. Among
neurotrophins, NGF and its receptor, TrkA (tropomyosin-related
kinase A), were also increased. NGF has previously been shown to
affect neuronal plasticity, increase AHR, and reduce eosinophil
apoptosis (11). It remains unclear whether Th1 and/or Th17
inflammatory responses contribute to NGF production or other
mechanisms associated with airway innervation. Collectively,
maternal asthmamay impact nerve plasticity and airway innervation
throughmultiple signaling pathways associated with airway nerve
growth.

This study also raises important questions regarding maternal
allergen sensitization, asthma, and their influence on allergen
sensitivity in the offspring. In other words, is the same allergen
responsible for maternal allergic responses necessary for the
hypersensitization in the offspring? Here, the authors show that
exposure to the same allergen, HDM, exacerbates allergic airway
responses, indicating that the same allergen can induce a heightened
allergic response in the offspring. Previous studies showed that pups
born to mothers exposed to other environmental insults, such as
secondhand smoke or diesel exhaust particles, exhibit enhanced
allergic airway inflammation and AHRwhen challenged with
different allergens (15, 16). Taken together, the type of maternal
allergen or insult may not be the most important determinant of
altered nerve plasticity and asthma development. Perhaps it is the
altered maternal immune environment that affects the allergic
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immune responses in the fetus that contributes to asthma
development and severity in the offspring. This novel approach
provides a template for exploring these intriguing questions and
others in future studies.

Overall, the novel work by Lebold and colleagues highlights the
impact that maternal asthmamay have on asthma development.
Certainly, there are more questions raised than answered. As asthma
prevalence continues to increase, particularly in children, there
remains an urgent need to understand the complex
maternal–fetal–infant interactions that predispose to childhood
asthma. The contributions of maternal allergen exposure to immune
cell infiltration, AHR, and airway nerve density are striking and could
possibly drive a more severe asthma phenotype. These critical studies
will allow elucidation of immunological and physiological
mechanisms associated with the effects of maternal asthma on
offspring and may create opportunities to identify therapeutic
interventions for mother and child.�
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