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Abstract: After more than four decades of assisted reproductive technology (ART) practice worldwide,
today more than 60% of women undergoing in vitro fertilization (IVF) treatments fail to become
pregnant after the first embryo transfer and nearly 20% of patients are suffering from unexplained
recurrent implantation failures (RIFs) and repeated pregnancy loss (RPL). The literature reported
different causes of RIF–RPL, mainly multifactorial, endometrial and idiopathic. RIF remains a black
box because of the complicated categorization and causes of this physio-pathological dysregulation
of implantation and pregnancy process after ovarian stimulation. Many options were suggested as
solutions to treat RIF–RPL with controversial results on their usefulness. In this article, we reviewed
different possible therapeutic options to improve implantation rates and clinical outcomes. Based on
our experience we believe that endometrium immunomodulation after intrauterine insemination
of activated autologous peripheral blood mononuclear cells (PBMCs) or platelet-rich plasma (PRP)
can be a promising therapeutic solution. On the other hand, peripheral lymphocyte balance typing,
specific cytokines and interleukins profiling can be proposed as predictive biomarkers of implantation
before embryo transfer.

Keywords: infertility; assisted reproductive technology; implantation failure; endometrium
immunomodulation

1. Introduction

In assisted reproductive technology (ART) programs, 60–70% of women fail to become
pregnant after embryo transfer. Repeated implantation failure (RIF) remains a black box in
daily practice due to the complicated categorization and causes of this physio-pathological
dysregulation [1]. Different causes of RIF were reported, mainly multifactorial, endometrial
and idiopathic. Multifactorial RIF can be caused by maternal and paternal factors, gamete
and embryo quality, infections and lifestyle changes in combination with psychological
status and oxidative stress [1,2]. Impaired endometrium function such as abnormal growth
or loss of vascularization can account for endometrial RIF, but idiopathic RIF, caused mainly
by abnormal cross-talk between the embryo and endometrium, remains the principal
question and needs to be elucidated [1].

RIF may be defined as a failure to obtain a pregnancy after multiple viable embryo
transfers during IVF treatment [3], but its definition is inconsistent between studies. The
most common definition was portrayed by Bashiri and colleagues [4] who describe RIF
as three or more pregnancy failures following the transfer of at least three good-quality
embryos [4]. However, other authors such as Coughlan and colleagues [5] suggest includ-
ing maternal age, number of embryos transferred and number of previous cycles to the
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definition of RIF [5]. Interestingly, a consensus is emerging thanks to a recent extensive
survey. It was proposed to define RIF as the failure to achieve a clinical pregnancy after
2–3 IVF cycles with 1–4 good-quality embryos [6]. RIF is a challenge for clinicians as its
etiology includes various possible causes [2].

The causes of RIF can be divided into two categories: maternal (uterine anatomic
abnormalities, chronic endometritis, non-receptive endometrium, antiphospholipid an-
tibody syndrome and immunological factors) and embryonic (genetic defects and other
factors specific to embryonic development) causes [3]. In the absence of male factors, oxida-
tive stress, bad-quality embryos and anatomical abnormalities such as hydro-salpinx and
thrombophilia, RIF seems to be caused by impaired endometrial function such as abnormal
endometrial growth or loss of vascularization [4]. However, RIF caused by immunological
factors could be manageable using several innovative therapeutic options. Among them,
intrauterine administration of human chorionic gonadotropin (HCG), granulocyte colony-
stimulating factor (G-CSF) or autologous peripheral blood mononuclear cells (PBMCs) has
been suggested as a treatment for patients suffering from RIF [4,7–16].

Intrauterine administration of autologous PBMC prior to embryo transfer was pro-
posed to regulate the immune environment of the endometrial tissue [4]. In 2006, Yoshioka
and colleagues were the first to propose this immunotherapy to help RIF patients [7]. Since
then, this therapeutic option was recommended as an effective treatment for RIF according
to numerous studies [4,7–14]. The present study is a review aiming at summarizing studies
that used this immunotherapy to evaluate its benefit regarding RIF patients.

2. Endometrium Immunomodulation via Intrauterine Insemination of Activated
Autologous Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs from patients with RIF are usually isolated during the ovulation period using
a lymphocyte separation medium composed of an iso-osmotic poly-sucrose and sodium di-
atrizoate solution to separate mononuclear cells (including B-lymphocytes, T-lymphocytes
and monocytes) from the other blood cells. After separation, PBMCs are generally activated
with hCG or corticotropin-releasing hormone (CRH) and cultured in vitro for 24–72 h in a
humidified incubator with 5% CO2 at 37 ◦C (Figure 1).

After culture, PBMCs are administered in utero using a catheter [4,7–15]. However, the
number of cells administered in utero is not homogeneous among all studies investigating
the use of PBMC in the treatment of RIF (Table 1). Although there were some methodologi-
cal variations between studies in terms of the number of previous cycles, cycle type, and
number and quality of transferred embryos, patients were generally administered with
10 to 30 million PBMCs [7–16]. Madkour and colleagues showed a significant increase
in clinical pregnancy rate (CPR) with only 1 million cells [10]. Furthermore, in a recent
meta-analysis, Qin and colleagues have demonstrated that CPR was higher when less than
100 million PBMCs/mL were administered in utero, suggesting that although the quantity
of cells inseminated is not homogeneous, intrauterine administration of PBMC does appear
to be an effective treatment for patients suffering from RIF [17].
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Table 1. Main studies using PBMCs to treat RIF.

Study
Number of

Previous Failed
IVF Cycles

Sample Size
Day of Blood

Collection PBMCs Co-cultured with
Duration of

PBMC
Culture

Number of PBMCs
Administered In Utero

Transfer
Type Stage of Embryo Implantation Rate

(Control vs. Case)
Clinical Pregnancy Rate

(Control vs. Case)
Miscarriage Rate
(Control vs. Case)

Live Birth Rate
(Control vs. Case)Control Case

Yoshioka et al., 2006 [7] ≥4 18 17 On the day
of oocyte retrieval hCG: 5 IU/mL 48 h 20 × 106 Fresh 1, 2 or 3 blastocysts 4.1% vs. 23.4%

(p = 0.0034)
11.1% vs. 41.2%

(p = 0.042) Not specified 7.6% vs. 55.6%
(p = 0.013)

Okitsu et al., 2011 [16] ≥1 170 83

On the day
following

ovulation or the
day after

Not activated No culture 30 × 106 Frozen/
thawed

early cleavage embryo
or blastocyst

≥1 RIF: 21.1% vs.
21.6% (ns); 3 RIF:
9.38% vs. 25.0%

(p = 0.041)

≥1 RIF: 32.9% vs. 34.9%
(ns); ≥3 RIF: 16.7% vs.

42.1% (p = 0.039)
Not specified

≥ 1 RIF: 21.8% vs.
21.7% (ns); ≥3 RIF:

11.1% vs. 21.2% (ns)

Makrigiannakis et al.,
2015 [9] ≥3 45 45 On the day of

oocyte retrieval
CRH: 107 M/1.106

cells/mL
48 h 20 × 106 + 107 CRH Fresh 2 or 3 blastocysts

(grade 3BB and above) Not specified 0% vs. 44.44% (p < 0.001) Not specified Not specified

Madkour et al., 2016 [10] ≥2 27 27
On the day of

ovulation
induction

Complete culture
medium + 75 IU of hMG 72 h 1 × 106 Fresh 1, 2 or 3 early cleavage

embryos

≥2 RIF: 9% vs. 22%
(p = 0.02); 2 RIF vs.
≥ 3 RIF: 15% vs.
35% (p = 0.09)

≥2 RIF: 15% vs. 44%
(p = 0.045); 2 RIF vs. ≥ 3

RIF: 29% vs. 70%
(p = 0.04)

≥2 RIF: 17% vs.
75% (p = 0.08) 2 RIF
vs. ≥ 3 RIF: 20% vs.

14% (p = 0.8)

Not specified

Yu et al., 2016 [11] ≥3 105 93
On the day
following
ovulation

hCG: 10 IU/mL 24 h 10–20 × 106 Frozen/
thawed early cleavage embryo 11.43% vs. 23.66%

(p < 0.05)
20.95% vs. 46.24%

(p < 0.05)
31.8% vs. 20.9%

(ns)
14.28% vs. 34.41%

(p < 0.05)

Li et al., 2017 [12] ≥1 339 294 Two days before
embryo transfer hCG: 10 IU/mL 24 h 10–20 × 106

Fresh
and

frozen/
thawed

2 or 3 early cleavage
embryos or 2 or 3

grade 2 blastocysts at
day 5 and 3BB and

above at day 6

1 RIF: 32.33% vs.
29.35% (ns); 2 RIF:
27.74% vs. 35.98%
(p = 0.048); 3 RIF:
26.23% vs. 23.20%
(ns); ≥4 RIF: 4.88%

vs. 22.00%
(p = 0.014)

1 RIF: 41.23% vs. 43.75%
(ns); 2 RIF: 42.18% vs.

48.15% (p = 0.016); 3 RIF:
36.84% vs. 42.22% (ns);

≥4 RIF: 14.29% vs. 39.58%
(p = 0.038)

Not specified

1 RIF: 36.84% vs.
37.5% (ns); 2 RIF:

33.33% vs. 34.26% (ns);
3 RIF: 24.56% vs.

28.89% (ns); ≥4 RIF:
9.58% vs. 33.33%

(p = 0.038)

Makrigiannakis et al.,
2019 [13] ≥3 26 26 On the day of

oocyte retrieval
CRH: 107 M/1.106

cells/mL
48 h 20 × 106 + 107 M CRH Fresh

2 or 3 grade 1 or 2
early cleavage

embryos
Not specified 0% vs. 57,69% (p < 0.01) Not specified Not specified

Nobijari et al., 2019 [15] ≥1 128 122
5 days before the
frozen/thawed
embryo transfer

CRH (concentration
not specified) 48–72 h 20 × 106 + 107 M CRH

Frozen/
thawed

early cleavage embryo
or blastocyst Not specified

<3 RIF: 30.4% vs. 30.8%
(p = 0.91); ≥3 RIF: 19,7%

vs. 38,6% (p = 0.01)
Not specified Not specified

Pourmoghadam et al.,
2020 [14] ≥3 50 50

On the day of
ovulation
induction

hCG: 10 IU/mL daily 48 h 15–20 × 106 Frozen/
thawed

early cleavage embryo
or blastocyst Not specified 22% vs. 42% (p = 0.032) 24% vs. 8%

(p = 0.029)
20% vs. 38%
(p = 0.047)

CRH: corticotropin-releasing hormone; hCG: human chorionic gonadotropin; RIF: recurrent implantation failure.
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site of embryo implantation and maternal–fetal interface. DCs act as antigen-presenting 
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invasion by regulating the secretion of cytokines and the production of endometrial cell-
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site through the regulation of T-cell proliferation and the elimination of antigen-specific T 
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complex mechanisms of immune tolerance, a phenomenon critical to the invasion of the 
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Figure 1. PBMC isolation technique and in vitro culture (PBS: phosphate-buffered saline; PBMC:
peripheral blood mononuclear cell).

3. Immunoregulation of the Endometrium during Embryo Implantation: Biological
Function and Molecular Pathway

To achieve successful embryo implantation and pregnancy, an appropriate dialogue
between the embryo and the endometrium must take place [18].

In the uterine environment, a particular form of natural killer (NK) cells with a
unique transcriptional profile, the uterine NK (uNK) cells, represents the most abundant
lymphocyte population, especially in the endometrium [19–21]. In fact, most of the immune
cells present in the uterus usually display a unique phenotype [18]. Peripheral blood NK
cells express CD56+CD16+ at their membrane surface and are characterized by a highly
cytotoxic profile [22]. However, uNK cells are less toxic since they do not express CD16
on their membrane surface [23]. During the menstrual cycle, levels of uNK cells start
to increase in the mid-secretory phase, which could explain their importance in embryo
implantation [24–27].

Dendritic cells (DCs), another type of innate immune cells, have a crucial role in the site
of embryo implantation and maternal–fetal interface. DCs act as antigen-presenting cells to
T cells and have the unique ability to induce a primary immune response, a phenomenon
crucial for successful pregnancy [28]. In addition, DCs can influence trophoblast invasion
by regulating the secretion of cytokines and the production of endometrial cell-surface
proteins. Through the regulation of immune cell functions and actions, DCs have a major
role in the establishment of a special local immune environment essential for embryo
implantation and placental development [29]. Human decidual DCs, however, seem to
have an immature phenotype characterized by a low expression of CD40, CD80, CD86
and CD205 [30,31]. DCs seem to be involved in the immune tolerance of the implantation
site through the regulation of T-cell proliferation and the elimination of antigen-specific
T cells. In the decidua, uterine dendritic cells (uDCs) are also crucial in maintaining
pregnancy [32]. Since the 1990s, it has been known that maternal T cells are essential to the
complex mechanisms of immune tolerance, a phenomenon critical to the invasion of the
endometrium by the blastocyst [33].

T-cell interactions can be performed directly by cell–cell contact or indirectly through
the secretion of pro-inflammatory or anti-inflammatory cytokines [34]. Pro-inflammatory
cytokines such as interleukin (IL)-1β, -6, -12, -2 and -18; tumor necrosis factor alpha (TNF-
α) and interferon gamma (IFN-γ) are mainly produced by T helper (Th) 1 cells, while
anti-inflammatory cytokines such as IL-4, IL-10, IL-13 and TGF-β1 are mostly secreted
by Th2 cells [35]. The pro-inflammatory Th1 profile was shown to be associated with
successful and normal pregnancy at early and late pregnancy stages. In the midgestation
stage, however, a shift to an anti-inflammatory Th2 profile must take place to establish
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tolerance to the foreign fetal antigens [36]. An imbalance in these cytokine profiles has been
associated with spontaneous abortion and common complications of pregnancy [37–39].
Moreover, it has been shown that levels of pro-inflammatory cytokines (such as IL-2 and
IFN-γ) decreased while levels of anti-inflammatory cytokines (such as IL-4 and IL-10)
increased in the induction of immune tolerance to allografts [40,41]. The implication of
T cells, especially CD4+ CD25+ Foxp3+ Treg cells, in the initial stages of pregnancy is
therefore needed for the prevention of an alloreactivity action by the endometrium against
the fetus through cascades of immunoregulation actions [42,43].

Treg, Th1 and Th2 cells are, however, not the only T-cell subtypes known to be crucial
for successful embryo implantation. Th17 cells, a subset of T cells showing remarkable
plasticity, are also indispensable in the immunoregulation of embryo implantation as well
as in maintaining normal pregnancy [44].

Monocytes and macrophages also play an important role during the menstrual cy-
cle and pregnancy [14,45,46]. Macrophages regulate trophoblast activity by promoting
endometrial tissue remodeling and angiogenesis [47]. Pregnancy hormones directly and
indirectly modulate the recruitment of monocytes in the uterus and participate in their dif-
ferentiation and stimulation into functional macrophages [48]. Intrauterine administration
of PBMCs could also be a source of hCG-activated macrophages and regulate the uterine
environment at the embryo implantation site [14].

4. Endometrium Immunomodulation with Activated PBMCs and Embryo Implantation

Intrauterine administration of PBMCs in patients suffering from RIF aims to improve
endometrial receptivity by regulating the Th1/Th2 cytokine ratio and growth factors to
stimulate many cascades of cytokines and matrix metalloproteinase actions [1,7,10,15].
Increased peripheral blood Th1/Th2 ratio was shown to be detrimental to embryo im-
plantation [39]. However, PBMCs produce many cytokines that can regulate Th1/Th2
imbalance in women suffering from RIF [39]. Furthermore, PBMCs are known to increase
the secretion of growth factors and Th1 pro-inflammatory and anti-inflammatory cytokines
at the time of embryo implantation to boost endometrial receptivity [4,9–11]. This im-
munotherapy was shown to improve progesterone (P4) production in cultured human
granulosa luteal cells [49]. Ovarian steroids such as P4 and β-hCG are among the most
crucial factors needed in the immunoregulation of embryo implantation [50]. Luteinizing
hormone (LH) and hCG have also an important role in establishing the immune tolerance
mechanisms of embryo implantation. These two gonadotropins were shown to affect
immune cells by binding to the LH/hCG receptors present at the surface of several immune
cell types [50]. Furthermore, it has been shown that hCG has the capacity to downregulate
pro-inflammatory immune responses during pregnancy [51]. During the embryo implanta-
tion window, β-hCG seems to play a role in the immunoregulation of the endometrium
in increasing Fas ligand expression (APO-1, CD95) in the endometrial cells to facilitate
trophoblast invasion [52]. Increased peripheral blood Treg cell levels have also been shown
to be positively associated with higher pregnancy rates in IVF treatment [53]. These cells
being attracted to trophoblasts by hCG [51] supports the fact that the administration of
hCG could be an effective treatment for some infertile women. Moreover, it has been shown
by Mansour and colleagues that intrauterine hCG injection before embryo transfer could
significantly improve implantation and pregnancy rates [54].

Intrauterine administration of PBMCs for patients suffering from RIF has been shown
to be specifically efficient for increasing implantation and pregnancy rates in women with
three or more previous implantation failures [17,55]. Recently, Nobijari and colleagues
and Pourmoghadam and colleagues presented a different strategy to administer PBMCs
in RIF patients using frozen–thawed embryo transfers [14,15]. Nobijari and colleagues
confirmed the effectiveness of this immunotherapy by showing an increase in CPR in
patients with three or more implantation failures undergoing frozen–thawed embryo
transfer [15]. Pourmoghadam and colleagues only administrated PBMCs in utero in RIF
patients with a low Th-17/Treg cell ratio [14]. Furthermore, in the study of Pourmoghadam
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and colleagues, PBMCs were activated in vitro with 10 IU/mL hCG for 48 h before the
intrauterine administration, while Nobijari and colleagues activated the PBMCs in vitro
with CRH for 48–72 h [14,15]. In RIF patients, it has also been shown that levels of IL-1β,
TNF-α and IFN-γ, three pro-inflammatory cytokines, were increased in the PBMC culture
medium, suggesting that PBMCs secrete these Th1 cytokines when treated with hCG [14].
Moreover, Pourmoghadam and colleagues have shown that CPR and live birth rates
increased significantly and miscarriage rates decreased significantly in RIF patients treated
with PBMCs compared to control [14]. In addition, Makrigiannakis and colleagues have
shown that the insemination of autologous PBMCs treated with CRH before blastocyst or
early cleaved embryo transfer presented better results than PBMCs without CRH treatment
in terms of CPR in women with RIF [13].

Therefore, these three studies supported the effectiveness of this immunotherapy for
patients suffering from RIF undergoing fresh or frozen–thawed embryo transfer, especially
when PBMCs are treated with CRH [13–15]. However, these findings are still limited
because, in the study of Pourmoghadam and colleagues for example, the authors measured
only three pro-inflammatory cytokines, and they did not show anti-inflammatory cytokine
levels with PBMC administration for RIF women or in a control group [14]. The increase in
these cytokine levels should be compared to a control, not treated cells, but the authors did
not perform this comparison [14].

5. Other Endometrium Immunomodulation Options

Immunological therapy approaches other than intrauterine administration of PBMCs
for the management of RIF patients were reported in the literature. These immunotherapies
focus on elevated Th1/Th2 ratio, abnormal TNF-α/IL-10 ratio, elevated NK cells and
auto-antibodies. One of these immunomodulatory agents that have been described for
RIF patients is intravenous immunoglobulin IgG (IVIg). Patients receiving this treatment
have shown significantly higher implantation and clinical pregnancy rates compared
to non-treated patients [56]. This treatment has been extensively used, but the results
are heterogeneous [57–60]. According to many studies, the application of IVIg has shown
positive effects on RIF patient pregnancy rates and in patients with increased immunological
risk factors [24,61–64].

Granulocyte colony-stimulating factor (G-CSF) was also shown to have positive effects
on embryo implantation in women suffering from RIF, especially when endometrial thick-
ness was insufficient [65]. Furthermore, a recent meta-analysis showed that G-CSF was an
effective treatment for women with thin endometrium or with recurrent IVF failures [66].
G-CSF was originally used as a treatment for thin endometrium to thicken it. Increased
implantation rates were shown after G-CSF treatment in patients with an endometrium
thickness ≥7 mm on the day of embryo transfer [67]. These results were confirmed by
another study conducted by Xu and colleagues in 2015 in which they showed a higher
implantation rate in women treated with G-CSF compared to controls [68]. Furthermore,
Kalem and colleagues have shown that the administration of G-CSF into the uterine cavity
in RIF patients with normal endometrium did not alter the endometrial thickness, clinical
pregnancy rates or live birth rates in comparison with a control group [69].

Vitamin E, which has been shown to improve capillary blood flow in different or-
gans [70,71], and sildenafil citrate (Viagra), which improves uterine artery blood flow [72,73],
were also proposed as a treatment for thin endometrium [72–74]. In the study of Miwa
and colleagues, 23 out of 25 patients showed improved radial artery, 17 patients had in-
creased endometrial thickness and 13 patients developed an endometrium thickness of
more than 8 mm [74]. Sher and Fisch were the first to suggest the use of sildenafil during
the follicular phase and until ovulation trigger as a treatment for thin endometrium of
women undergoing IVF with fresh embryo transfer [72]. They reported an improvement in
uterine blood flow and in endometrial thickness [72]. These results were confirmed in a
larger cohort study showing a 45% pregnancy rate [73]. However, a randomized controlled
trial study reported no significant difference in endometrial thickness and pregnancy rate
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after administration of sildenafil and valerate estradiol during the luteal phase following
fresh embryo transfer [75]. Another randomized controlled trial study did not show any
improvement in uterine blood flow or in endometrial thickness [76]. Recently, a random-
ized placebo-controlled trial study reported that the use of vaginal sildenafil on the hCG
injection day did not present a statistically significant improvement in endometrium thick-
ness; however, the implantation (chemical pregnancy) was significantly higher in women
who received sildenafil with placebo compared to women who received only sildenafil or
only placebo [77]. More trials are needed to confirm the effectiveness of these treatments
on endometrium thickness and/or RIF.

In 2015, Nakagawa and colleagues proposed a treatment using immunosuppressive
drugs such as tacrolimus, one of the major immune-suppressive agents that have been
used after allogeneic organ transplantation to reduce the alloreactivity of a recipient’s
immune system and to decrease the risk of the rejection [78,79]. This treatment has shown
positive results on successful implantation and pregnancy outcome in RIF patients with
elevated Th1/Th2 ratios, suggesting that this immunological imbalance plays a crucial
role in causing RIF [78]. However, the posology of this drug must be determined more
accurately to maintain the levels of the essential Th1 cytokines necessary for embryo
implantation [39].

Another treatment using atosiban administration was proposed for RIF women. In
fact, atosiban is a receptor of oxytocin and V1a vasopressin, proposed to avoid uterine con-
tractions during embryo transfer, which could be detrimental in embryonic apposition [80].
However, according to the review of Makrigiannakis and colleagues, various randomized
controlled trial studies reported a non-significant effect on reproductive outcomes [81–85],
and only two non-randomized studies on RIF patients report a significant benefit after
atosiban treatment [86,87]. Therefore, more randomized studies are needed to verify the
efficiency of atosiban as a benefic treatment for RIF women.

In 2015, Chang and colleagues reported that autologous platelet-rich plasma (PRP)
promotes endometrial growth and improves pregnancy outcomes during IVF [88]. After
being collected from the peripheral vein in acid citrate dextrose solution A (ACD-A) an-
ticoagulant tubes, PRP was prepared by separating the various components of the blood
using multiple centrifugations [89]. This PRP, within 10 min after clotting, can activate
cytokines and growth factors which become bioactive and increasingly secreted. These
factors include vascular endothelial growth factor (VEGF), transforming growth factor
(TGF), platelet-derived growth factor (PDGF) and epidermal growth factor (EGF), which
can regulate cell migration, attachment, proliferation and differentiation, while promot-
ing extracellular matrix accumulation [90]. This could lead to ameliorated implantation
conditions and improved pregnancy, as was revealed by Chang and collaborators [88].
Other studies could confirm these results; for example, in 2019, Kim et al. showed that
autologous PRP treatment increases the activity of cytokines and growth factors compared
to that observed without the use of PRP, especially when combined with frozen–thawed
embryo transfer [91]. These studies support the suggestion of PRP as a useful treatment
for RIF. However, in a recent study that used PRP treatment in patients with a history
of failed implantation before frozen–thawed embryo transfer, the authors did not find
significant differences in the pregnancy results in comparison with controls [92]. A recent
study by Ibañez-Perez and colleagues suggested a non-invasive method of microRNA-
based signatures obtained from very small volumes of endometrial fluid collected just
before day 5 frozen embryo transfers to identify the competence of the endometrium in
implantation [93]. This technique could help physicians to avoid RIF by changing the
embryo transfer strategy when the results show an unfavorable implantation pattern by
using immunomodulation techniques from the first IVF cycle [93].

6. Conclusions

There is no scientific consensus about the best immunological treatment for RIF pa-
tients presenting an imbalanced Th1/Th2 ratio or immune dysregulation. However, recent
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studies have shown the potential of the intrauterine administration of hCG-activated
PBMCs and activated PRP as a good way to modulate endometrial receptivity. The im-
munotherapy field strategy needs to be further elucidated for a better understanding of
maternal immunotolerance to embryo implantation. Proteomic investigations of biomark-
ers produced by immunological cells and their pathways should be continued to identify the
exact combination of immunological factors needed for successful implantation. Correcting
immunological dysregulations in embryo implantation by intrauterine administration of
PBMCs or treatment with activated PRP seems to be a promising solution in RIF. It is clear
that we need to know much more about maternal immune tolerance and the exact role of
each biomarker involved in embryo–endometrium cross-talk to improve implantation and
reduce repeated implantation failure and pregnancy loss.
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