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Abstract

Background: Noise-induced hearing loss is one of the most common forms of sensorineural hearing loss, is a
major health problem, is largely preventable and is probably more widespread than revealed by conventional pure
tone threshold testing. Noise-induced damage to the cochlea is traditionally considered to be associated with
symmetrical mild to moderate hearing loss with associated tinnitus; however, there is a significant number of
patients with asymmetrical thresholds and, depending on the exposure, severe to profound hearing loss as well.

Main body: Recent epidemiology and animal studies have provided further insight into the pathophysiology,
clinical findings, social and economic impacts of noise-induced hearing loss. Furthermore, it is recently shown that
acoustic trauma is associated with vestibular dysfunction, with associated dizziness that is not always measurable
with current techniques. Deliberation of the prevalence, treatment and prevention of noise-induced hearing loss is
important and timely. Currently, prevention and protection are the first lines of defence, although promising
protective effects are emerging from multiple different pharmaceutical agents, such as steroids, antioxidants and
neurotrophins.

Conclusion: This review provides a comprehensive update on the pathophysiology, investigations, prevalence of
asymmetry, associated symptoms, and current strategies on the prevention and treatment of noise-induced hearing loss.

Keywords: Noise-induced hearing loss, Occupational hearing loss, Asymmetrical hearing loss, Sensorineural hearing loss

Background
Exposure to excessive noise is the most common prevent-
able cause of hearing loss. It has been suggested that 12%
or more of the global population is at risk for hearing loss
from noise, which equates to well over 600 million people
[1]. The World Health Organization estimated that one-
third of all cases of hearing loss can be attributed to noise
exposure [2]. Noise-induced hearing loss (NIHL) has long
been recognized as an occupational disease, amongst
copper workers from hammering on metal, blacksmiths in
the 18th century, and shipbuilders or “boilermakers” after
the Industrial Revolution [1–3].

Without doubt, chronic noise exposure and the result-
ant cochlear trauma cause hearing loss and tinnitus. In
the United States among workers not exposed to noise,
7% have hearing loss, 5% have tinnitus, and 2% are
afflicted with both hearing loss and tinnitus. However,
among noise-exposed workers the prevalence is signifi-
cantly higher at 23, 15 and 9%, respectively [4]. Within a
group of one million noise-exposed workers, the highest
risk occupations for hearing loss were identified to be
those in mining, wood product manufacturing, construc-
tion of buildings, and real estate and rental leasing [5].
Hearing loss was more prevalent among men than
women, likely due to a disproportionate number of
males in these occupations, and the risk of hearing loss
increased with age.
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Despite its prevalence, there is still an ongoing debate
about the consequence of the noise-induced damage.
For many years, the maximum severity of NIHL was
argued to be mild to moderate and symmetrical based
on pure tone audiograms [6]. The impact of hearing loss
might be underestimated as recent studies have shown
evidence for hidden hearing loss and synaptopathy-
induced poor speech recognition [7, 8]. Furthermore,
the additional impact of noise-induced tinnitus and
vestibular dysfunction is still not fully elucidated.
The objective of this review is to provide a compre-

hensive overview of NIHL including the fundamental
and advanced pathophysiology, specific investigations,
including detailed discussion on asymmetric NIHL,
associated symptomatology, available interventions for
prevention and treatment.

Pathophysiology of NIHL
Fundamental equal-energy principle
NIHL is a complex disease that results from the inter-
action of genetic and environmental factors, but is
generally still dictated by the extent of biological damage
caused by noise exposure. The total amount of noise to
which an individual is exposed can be expressed in terms
of energy level. The energy level is a function of the sound
pressure of noise (in decibels) and of the duration of ex-
posure over time. The equal-energy principle effectively
states equal energy will cause equal damage (in any given
individual), such that similar cochlear damage may result
after exposure to a higher level of noise over a short
period of time as would occur after exposure to a lower
level of noise over a longer period of time [9].

Environmental factors
For environmental exposure, hearing loss can be caused
by long-term, continuous exposure to noise and is
generally referred to as NIHL. However, hearing loss can
also result from single or repeated sudden noise expos-
ure, which is generally referred to as acoustic trauma.
Exposure to sudden impulse noise is more detrimental
than exposure to steady state noise [10]. This review is
largely focussed on the former.
Noise trauma can result in two types of injury to the

inner ear, depending on the intensity and duration of the
exposure: either transient attenuation of hearing acuity
a.k.a. temporary threshold shift (TTS), or a permanent
threshold shift (PTS) [11]. Hearing generally recovers
within 24–48 h after a TTS [12]. However, recent studies
using a mouse model have found TTS’s at young ages
accelerated age-related hearing loss, even though the
hearing thresholds were completely restored shortly after
the TTS [13]. Longitudinal data on the impact of TTS’s
on the human ear, however, are lacking.

The recovery of TTS is probably a result of reversible
uncoupling of the outer hair cell stereocilia from the
tectorial membrane [14] and/or reversible central gain
increase and associated hyperacusis and tinnitus [15].
However, even when there is recovery of auditory pure
tone thresholds, there can be considerable damage to
the ribbon synapses, a rapid degeneration termed synap-
topathy [7, 8]. Synaptopathy results in loss of connec-
tions between the inner hair cells and their afferent
neurons in the acute phase of noise-induced cochlear
trauma [7, 16], and is most likely a result of glutamate
excitotoxicity causing damage to the post-synaptic
terminals [8]. This is also referred to as Noise-Induced
Hidden Hearing Loss, as it is not accompanied by a
pure-tone threshold shift [8]. Although the extent to
which synaptopathy contributes to NIHL is unknown, it
is argued that these synaptopathic mechanisms, similar
to synaptopathic disease in certain types of auditory
neuropathy, are involved in NIHL [17]. This is also
supported by research in animals showing intact hair
cells but extensive noise-induced spiral ganglion loss [7].
The characteristic pathological feature of NIHL with

PTS is the loss of hair cells, particularly the prominent
loss of outer hair cells at the basal turn, while loss of
inner hair cells was limited. Degeneration of the auditory
nerve followed the loss of outer hair cells in both tem-
poral bone histopathology and in a mouse model [18]. A
crucial characteristic of hair cell loss due to any cause
(noise, ototoxic medications, age) is the inability of
mammalian sensory cells to regenerate [19].
With sufficient intensity and duration of noise, not

only the hair cells but the entire organ of Corti may be
disrupted [20]. Destruction of the organ of Corti can be
the result of two mechanisms: mechanical destruction
by short exposure to extreme noise intensities or meta-
bolic decompensation after noise exposure over a longer
period of time [21]. Mechanical destruction is acquired
by exposure to noise intensities above 130 dB sound
pressure level (SPL) leading to disassociation of the
organ of Corti from the basilar membrane, disruption of
cell junctions, and mixing of endolymph and perilymph
[22]. The pathology observed as a result of metabolic de-
compensation includes stereocilia disruption, swollen
nuclei, swollen mitochondria, cytoplasmic vesiculation,
and vacuolization [23, 24]. Current theories of metabolic
damage center on the formation of free radicals or react-
ive oxygen species (ROS) and glutamate excitotoxicity
evoked by excessive noise stimulation, followed by acti-
vation of signalling pathways leading to cell death [25].
ROS emerge immediately after noise exposure and per-
sist for 7–10 days thereafter, spreading apically from the
basal end of the organ of Corti, thus widening the area
of necrosis and apoptosis [26, 27]. Glutamate is the exci-
tatory neurotransmitter that acts at the synapses of the
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inner hair cells with the eighth cranial nerve. High levels
of glutamate can over-stimulate postsynaptic cells and
cause swelling of cell bodies and dendrites [28], a
process referred to as glutamate excitotoxicity.
Another consequence of noise exposure is an increase

of free calcium (Ca2+) in outer hair cells immediately
after acoustic overstimulation contributed to by both
entry through ion channels and liberation from intracel-
lular stores [29]. Ca2+ overload can also trigger apoptotic
and necrotic cell death pathways independent of ROS
formation [30].
Aside from direct effects on the auditory system, noise

also can cause psychological and physiological stress. The
hypothalamus-pituitary-adrenal (HPA) axis can modulate
the sensitivity of the auditory system and be activated by
acoustic stress [31]. Mice lacking corticotropin-releasing
factor receptor (a critical factor in HPA function) in the
cochlea exhibited loss of homeostasis and protection
against noise-induced hearing loss, leading to an increased
susceptibility to noise trauma [32].

Genetic factors
The genetic susceptibility to NIHL has been clearly dem-
onstrated in animals. Mouse strains (C57BL/6 J) exhibit-
ing age-related hearing loss were shown to be more
susceptible to noise than other strains [33–35]. Also,
several heterozygous and homozygous knockout mice
including Cdh23 [36], Pmca2 [37], Sod1 [38], Gpx1 [39],
Trpv4 [40], Vasp [41], and Hsf1 [42] were shown to be
more sensitive to noise than their wild-type littermates.
These studies on knockout mice indicate that there are
some genetic deficits that disrupt specific pathways and
structures within the cochlea and predispose the inner
ear to NIHL.
The discovery of human genetic factors predisposing in-

dividuals to NIHL has been hindered by many difficulties.
To date, no heritability studies have been performed, since
families where all subjects are exposed to identical noise
conditions are almost impossible to collect. Hence, an-
other approach involving screening of Single Nucleotide
Polymorphisms (SNPs) of different genes known to play a
functional and morphological role in the inner ear has
been adopted. SNPs are common point mutations in the
genome (occurring every 100 – 300 base pairs), and their
genotyping is believed to be a successful tool in analyzing
the genetic background of complex diseases, such as
NIHL. In such studies, a disease susceptibility allele is ex-
pected to occur more often among susceptible groups
than resistant ones. The most promising results were ob-
tained for the inner ear potassium (K+) ion recycling and
heat shock protein (HSP) genes. K+ recycling genes are
indispensable for the process of hearing, as evidenced by
the fact that multiple mutations in these genes (GJB2,
GJB3, GJB6, KCNE1, KCNQ1 and KCNQ4) lead to

both syndromic and non-syndromic forms of hearing
loss [43–46]. HSPs form a group of conserved proteins
assisting in synthesis, folding, assembly and intracellular
transport of many other proteins. HSPs are ubiquitously
expressed in cells under physiological and pathological
conditions, and their expression increases under stressful
conditions, including noise exposure. When first induced
by exposure to moderate sound levels, they can protect
the ear from excessive noise exposure [47–50]. Three
genes are responsible for HSPs synthesis: HSP70-1,
HSP70-2 and HSP70-hom. Variations in HSP70-1,
HSP70-2 and HSP70-hom genes were shown to be associ-
ated with susceptibility to NIHL and these results were
replicated in three independent populations, Chinese,
Swedish and Polish [51, 52]. Recently, the significance of
genetic variation in NIHL development has also been
shown for otocadherin 15 and myosin 14 genes [53].

Audiometric investigations
Pure tone audiogram
Early or moderately advanced NIHL usually results in
the typical ‘boilermakers’ notch at 4 kHz, with spread to
the neighbouring frequencies of 3 kHz and 6 kHz [54]
and some hearing recovery at 8 kHz [6, 55]. The fact
that frequencies around 4 kHz are most affected by
noise is most likely due to the resonance frequency of
the outer ear/ear canal as well as mechanical properties
of the middle ear [56]. High frequencies are also
typically affected by presbycusis; therefore the notch
may disappear with aging, making it difficult to differen-
tiate NIHL from presbycusis. Whether or not chronic
noise exposure can also result in hearing loss at 8 kHz is
debated [57]. With further noise exposure, the notch can
get deeper and wider eventually involving lower frequen-
cies such as 2 kHz, 1 kHz and 0.5 kHz [58, 59].
Hearing loss induced by noise exposure is quoted to

be on average no greater than 75 dB in the high frequen-
cies and no greater than 40 dB in the lower frequencies
[6]. However, chronic noise exposure can in some indi-
viduals cause severe to profound sensorineural hearing
loss (SNHL). When individual data is reviewed, severe to
profound SNHL after noise exposure is documented in
noise-exposed individuals with a prevalence varying
from 1 to 15% [60–64], well above the prevalence among
the general population in the United States (0.5%) and
United Kingdom (0.7%) [65, 66]. The wide range in
prevalence of severe to profound hearing loss found in
studies of noise exposed populations may be influenced
by underlying genetic factors, or differences in the inten-
sity, type and duration of noise exposure. For instance,
SNHL can progress to severe or profound with
prolonged durations of noise exposure [67, 68], espe-
cially in impact noise [69].
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Speech recognition
Traditionally, pure tone thresholds were solely relied
upon to determine the extent of NIHL, resulting in an
underestimation of NIHL prevalence and functional
impact. NIHL can be associated with a decrease in
speech recognition scores in quiet as well as in back-
ground noise, even in the setting of a normal pure tone
audiogram [16]. This is probably related to the synapto-
pathic mechanisms, as discussed previously [7, 8, 16]
and reduced temporal processing skills [70] as a result of
noise-induced affected connections between inner hair
cells and low spontaneous rate auditory nerve fibres,
which are important for temporal processing [8]. In
order to quantify noise-induced damage, it is recom-
mended that speech recognition tests in quiet and in
noise should be performed in addition to pure tone
thresholds [7].

Otoacoustic emissions (OAEs)
Otoacoustic emissions have the necessary features to
serve as an objective, sensitive, and easy-to-administer
tool for the diagnosis of NIHL. In laboratory animals
exposed to high noise levels, OAE amplitude reductions
showed a good correlation with permanent threshold
shift of more than 25 to 35 dB SPL measured by
auditory evoked potentials and significant outer hair cell
loss measured by histologic cochleograms [71]. Parallel
decreases in pure-tone sensitivity and OAE amplitudes
were reported among noise-exposed industrial workers
and military personnel [72–74]. In a large sample of sub-
jects with NIHL and normal hearing ears, the presence of
click-evoked OAEs at 2 and 3 kHz could distinguish the
two groups with 92.1% sensitivity (correct discrimination
of NIHL) and 79% specificity (correct discrimination of
normal audiogram) [75]. Similarly, distortion-product
OAEs at 2, 3 and 4 kHz yielded 82% sensitivity and 92.5%
specificity. Several studies have suggested that OAEs may
provide an early indication of noise-induced cochlear
damage before evidence for NIHL appears in standard
audiometry [76, 77]. However, OAEs can only be used to
monitor hearing effectively when there is room for hearing
deterioration; hence, audiometry is indispensable in the
presence of a pre-existing hearing loss and/or when OAEs
are low or absent [78]. OAEs might be more sensitive
(and perhaps very useful) with regard to detecting NIHL
at an earlier, “pre-clinical” stage, although more data is
needed to establish well-defined criteria for the successful
use of OAEs in this clinical setting.

Objective measures for noise-induced-synaptopathy
Electrophysiologic measurements such as ABR have
been used to detect noise-induced synaptopathy [79].
There is evidence that suprathreshold wave 1 ABR re-
sponses reduced after noise exposure in animals with

normal auditory thresholds, at the frequencies tonotopi-
cally related to the synaptic loss [80, 81]. Therefore it is
suggested that wave 1 of the ABR can be predictive to
the degree of synaptopathy [80, 81]. However, studies in
human subjects have yielded conflicting results with
some studies providing evidence for wave I reduction as
a function of noise exposure [82], whereas others do not
[83]. This variation in outcome might be caused by lack
of sensitivity of ABR testing perhaps due to variations in
ABR electrode placement [84], which makes the usage of
wave I as a diagnostic test for cochlear synaptopathy in
humans less ideal [85].
Emerging evidence suggests that acoustic reflex testing

may be helpful for early detection of noise-induced
synaptopathy in humans. Threshold shifts in acoustic
reflexes, without audiometric hearing loss, might be
caused by synaptopathy [86, 87]. Whether or not acous-
tic reflexes can be used to assess synaptopathy in
humans requires further research.

Asymmetric NIHL
The typical pattern of hearing loss resulting from acoustic
trauma is symmetrical [6]. However, there is increasing
evidence that asymmetrical hearing loss occurs as well
(Table 1). Asymmetry in NIHL generates some contro-
versy in both clinical as well as medico-legal contexts and
hence warrants an in-depth discussion.

Evidence for asymmetric NIHL
A recent systematic review concluded that the evidence
for asymmetrical noise-induced trauma was limited,
however only studies that reported an asymmetry of
more than 15 dB were included [88]. In the general
population, the incidence of interaural threshold differ-
ence of 15 dB or more is only 1% [89], whereas the inci-
dence of asymmetrical hearing loss in noise-exposed
individuals varies widely between 4.7 and 36% (Table 1).
Asymmetries between left and right hearing thresholds
are typically small (less than 5 dB) [90, 91] with a trend
toward increasing asymmetry among higher frequencies
or with increasing levels of hearing loss [92]. There is a
margin of error for audiometric testing of ± 9.6-14.2 dB
for single frequencies, with the largest range reported at
4 kH [93], which needs to be considered when docu-
menting asymmetric hearing loss. Furthermore, these
small differences are based on mean hearing thresholds
of group data, which probably underestimates the asym-
metric effect of noise exposure at the individual level.
It is worth considering some study findings in more

detail. In a study of 208 patients, Fernandes et al. identi-
fied asymmetrical hearing loss in 22.6%, of which 6.4%
had a definite history of asymmetrical noise exposure
and in whom 60% had greater hearing loss in the left ear
[94]. Chung et al. found a prevalence of asymmetrical
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hearing loss in 4.7% among 1461 patients with noise-
induced hearing loss and the left ear was affected more
in 82.6% [95]. Alberti et al. found a 15% prevalence of
asymmetrical hearing loss in 1873 patients referred for
compensation assessment, and concluded that 36% of
patients with asymmetrical hearing loss were attributable
to noise exposure, due to a definitive pattern of hearing
loss and a history of noise exposure [1]. In truck drivers,
asymmetrical hearing loss has been attributed to noise
and air rushing from the opened window [96]. Chung et
al. showed that intensity of noise exposure from sawing
wooden blocks into shingles was comparable between
both ears, but their data also showed a small but signifi-
cant asymmetric hearing loss, worse on the left side, that
correlated with age and lifetime noise exposure when
compared to the industrial population [97]. In addition,
a significant asymmetrical hearing loss of up to a >20 dB
difference was found in different studies of populations
evaluating symmetrical noise exposure [98–100]. Major
limitations of these studies include reliance on self-
reported historical exposures to noise, limited data on the
extent of noise exposure, inconsistent criteria for the diag-
nosis of asymmetrical hearing loss, small sample size, lack
of a control group without noise exposure, and lack of
direct measures of the physiology of the ear over time.
Studies over the last two decades using industrial or

continuous noise exposures have found that noise affects
the left ear more than the right ear [101, 102]. A similar
observation was reported for exposure to impulse sounds,
such as gunshots [63, 103]. Interestingly, other studies
have found no significant correlation between usage of
firearms and asymmetry of hearing loss, although the left
ear was exposed to more of the noise of the gun blast
[101, 104]. Tinnitus was also reported to be more frequent
in the left ear than the right ear [105, 106]. The lateral
difference with hearing in the left ear being worse than
the right increases with frequency and reaches a peak at
3–6 kHz. In fact, correlation studies looking at 2 kHz
asymmetry suggest that as more frequencies are consid-
ered, more patients with asymmetrical hearing loss are
likely to be found, and the degree of asymmetry can be
more precisely delineated [95]. Chung et al. reported the
left ear to be most susceptible to noise at 2 kHz, which
may account for a small but significant interaural
threshold difference [95, 97]. Pirila et al. reported
damage to the left ear to be more prominent in men
than in women [107, 108], whereas Nageris et al.
found no such difference. With regard to age, Pirila
et al. noted that in children aged 5 to 10 years, there
was no left or right predominance in hearing loss
[109]. They postulated that the difference developed
later in life and was at the level of the inner ear.
Other groups also noted no effect of left- or right-
handedness on hearing loss asymmetry [63, 103].

Pathophysiology of asymmetric NIHL
Asymmetry in NIHL could theoretically be caused by
ambient exogenous noise-exposure factors or by
endogenous or anatomical factors. For instance, differen-
tially shielding the right ear from noise or acoustic-
energy emitting sources, termed the head shadow effect,
may play a role in asymmetric hearing loss [110]. Signifi-
cant asymmetry will theoretically occur if the noise
source is closer in proximity to one side than the other,
for instance in workers using hand-held tools predomin-
antly in one hand [111] or in military personnel with
weapon noise exposure [103]. The handedness of the
subject should thus be of relevance. Since most individ-
uals are right-handed, the muzzle blast from a shotgun
reaches the left ear at a higher level than the somewhat
shielded right ear. However, studies assessing the impact
of handedness on hearing loss showed no correlation
between the ear with the asymmetry and the individual’s
handedness [63, 103]. Several confounding factors are of
relevance though. Some left-handed subjects have always
fired right-handed or have changed from left to right
during their careers; some rifles in use are now right-
hand fire only. For most other weapons, the firing
position is fixed and therefore the amount of noise
exposure to each ear is determined by the head position
relative to the weapon [92]. Other factors to be taken
into account include the unilateral use of ear defenders,
such as in radio operators where the possible noise
hazard or the protective effect can come from use of the
headset [112–114]. In industry, most workers also tend
to look over their right shoulder when they operate
heavy equipment, and thus their left ear is more exposed
to the noise generated by the machine’s engine [115].
However, the persistent inferiority of the left ear in most
of the studied noise-exposed and normal hearing popu-
lations suggests that the head shadow effect cannot be
the only factor leading to asymmetric NIHL.
Alternatively, the left ear may somehow be more

susceptible to NIHL than the right ear, regardless of
exogenous noise exposure factors, and this translates
into an asymmetric pattern of hearing loss in both
noise-exposure and general non-noise exposure popula-
tions [89, 103, 110]. The notion that the left ear is the
“weaker” ear in most instances is also supported by the
fact that tinnitus in the left ear tends to be more magni-
fied than the right ear [105, 106]. Individual differences
in ear anatomy and physiology, or differences in bio-
logical recovery from noise exposure may be responsible.
Johnson and Sherman examined the acoustic reflex
mechanism given its role as a major protective vehicle
against acoustic trauma [116]. In children aged 6 to
12 years with normal hearing, it was discovered that the
acoustic reflex threshold in the right ear was 3 to 7 dB
lower than the left ear [116]. However, this finding was
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not able to be replicated in adults [95]. Arguably, the
protective effect of the stapedial reflex is most efficient
in the low frequency range, and may not be as important
at frequencies higher than 2 kHz [117, 118]. In short,
the protective role of the efferent pathways to cochlea
and the possible left-right asymmetries in this system
need further research [119, 120].

Clinical relevance of asymmetric NIHL
Unilateral or asymmetrical sensorineural hearing loss is im-
portant to discern, as it can be a hallmark symptom/sign of
a retrocochlear lesion (i.e. vestibular schwannoma), and in
such cases further investigation is required (i.e. MRI scan)
unless there is a known reason for the asymmetry [121].
Hence, recognition of asymmetrical hearing due to noise
exposure through careful history taking may optimize more
appropriate cost-effective investigation of patients.
Conventional teaching suggests that a claimant for

compensation who has occupational hearing loss with
asymmetrical hearing thresholds is unlikely to have a
noise-induced hearing loss in the worse ear, and like any
other patient, should be investigated for the ‘other’ cause
of the asymmetry. However, given the multitude of
recent evidence in the literature, if the asymmetry under
question cannot be explained by causes other than noise,
and the MRI scan does not reveal another cause, then
the decision given should be in favour of the worker, on
the basis of benefit of doubt [94] as the asymmetry may
represent a lateral difference in susceptibility to noise
damage.

Beyond hearing loss: associated symptomatology
NIHL and tinnitus
The prevalence of tinnitus among noise-exposed
workers is much higher (24%) than the overall popula-
tion (14%) [122], and is exponentially higher in those in
the military, up to 80% [123]. Although the majority of
individuals with NIHL present with bilateral tinnitus,
unilateral tinnitus is reported as well, with a prevalence
of up to 47% [124–126]. Tinnitus is more prevalent on
the left side [124, 125] consistent with the asymmetry
documented in NIHL. The severity of the tinnitus may
be associated with the degree of NIHL [126, 127]. The
impact of tinnitus has been demonstrated: apart from
tinnitus being associated with other comorbidities, such
as anxiety, depression and sleep disorders [128], noise-
induced tinnitus negatively effects the quality of life in
workers [129] and for military personnel, tinnitus can be
distracting during a military operation [123].

NIHL and vestibular dysfunction
There is increasing evidence for noise-induced vestibular
deficiency, through a mechanism of noise-induced dam-
age to the sacculocolic reflex pathway and/or damage to

the vestibular hair cell cilia [62, 130]. This is supported
by multiple studies in human and animals.
In humans, several studies, with relatively small sample

sizes (n = 20-30), showed that abnormal (reduced, delayed
or absent responses) cervical vestibular evoked myogenic
potentials (VEMPs) and ocular VEMPs are associated with
chronic or acute acoustic trauma [62, 131–133]. This sup-
ports the hypothesis that noise causes functional damage to
the otolithic organs either directly or indirectly. Also, an as-
sociation was found between cervical VEMPs and hearing
outcome after acute acoustic trauma, therefore it was con-
cluded that abnormal VEMPs might indicate more severe
trauma and as a result poorer hearing recovery [62].
Apart from the otolithic organs, noise induced trauma

has been shown to cause substantial stereocilia bundle
loss and reduction in baseline firing rates of (horizontal
and superior) semicircular canals in animal studies [130,
134]. A study of 258 military males identified a strong
correlation between vestibular symptoms and abnormal
findings on electronystagmography (ENG) testing; the
presence of spontaneous, gaze-evoked or positional
nystagmus and reduced caloric responses in the worst
hearing ear was demonstrated, with significantly more
abnormal results of all ENG tests in the asymmetrical
NIHL group compared to the group with symmetrical
NIHL [135]. In these patients, reduced caloric responses
were measured in the worst hearing ear, with the left ear
being more often affected, suggesting that acoustic
trauma can cause asymmetric noise-induced vestibular
loss. Whether or not individuals with symmetrical
hearing loss also have bilateral symmetrical vestibular
hypofunction cannot be gleaned from the data as abso-
lute values were not reported. Data from this study not
only supports the hypothesis that acoustic trauma can
cause damage to the (horizontal) semicircular canals,
but also shows evidence for asymmetrical trauma after
noise exposure, in line with previously discussed
evidence for asymmetric induced hearing loss (see
paragraph “Asymmetric NIHL”).
In animals, noise exposure resulted in a reduction in

stereocilia bundle density in vestibular end organs as
well as a reduction in regular vestibular afferent baseline
firing rates of the otolithic organs and the anterior semi-
circular canal [130]. As a normal vestbulo-ocular reflex
was measured, it was concluded that noise-induced
vestibular damage can be present even in the setting of
normal vestibular tests; comparable to “hidden hearing
loss”, this might indicate that noise exposure can also
cause “hidden vestibular loss” that cannot be identified
due to limitations in current techniques for vestibular
assessment. This might explain why normal or margin-
ally abnormal vestibular function tests can be seen in
noise-exposed individuals [136, 137]. Although the
impact of noise-induced vestibular loss is unknown, it
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may explain why individuals with NIHL may present
with balance disorders and dizziness [135, 138] and
therefore needs to be considered when evaluating the
impact of noise-induced trauma.

The socio-economic impact of NIHL
The United States Government Accountability Office
report on noise (2011) indicated that hearing loss was
the most prevalent occupational health disability in the
Department of Defense (DoD) [123]. The DoD civilian
worker compensation costs were approximately $56
million in fiscal year 2003, and Veterans Affairs compen-
sation costs were approximately $1.102 billion in fiscal
year 2005 with hearing loss as second most common
type of disability [12]. The World Health Organization
reported that hearing loss is in the top three common
health conditions related to disability in the world as of
2017 [139, 140].
The consequences of occupational NIHL to the

individual, although not life-threatening, can be dire.
Hearing loss limits an individual’s ability to communi-
cate with the surrounding world, which can lead to
increased social stress, depression, embarrassment, poor
self-esteem, and relationship difficulties [59]. Social
handicap resulting from communication difficulties is
exacerbated in difficult listening situations, such as envi-
ronments with excessive background noise. In addition,
longitudinal studies have demonstrated an association
between hearing loss and declines in cognition, memory,
and attention signifying the importance of prevention
and treatment of hearing loss [141, 142].
Occupational NIHL has been associated with an in-

creased risk for work-related injuries. For each dB of
hearing loss, a statistically significant risk increase was
observed for work-related injuries leading to admission
to hospital [143]. Individuals with asymmetrical NIHL
may experience decreased ability to localize sounds,
which is critical in certain groups of workers like
firefighters and other public safety workers, and can be a
career-ending disability that has public safety implica-
tions as well [144].

Non-pharmaceutical interventions
Education, regulations, legislation and workplace noise
policy
Prevention remains the best option for limiting the
effects of acoustic trauma. Hearing conservation
programs in elementary school children are potentially
effective to increase the knowledge about the hazards of
noise exposure early in life and this may result in behav-
ioral changes towards noise reduction and ear protection
[145]. For industrial noise, elimination or reduction of
noise through engineering or administrative controls is
the best line of defense. Legislation on occupational

noise exposure help to regulate noise exposure and
result in noise reduction and/or noise reducing technical
improvements to protect employees [146].
The risk of NIHL can be minimized if noise is reduced

to below 80 dB(A) (weighted decibel relative to human
ear) [147]. For higher levels of noise, regulations are
necessary as the extent of biological damage correlates
directly to the total sound energy level, a function of
sound pressure (decibels) and the duration of exposure
(time) [9]. Hearing loss prevention programs establish
permissible exposure limits with an exchange rate. The
exchange rate defines the number of decibels by which
the sound pressure level may be decreased or increased
for a doubling or halving of the duration of exposure.
This principle is reflected in occupational exposure
limits for workplace noise with maximum daily exposure
limits halved for every 3–5 dB increase in noise inten-
sity. For instance, assuming an exchange rate of 3 dB,
4 h of exposure at 88 dB(A) is as equally hazardous as
8 h at 85 dB(A).
A recent Cochrane review concluded that in order to

prevent occupational hearing loss, better implementa-
tion of legislation and better prevention programs are
necessary [148]. Regulations vary widely among different
countries and one third of countries in the world still do
not have regulations or legislation regarding permissible
noise levels and exchange rates [149]. Most North and
South American countries have the permissible exposure
limit (PEL) of 85 dB(A) for an 8 h work day [149]. In
some countries (and some provinces in Canada), the
PEL is up to 90 dB(A). As TTSs are higher when
workers are exposed to 90 dB(A) as compared to
85 dB(A), a standardized reduction of the PEL to
85 dB(A) should be established in order to reduce the
prevalence of NIHL [150]. There is also no international
consensus regarding the exchange rate, which varies be-
tween countries from 3 dB to 5 dB [149]. There is evi-
dence, however, that 3 dB overestimates the risk of
NIHL and that 5 dB is a better fit [151]. For impulse
noise, there is most often a limit of peak sound pressure
level of 140 dB [152].

Hearing protection
Hearing protection offers a secondary level of protec-
tion. However, evidence for effective hearing loss pre-
vention programs (using personal hearing protection) is
limited. The most effective hearing protection, including
earmuffs and earplugs, can reduce loud noise trauma,
but compliance may be limited due to the impact on
one’s ability to communicate when they are worn and/or
discomfort related to their use [153, 154]. To promote
the use of hearing protection, different interventional
strategies may be beneficial, such as providing general
information to motivate workers to use hearing
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protection or more personalized programmes that
provide specific information regarding the risks to the
individual worker [155]. There is a trend towards im-
proved hearing protective device use when a tailored
strategy is used that is either situation specific or indi-
vidual specific, compared to a non-tailored strategy
[156]. Hearing protection with lower attenuation but
higher comfort is more efficient than protection with
higher attenuation but lower comfort due to compliance
issues [157, 158]. Custom earplugs have a more consist-
ent attenuation than non-custom earplugs, and user
training can improve consistency [159]. Individual fit-
testing, which measures the effectiveness of hearing
protection devices specifically for each individual, can be
invaluable, particularly with earplugs since they are gen-
erally less consistent in noise reduction than ear muffs
[160]. For earmuffs, new materials and design can poten-
tially improve comfort and hearing protection. A recent
published study using 3D printed earmuffs showed that
the use of light materials like acrylonitrile butadiene
styrene/clay nanocomposites can reduce the weight of
earmuffs without reducing the attenuation performance
[161]; such technological advancements have the poten-
tial to increase comfort and improve compliance.

Pharmacological treatments
Anti-inflammatory effects of corticosteroids to reduce
noise induced trauma
Different types of pharmaceutical agents have been
shown to reduce the risk of hearing loss secondary to
acoustic trauma. Steroids, specifically intratympanic
dexamethasone, may have a therapeutic beneficial effect
on NIHL when given before [162] or after [163] acoustic
trauma in animals. Although an effect is shown in a wide
range of dosages, higher dosages appear to be associated
with better hearing preservation [162].
Different routes of delivery have been investigated in

animals, including intratympanic, intraperitoneal and
direct administration into the scala tympani, and all have
demonstrated protective effects as evidenced by pre-
served hearing (15–20 dB lower hearing thresholds on
auditory brainstem response (ABR) measurement and
preserved cochlear architecture [163, 164]. Each route of
delivery may protect hearing at a different level; intra-
tympanic administration appears to be more protective
for the efferent terminal outer hair cells synapses,
whereas intraperitoneal injections are more protective
for the organ of Corti and stria vascularis architecture
[163]. Accordingly, there appears to be a synergistic
benefit from the administration by both routes when
treating NIHL [165]. In human studies, it has been
shown that after acoustic trauma, the administration of
systemic with intratympanic steroid treatment results in
better hearing outcomes than with systemic steroids

alone [165, 166]. Although there is some evidence for a
protective effect of steroids in acute acoustic trauma,
clearly it is not a long-term option for chronic occupa-
tional noise exposure considering the negative side
effects of systemic long-term steroid usage.

Antioxidants to reduce oxidative stress
Antioxidants may be a safer alternative to steroids given
a more favourable side effect profile. Free oxygen
radicals and oxidative stress are important in the patho-
genesis of the NIHL, and therefore antioxidants could
theoretically constitute an effective treatment.
N-acetylcysteine (NAC) has been reported to reduce

the ototoxic effects of noise exposure in animal models
[167–171]. In humans, however, the data is limited
[172–174]. Doosti et al. evaluated TTS in 48 textile
workers and showed that daily oral administration of
NAC (1200 mg/day) during continuous noise exposure
prevented the occurrence of a TTS after 14 days of
treatment, whereas the untreated group showed a TTS
of approximately 1.5–3 dB [172]. Lin et al. also found a
significant improvement in TTS after NAC (1200 mg/
day for 14 days). However, the mean difference in TTS
in the placebo-treated group versus NAC-treated group
was only 0.3 dB [175]. Kramer et al. did not find a
significant protective effect of NAC when using a single
lower dose (900 mg PO) administered before noise
exposure [173]. A more recent randomized, double-
blinded, placebo-controlled trial among a larger military
group (n = 566), found a 6–7% reduction in hearing
threshold shift rate, with a total daily dose of 2700 mg of
NAC after noise exposure for 16 days during weapon
training, but this was only statistically significant when
handedness was taken into account (i.e. evaluating the
effect on the right ear only in right handed participants).
In summary, there is potentially a small benefit of NAC
in reducing the rate of threshold shift in a noise-exposed
population [176].
Other antioxidants that can potentially play a protect-

ive role against noise-induced cochlear trauma include
ginseng [172], co-enzyme Q10 [177], as well as several
vitamins, such as vitamin A [178], vitamin C [179, 180],
vitamin E [181, 182], and vitamin B12 [183]. Studies in
animals showed a protective benefit from combination
antioxidant treatment, such as magnesium and vitamin
A, C, and E [184], possibly due to synergistic effects
[185–187], These studies were mainly performed in
animals or in small groups of humans and the results
should be considered preliminary. The efficacy of
combining treatments in humans is still unknown.

Neurotrophins for recovery of ribbon synapses
There is evidence in animals that neurotrophins can
offer protective effects against noise trauma [188–191].
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Neurotrophin-3 (NT3) and brain derived neurotrophic
factor (BDNF) are important for formation and mainten-
ance of hair cell ribbon synapses in the cochlea, as well
as in the vestibular epithelia [190]. NT3, derived from
supporting cells, promotes the recovery of the number
of ribbon synapses as well as their function after noise-
induced trauma [189, 190]. A dose-dependent effect was
found of glial cell-derived neurotrophic factor (GDNF)
on sensory cell preservation as well as ABR confirmed
hearing threshold, after chronic application of GDNF
(10 and 100 ng/ml) through a cochleostomy in the scala
tympani via a micro-osmotic pump. However, this effect
was small and appears to be associated with some
toxicity at a higher concentration (1 μg/ml) [188]. Even
a single application of NT3 and BDNF on the round
window, immediately after noise trauma, can potentially
reduce the synaptopathy (indicated by increased number
of presynaptic ribbons, postsynaptic glutamate receptors,
and co-localized ribbons) and recover hearing [191].
Another approach is transplantation of neurotrophin-
secreting olfactory stem cells into the cochlea, which
also caused restoration of noise-induced hearing loss
[192]. Although these results are promising, long-term
effects are still unknown and no studies in humans have
been performed to date.

Other pharmaceutical agents
Other pharmaceutical agents with possible protective NIHL
effects include magnesium and statins. A human study
[193] as well as research on animal models [194, 195] have
shown that acoustic trauma can potentially be minimized
by magnesium, as it reduces apoptosis of hair cells by a
reduction of calcium flow into the cell, thereby reducing
reactive oxygen species formation. A double-blinded,
placebo-controlled, crossover trial to assess the effects of
prophylactic N-acetylcysteine (600 mg) and magnesium
(200 mg) prior to noise exposure is pending [196].
Statins might prevent NIHL by reducing oxidative stress

and improving hair cell survival in animals [197, 198]. A
significant recovery of TTS (determined by measuring
distortion product otoacoustic emissions) was found in
rats treated with 5 mg/kg atorvastatin administered daily
for 2 weeks prior to 2 h of noise exposure [199].

Surgical treatment
Cochlear implantation
Due to the severity of the hearing loss and/or the poor
speech recognition due to synaptopathy, some individ-
uals with NIHL might eventually become candidates for
cochlear implantation (CI) either with full electrical or
with electro-acoustic stimulation (EAS). Studies have
reported NIHL as the etiology of deafness in implanted
individuals, with a prevalence ranging from 2% (CI) to
20% (CI with EAS) [200, 201]. This may underestimate

the true prevalence, considering the high percentage of
unknown etiologies approximating 40–50% of CI recipi-
ents [200]. Currently we can only speculate on the ex-
tent to which the SNHL in these implanted individuals
can be attributed to noise exposure or due to a combin-
ation of other underlying predisposing factors.

Conclusion
The impact of noise-induced hearing loss is more wide-
spread than has previously been recognized. Apart from
a wide range of hearing frequencies that can be ad-
versely affected by noise exposure, there is increasing
evidence that noise-induced synaptopathy causes re-
duced speech perception in noise, even when pure tone
thresholds are still preserved (“hidden hearing loss”).
Evidence in the current literature further supports the
notion that noise exposure can result in an asymmetric
pattern of hearing loss due to unique differences in sus-
ceptibility to noise damage within individuals, increase
frequency of tinnitus as well as vestibular dysfunction.
The left ear (hearing and balance) is more adversely af-
fected by noise, even in the presence of symmetric noise
exposure. Future studies should focus on underlying
mechanisms that lead to the susceptibility of left-right
asymmetry, and to understand the protective role of the
efferent pathways to the cochlea as demonstrated in
gender differences. Primary prevention with a focus on
regulations, legislation and education in schools, in com-
bination with proper hearing protection are important
first lines of defense. Further human studies are needed
to address the effectiveness of pharmaco-therapeutic
options to prevent or mitigate noise-induced trauma.
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