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The intestinal surface is constitutively exposed to diverse antigens, such as food antigens,
food-borne pathogens, and commensal microbes. Intestinal epithelial cells have
developed unique barrier functions that prevent the translocation of potentially hostile
antigens into the body. Disruption of the epithelial barrier increases intestinal permeability,
resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS
contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis,
rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota
plays a critical role in regulating host immunity; abnormalities of the microbial community,
known as dysbiosis, are observed in patients with autoimmune diseases. However, the
pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not
been fully elucidated. This review discusses the current understanding of how commensal
microbiota contributes to the pathogenesis of autoimmune diseases by modifying the
epithelial barrier.
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INTRODUCTION

The intestinal mucosa is exposed to a myriad of external antigens such as food antigens, food-borne
pathogens, and commensal microbes that reside in the intestinal lumen. Therefore, the intestine
serves as a barrier tissue whereby a monolayer of intestinal epithelial cells establishes a multilayered
physicochemical barrier (1). The intestinal epithelial barrier contributes to the maintenance of
biological homeostasis by segregating the internal and external milieus by restricting the infiltration
of external antigens and the leakage of endogenous substances. To this end, intestinal epithelial cells
form tight junctions (TJs) (2). TJ protein complexes tightly connect epithelial cells to reduce
paracellular permeability. The main integral proteins of the TJs include occludin and claudins (3, 4).
Their intracellular domains are associated with zonula occludens (ZO) proteins that connect the
junctional complexes with myosin 1C, an important component of the actin cytoskeleton (5, 6).
Furthermore, myosin light chain kinase (MLCK) acts with peri-junctional actomyosin rings to
regulate the contractility of actin fibers, thereby influencing TJ structure and permeability (7, 8).

The mucosal barrier also includes mucin, antimicrobial peptides, and dimeric (or more polymeric)
IgA secreted by goblet cells, Paneth cells, and plasma cells, respectively (9–11). These effector
molecules constitute a barrier between luminal microbes and intestinal epithelium to prevent
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microbial adherence to the epithelium. However, mucosal barrier
dysfunction (especially the disruption of TJs) often leads to
enhanced intestinal permeability (12), a pathological status
termed “leaky gut syndrome” (LGS). LGS initiates inflammatory
responses in the intestine and in extraintestinal tissue (13, 14).
Thus, the translocation of commensal microbes into the body
disturbs immune homeostasis by inducing systemic inflammation;
however, the commensal microbiota is important for shaping the
gut immune system while they remain confined in the intestinal
lumen (15). Such beneficial effects are ascribed to certain microbial
products that promote the proliferation and differentiation of
intestinal epithelial cells and multiple immune cell subsets
including regulatory T cells and T helper type 17 (Th17) cells
(16). Indeed, germ-free mice exhibit defects in the maturation of
gut-associated lymphoid tissues and mesenteric lymph nodes,
leading to attenuated production of secretory IgA (S-IgA) (17).

Altered microbial composition, termed dysbiosis, has been
implicated in mucosal barrier dysfunction and inflammatory
responses, which predispose the host animals to systemic diseases
(e.g., inflammatory bowel disease, celiac disease, food allergy,
obesity, and autoimmune diseases) (18). Accumulating reports
have revealed that both LGS and dysbiosis are evident in some
patients with autoimmune diseases (Table 1). In humans, lactulose/
mannitol or lactulose/rhamnose tests have been used to assess
intestinal permeability by measuring the urinary excretion of
unabsorbed lactulose and absorbed mannitol or rhamnose. The
lactulose/mannitol or lactulose/rhamnose ratio increases in patients
with multiple sclerosis, rheumatoid arthritis, type 1 diabetes, or
celiac disease (19, 24, 27, 30). Moreover, serum concentrations of
lipopolysaccharide and soluble CD14 are indicators of intestinal
permeability. Elevated serum lipopolysaccharide concentration and
reduced TJ-related protein concentrations are observed in patients
with ankylosing spondylitis or autoimmune hepatitis (22, 26).
Likewise, serum soluble CD14 concentrations are elevated in
those with systemic lupus erythematosus (32). These patients with
autoimmune disease exhibit altered microbial compositions,
compared with healthy volunteers (20, 23, 25, 26, 28, 31, 33).
Thus far, it remains uncertain whether LGS and dysbiosis are causes
or consequences of autoimmune diseases.
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Early research has shown that proinflammatory cytokines
(e.g., tumor necrosis factor-a [TNF-a] and interferon-g) impair
TJ integrity (34–36), whereas immunosuppressive cytokines
(e.g., interleukin [IL]-10 and transforming growth factor-b)
reinforce the TJs (37, 38). IL-22 secreted by intestinal immune
cells is also vital for epithelial homeostasis (i.e., epithelial repair
and intestinal stemness) as well as epithelial barrier functions
(39). In support of this view, IL-22 induces claudin-2 to facilitate
the clearance of enteric pathogens under physiological
conditions (40). However, under inflammatory conditions such
as Crohn’s disease, constitutive expression of claudin-2 by IL-22
eventually leads to an increment of intestinal permeability (41,
42). Thus, the cytokine milieu is a critical factor that influences
epithelial barrier function. Given that the gut commensal
microbiota plays an essential role in regulating gut immunity,
the microbiota should affect the epithelial barrier by regulating
cytokine-induced barrier changes. In this review, we discuss the
link between the commensal microbiota and epithelial barrier
function, as well as the potential contribution of dysbiosis-
associated LGS to the pathogenesis of autoimmune diseases.
REGULATORY MECHANISMS
OF THE TJ BARRIER

The innate immune system can sense pathogen-associated
molecular patterns via pattern recognition receptors, including
Toll-like receptors (TLRs) and nucleotide-binding oligomerization
domain-containing proteins (i.e., NOD1 and NOD2) (43).
Intestinal epithelial cells also express most TLRs and both NODs,
among which TLR2 and TLR4 signaling may influence the integrity
of TJ complexes. TLR2 recognizes lipopeptides, which are major cell
wall components of bacteria. TLR2 signaling activates protein kinase
C (PKC) and consolidates junctional complexes by recruiting ZO-1
in vitro (44). In contrast, TLR4 signaling (mediated by myeloid
differentiation primary response 88 [MyD88]) enhances intestinal
permeability, both in vitro and in vivo (45). TLR4 signaling activates
MLCK by initiating the canonical nuclear factor-kB pathway
TABLE 1 | Autoimmune diseases related to LGS and dysbiosis.

Pathological site Disease name Symptoms of LGSa Characterization of dysbiosisb Reference

Central nervous system Multiple sclerosis serum zonulin↑
lactulose/mannitol ratio↑

Methanobrevibacter, Akkermansia↑
Butyricimonas↓

(19–21)

Spinal cord Ankylosing spondylitis serum LPS, ileal zonulin↑
ileal TJ-related proteins↓

Prevotella↑ Bacteroides↓ (22, 23)

Joint Rheumatoid arthritis serum zonulin↑
lactulose/mannitol ratio↑

Prevotella↑ Bacteroides↓ (24, 25)

Liver Autoimmune hepatitis plasma LPS↑
duodenal TJ-related proteins↓

aerobic bacteria↑ anaerobic bacteria↓ (26)

Pancreas Type 1 diabetes serum zonulin↑
lactulose/rhamnose ratio↑

Bacteroides↑ short chain fatty acids-
producing bacteria↓

(27–29)

Small intetine Celiac disease lactulose/mannitol ratio↑ Enterobacteriaceae, Staphylococcaceae↑
Streptococcaceae↓

(30, 31)

Systemic Systemic lupus erythematosus serum soluble CD14↑ Firmicutes/Bacteroidetes ratio↓ (32, 33)
April 2021 | Volume 12 | Art
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(46, 47), leading to cytoskeletal contraction that relaxes the TJ
barrier. Thus, the epithelial sensing of various pathogen-associated
molecular patterns by pattern recognition receptors positively or
negatively regulates intestinal permeability at TJs.

Endogenous machinery to suppress TJs is regulated by
zonulin, a eukaryotic analog of the ZO toxin produced by
Vibrio cholerae (48). In humans, zonulin was identified as pre-
haptoglobin (preHp)-2, the precursor of haptoglobin, which is
enzymatically cleaved into the mature protein (49). Zonulin was
released when mammalian small intestinal tissues were
cocultured with pathogenic and nonpathogenic bacteria ex vivo
(50). This observation suggested that bacterial exposure is a
critical inducer of zonulin, although the underlying mechanism
remains unclear. Furthermore, gliadin (a glycoprotein present in
wheat)-dependent zonulin release is well-documented, especially
in studies of celiac disease. Gliadin binds to the chemokine
receptor CXCR3 (expressed by intestinal epithelial cells) to
facilitate zonulin secretion in the MyD88-dependent pathway
(51). Zonulin possesses epidermal growth factor (EGF)-like and
proteinase-activated receptor 2 (PAR2)-activating peptide-like
motifs; thus, it serves as a ligand for EGF receptor (EGFR) and
PAR2 on intestinal epithelial cells (49). Zonulin-dependent
activation of PAR2 reinforces EGFR signaling, which further
activates PKC and leads to the phosphorylation of ZO-1 and
myosin 1C (52). This sequence of events disrupts the associations
of ZO-1 with the other TJ molecules and myosin 1C. Activated
PKC also phosphorylates G-actin and causes actin polymerization
(53). These effects of PKC activation synergistically promote TJ
disassembly and enhance intestinal permeability. However,
considering that TLR2 signaling-dependent activation of PKC
recruits ZO-1 to TJs, the effect of PKC on TJ assembly remains
controversial and may depend on the targets of phosphorylation.
Furthermore, EGFR activation by EGF in the breast milk inhibits
TLR4 signaling to protect neonates and infants from necrotizing
enterocolitis (21). Thus, the effect of EGFR signaling on epithelial
barrier functions may be context-dependent. In patients with
celiac disease, the expression of CXCR3 is upregulated in the
small intestine, including the epithelium (51). This event may
enhance zonulin secretion, thereby causing barrier dysfunction
and an inflammatory response to gluten.

The biological impact of zonulin on the intestinal epithelial barrier
and the immune system has been defined in studies of zonulin-
overexpressing mice, in which the mouse Hp1 gene is replaced with
the human Hp2 (hHp2) gene (29). Consequently, hHp2 knock-in
enhanced intestinal permeability and promoted the development of
dextran sodium sulfate (DSS)-induced colitis (54). hHp2 knock-in
mice also exhibited a proinflammatory immune response mediated
by RORgt+ cells, especially IL7R+ CD3- RORgt+ (most likely, group 3)
innate lymphoid cells in the small intestine (55). These data illustrate
that zonulin overexpression may be implicated in the pathogenesis of
chronic inflammatory diseases, including inflammatory bowel
disease, and autoimmune diseases (56). Indeed, the serum
concentrations of zonulin were significantly elevated in patients
with multiple sclerosis, ankylosing spondylitis, rheumatoid arthritis
and type 1 diabetes compared with those concentrations in healthy
volunteers (22, 24, 57, 58). Furthermore, enhanced intestinal
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permeability, combined with the upregulation of zonulin and
downregulation of TJ-related proteins, was evident in mice with
collagen-induced arthritis, a model of rheumatoid arthritis (24).
Importantly, these pathological events were observed before the
onset of arthritis; treatment with a zonulin antagonist, larazotide,
ameliorated the disease symptoms by improving barrier function.
Thus, LGS mediated by zonulin most likely contributes to the
development of collagen-induced arthritis. In human clinical trials,
larazotide acetate also improved the symptoms in patients with
celiac disease (59). Taken together, these observations support the
importance of zonulin as a biomarker of intestinal permeability and
a promising therapeutic target for LGS-associated autoimmune
diseases (Table 1). Nevertheless, recent reports have shown that
zonulin is inappropriate as a biomarker for irritative bowel
syndrome, functional dyspepsia and non-Coeliac wheat
sensitivity (60). There was only a weak correlation between
zonulin level and intestinal permeability (61). This could be due
to the detection method; widely distributed ELISA for zonulin
measurement fails to quantify zonulin levels correctly. It is,
therefore, paramount to establish the precise measurement
system and to further investigate the causal relationship of
zonulin and LGS-associated diseases using animal models like
hHP2 knock-in mice.
BARRIER MAINTENANCE BY
MICROBIAL PRODUCTS

The commensal microbiota produces a considerable amount of
various fermentation products (62), such as short-chain fatty acids
(derived from dietary fibers and mucin glycans) (63), indoles
(derived from tryptophan), and hydroxy fatty acids (derived from
unsaturated long-chain fatty acids). Therefore, the commensal
microbiota is often regarded as “a hidden organ.” Commensal
microbiota-derived metabolites have substantial impacts on host
physiological functions through metabolic reprograming (64),
epigenetic modifications (65), and the activation of specific
receptors like G protein-coupled receptors (GPRs) and aryl
hydrocarbon receptor (AhR). There is increasing evidence that
microbial metabolites can serve as exogenous regulators for the TJ
barrier. For instance, butyrate, a short-chain fatty acid, augments
the TJ barrier by inducing the hypoxia response. Colonocytes
actively utilize butyrate as a critical energy source via beta-
oxidation and subsequent oxidative phosphorylation. This
metabolic process, which requires oxygen consumption,
contributes to the establishment of anaerobic conditions in the
colonic lumen and results in the stabilization of hypoxia-inducible
factor-1 (HIF-1) in colonocytes (66). Consequently, butyrate
upregulates Cldn1 (encoding Claudin-1) and Ocln (encoding
occludin) in a HIF-1-dependent manner, thereby conferring
resistance to barrier disruption and bacterial translocation upon
infection with Clostridium difficile (67).

Microbial indoles also regulate the integrity of TJs. In intestinal
epithelial cells, indole-3-propionic acid downregulates TNF-a and
upregulates TJ-related proteins in a pregnane X receptor (PXR)-
April 2021 | Volume 12 | Article 673708
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dependent manner (68). PXR-deficient mice exhibit an LGS-like
phenotype and high susceptibility to indomethacin-induced
enteritis. Because PXR/TLR4-double deficiency rescues the LGS-
like phenotype, indole-3-propionic acid presumably counteracts
TLR4-mediated barrier dysfunction. Additionally, oral
administration of indole-3-ethanol, indole-3-pyruvate, and
indole-3-aldehyde mitigates DSS-induced colitis by securing the
TJ barrier in an AhR-dependent manner (69). AhR signaling
downregulates the expression of MLCK, which results in the
dephosphorylation (and subsequent activation) of non-muscle
myosin II-A and ezrin under inflammatory conditions.
Importantly, both myosin II-A and ezrin are TJ-associated actin
regulatory proteins that can destabilize TJ complexes (70, 71).

Urolithin A (derived from polyphenols) also acts as a TJ
modulator through AhR signaling (72). Urolithin A-
dependent activation of AhR upregulates the expression
levels of Cldn4, Ocln, and ZO-1 by inducing Cyp1A1 and
Nrf2. The administration of urolithin A mitigates barrier
dysfunction and colitis development in the mouse model of
2,4,6-trinitrobenzene sulfonic acid-induced colitis; this
protective effect is attenuated in mice lacking either Nrf2 or
AhR. These findings imply that urolithin A requires both AhR-
and Nrf2-dependent pathways to enhance the TJ barrier.

Gut-resident Lactobacillus spp. produces unique hydroxy fatty
acids such as 10-hydroxy-cis-12-octadecenoic acid (HYA) (73).
HYA binds to GPR40 on Caco-2 intestinal epithelial cells to
activate the mitogen-activated protein kinase/extracellular-
signal-regulated kinase pathway, thereby upregulating TJ-related
proteins (74). Treatment with HYA was protective against IFN-g
and TNF-a-induced barrier disruption in vitro and the
development of DSS-induced colitis in vivo. Furthermore, HYA
considerably enhances the fecal IgA concentration in the NC/nga
mouse model of atopic dermatitis (75), indicating that the
protective effect of HYA on the colitis model may be attributed
to the reinforcement of an epithelial barrier and an augmented S-
IgA response.

Multiple lines of investigation have suggested that epithelial
barrier dysfunction may result from the loss of beneficial species
due to intestinal dysbiosis. In db/db mice that spontaneously
develop type 2 diabetes, epithelial dysfunction is accompanied
by underrepresentation of the major butyrate producer,
Faecalibacterium prausnitzii (76). F. prausnitzii is also nearly
absent from Crohn’s disease-associated gut microbiota (63, 77).
Importantly, F. prausnitzii produces microbial anti-inflammatory
molecule, which consolidates TJ integrity by upregulating ZO-1.
Treatment of db/db mice with the F. prausnitzii-derived anti-
inflammatory molecule restored ZO-1 expression and improved
intestinal permeability. Additionally, the outer membrane protein
of Akkermansia muciniphila, Amuc_1000*, upregulates Cldn3 and
Ocln at least partially through the activation of TLR2 signaling
(78). High-fat diet (HFD)-induced obesity is associated with a
lower abundance of A. muciniphila, while the administration of
Amuc_1000* reduces body fat mass by alleviating HFD-induced
endotoxemia. Notably, A. muciniphila is regarded as a mucin-
degrading species, which may affect the mucin barrier (79, 80).
Taken together, these observations imply that specific symbionts
Frontiers in Immunology | www.frontiersin.org 4
shape epithelial barrier function by providing beneficial
metabolites and proteins.
BARRIER DISRUPTION BY SPECIFIC
MICROBES

Intestinal pathobionts are often overrepresented in the microbiota
of patients with inflammatory disorders, where they accelerate
systemic inflammation by translocating across the epithelial
barrier to reach extraintestinal tissue (Figure 1). A notable
example of such pathobionts is Enterococcus gallinarum, which
is frequently detected in the livers of patients with systemic lupus
erythematosus and autoimmune hepatitis (81). In systemic lupus
erythematosus model (NZW × BXSB F1 hybrid) mice,
colonization by E. gallinarum caused barrier dysfunction and
bacterial translocation to the liver, thereby exacerbating
autoantibody production through the upregulation of hepatic
autoantigen expression. The monoassociation of E. gallinarum
in germ-free mice also recapitulated an LGS-like phenotype with
enhanced bacterial translocation to the liver, presumably due to
the induction of Hp/zonulin and the reciprocal downregulation of
TJ-related molecules (e.g., Cldn3 and Ocln).

Patients with primary sclerosing cholangitis (PSC) possess
several bacterial species with barrier-disrupting property (82).
More than 70% of patients with PSC exhibit comorbid
ulcerative colitis (UC). Fecal microbiota transplantation from
PSC-UC patients to germ-free mice provoked systemic
translocation of E. gallinarum, Proteus mirabilis, and Klebsiella
pneumonia. Among these species, K. pneumonia can damage
epithelial cells, leading to enhanced intestinal permeability.
Eventually, colonization by the PSC-UC microbiota or a mixture
of the three bacterial strains exacerbated of 3,5-dicarbethoxyl-1,4-
dihydrocollidine-induced hepatobiliary injury by activating
hepatic Th17 response.

There is compelling evidence for a link between oral and gut
microbiota. In particular, oral dysbiosis and proton pump
inhibitor usage facilitate the translocation of otherwise oral-
indigenous bacteria to the intestine (83). Importantly,
Porphyromonas gingivalis, a periodontopathic bacterium, may
predispose hosts to systemic inflammation and autoimmunity
by inducing LGS. In support of this view, the administration of
P. gingivalis has been shown to alter the gut microbial composition
and suppress the expression of TJ-related proteins, thereby
augmenting the systemic translocation of bacteria and their
products (84, 85). The administration of P. gingivalis accelerates
metabolic syndrome, collagen-induced arthritis, and experimental
autoimmune encephalomyelitis (EAE) (84, 86, 87). Another oral
microbe, Fusobacterium nucleatum, also induces intestinal
dysbiosis and LGS by suppressing the expression of both ZO-1
and occluding. Therefore, F. nucleatum-treated mice are highly
susceptible to DSS-induced colitis (88). Notably, F. nucleatum is
often detected in patients with colorectal carcinoma (89, 90).
Based on these data, specific oral pathobionts presumably play
vital roles in the development of inflammatory disorders through
April 2021 | Volume 12 | Article 673708
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LGS (Figure 1). However, the underlying mechanism by which
oral pathobionts disrupt the gut microbial community remains to
be elucidated.
PATHOLOGICAL CONTRIBUTION
OF DYSBIOSIS AND LGS TO
AUTOIMMUNE DISEASES

Exogenous (e.g., diet and drugs) and endogenous factors (e.g.,
antimicrobial peptides, S-IgA, and the mucin layer) are known to
affect the gut microbial community. For instance, a HFD reduces
the abundance of Bacteroidetes and reciprocally enhances the
abundances of Firmicutes and Proteobacteria (91). Low-fiber diet
and high-glucose intake enhance the proportions of mucin-
degrading bacteria (79, 80). These findings suggest that a
Frontiers in Immunology | www.frontiersin.org 5
westernized diet affects the microbial community. Antibiotics
is another major contributor to alter microbial composition (92);
as mentioned above, proton pump inhibitors also promote the
translocation of oral pathobionts to the intestine (83).

In addition, mutations in several genes (i.e.,NOD2 andXBP1) and
the presence of environmental stress (e.g., obesity and irradiation)
causes Paneth cell dysfunction, which impairs the secretion of
antimicrobial peptides and causes dysbiosis (93). Furthermore,
patients with selective IgA deficiency who have serum IgA
concentrations of < 7 mg/dL exhibit intestinal dysbiosis and high
susceptibility to allergic and autoimmune diseases (e.g., type 1
diabetes, rheumatoid arthritis, and systemic lupus erythematosus)
(94–96). Sutterella spp. are known to possess S-IgA-degrading activity
(97). Colonization with Sutterella spp. enhances susceptibility to DSS-
induced colitis by reducing the amount of luminal S-IgA.

Polarized protein sorting abnormalities cause barrier
dysfunction and dysbiosis. In polarized epithelium, adaptor
FIGURE 1 | Conceptual diagram of autoimmune responses induced by dysbiosis and LGS. Several bacterial products reinforce epithelial barrier and regulate the
mucosal immune response to maintain symbiotic relationship in the intestine. Environmental factors such as a westernized diet and drugs cause dysbiosis, which
impairs epithelial barrier function and elicits proinflammatory response. Microbial adhesion to epithelial cells and the induction of proinflammatory cytokines further
damage TJ integrity, leading to LGS. LGS enhances bacterial translocation to the systemic circulation. Some of the translocated bacteria provide mimotopes or serve
as adjuvants to initiate or worsen autoimmune responses, respectively.
April 2021 | Volume 12 | Article 673708
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protein-1B (AP-1B) complex mediates clathrin-dependent
polarized protein sorting (98). We previously showed that a
deficiency of Ap1m2 (encoding the m1B subunit of AP-1B
complex) interferes with the basolateral sorting of several
cytokine receptors (e.g., IL-6st, IL-17RA, tumor necrosis factor-
RII, and transforming growth factor-bRI) (99). These
abnormalities attenuate cytokine signaling and downregulate the
expression of antimicrobial peptides in the intestinal epithelium.
Ap1m2 deficiency also disturbs IgA transcytosis to the intestinal
lumen due to the inappropriate sorting of polymeric
immunoglobulin receptor. Consequently, Ap1m2-deficient mice
exhibit dysbiosis and LGS, leading to the spontaneous
development of Th17-mediated chronic colitis. The importance
of AP-1B-mediated maintenance of epithelial integrity in systemic
immune homeostasis is currently under investigation.

Microbial adhesion to the epithelium could initiate a sequence
of inflammatory responses by activating signal transduction via
TLRs and zonulin signaling, leading to the loss of TJ integrity.
Such chronic barrier dysfunction causes bacterial translocation
and an inflammatory response that further damages the TJ barrier
and also induce epithelium apoptosis by inflammatory cytokines
(100). This vicious cycle potentiates the autoimmune response in
genetically susceptible patients and may trigger an acquired
autoimmune response even in genetically normal individuals.
Indeed, an experimental observation has verified that LGS
promotes genetically induced autoimmunity. Induction of LGS
by DSS administration leads to the activation of autoreactive T
cells in the intestine of type 1 diabetes model NOD mice carrying
an islet-reactive T cell receptor (101). Eventually, this response
elicits diabetes; however, antibiotics treatment canceled the
disease development.

Accumulating evidence implies that cross-reactivity to microbial
antigens may trigger autoimmune responses. Common microbial
peptides (GTP-binding protein engA) with homology to myelin
basic protein induce the antigen-specific T cell response by low-
affinity T cell recognition (102). In this study, the humanized mice
carryingHLA-DR2haplotype (DRB1*1501) andmyelinbasicprotein-
specific human T cell receptor developed multiple sclerosis-like
symptoms upon immunization with the microbial peptides. Besides,
P. gingivalismay act as a mimic antigen to induce autoimmunity. It is
well documented that patients with rheumatoid arthritis possess
antibodies against anti-citrullinated proteins such as a-enolase,
contributing to the pathogenesis (103). Human a-enolase shares
homology with P. gingivalis-derived a-enolase, and thereby the
human citrullinated a-enolase-specific antibodies cross-reacts with
citrullinated P. gingivalis a-enolase (104). Ruff et al. recently
demonstrated that the DNA methyltransferase of Roseburia
intestinalis, a major commensal species, also serves as a mimotope of
human b2-glycoprotein I in patients with antiphospholipid syndrome
(105). This mimotope presumably facilitates the generation of
autoreactive Th1 cells and autoantibodies. Administration of R.
intestinalis to NZW × BXSB F1 hybrid mice causes antiphospholipid
syndrome-like symptoms by inducing autoimmunity to b2-
glycoprotein I. Miyauchi et al. also revealed that The UvrABC
system protein A (UvrA) expressed by Lactobacillus reuteri is a
mimotope of mouse myelin oligodendrocyte glycoprotein, an
Frontiers in Immunology | www.frontiersin.org 6
antigen used to induce EAE (106). Monoassociation by L. reuteri
alonemoderately promotes EAE progression; however, co-association
with Erysipelotrichaceae possessing an epithelium-attaching property
markedly worsens disease progression.

Segmented filamentous bacteria (SFB) also attaches to the ileal
epithelium to elicit the intestinal immune response such as Th17
response. This effect is mediated by serum amyloid A and reactive
oxygen species by epithelial cells (107). Antigen presentation of
SFB-derived antigens by intestinal dendritic cells is also required to
induce Th17 cells (108). Accordingly, colonization by SFB facilitated
the development of EAE due to enhanced Th17 response (109).
Meanwhile, the SFB-dependent Th17 response suppressed the
bacterial translocation in constitutively MLCK-activated mice
(110). Based on these observations, SFB could be a double-edged
sword that consolidates the barrier integrity but augments the
autoimmune response in a context-dependent manner.

Collectively, genetic and environmental factors affect the
microbial composition, leading to epithelial barrier dysfunction
directly and/or indirectly by means of inflammatory responses.
These pathological changes enhance the systemic translocation
of luminal bacteria, some of which provide mimotopes or
augment autoimmune responses (Figure 1).

CONCLUSION AND PERSPECTIVES

The commensal microbiota has critical regulatory influences on
epithelial barrier function. While the dysbiosis-mediated induction
of LGS initiates an inflammatory response, somemicrobial products
reinforce TJ integrity. Given that the commensal microbiota
contributes to the development of LGS-associated autoimmune
diseases, interventions targeting the microbiota are emerging as
new therapeutic strategies to prevent or cure autoimmune
diseases. Probiotics and fecal microbiota transplantation have
been investigated in clinical trials for the treatment of type 1
diabetes, multiple sclerosis, and rheumatoid arthritis (111, 112).
However, the pathological mechanism underlying LGS-dependent
autoimmunity remains mostly unknown. Moreover, the precise
location (e.g., proximal or distal intestine) where epithelial barrier
dysfunction occurs initially has yet to be determined. Further
investigations using LGS model animals are needed to elucidate
the pathogenesis and provide proof-of-concept for promising
therapies for autoimmune diseases.
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