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ABSTRACT
◥

Purpose: Large-scale sequencing efforts have established
that cancer-associated genetic alterations are highly diverse,
posing a challenge to the identification of variants that reg-
ulate complex phenotypes like radiation sensitivity. The
impact of the vast majority of rare or common genetic variants
on the sensitivity of cancers to radiotherapy remains largely
unknown.

Experimental Design: We developed a scalable gene editing
and irradiation platform to assess the role of categories of
variants in cells. Variants were prioritized on the basis of
genotype–phenotype associations from a previously complet-
ed large-scale cancer cell line radiation profiling study. Alto-
gether, 488 alleles (396 unique single-nucleotide variants)
from 92 genes were generated and profiled in an immortalized
lung cell line, BEAS-2B. We validated our results in other cell
lines (TRT-HU1 and NCI-H520), in vivo via the use of both

cell line and patient-derived murine xenografts, and in clinical
cohorts.

Results:We show that resistance to radiation is characterized by
substantial inter- and intra-gene allelic variation. Some genes (e.g.,
KEAP1) demonstrated significant intragenic allelic variation in the
magnitude of conferred resistance and other genes (e.g., CTNNB1)
displayed both resistance and sensitivity in a protein domain-
dependent manner. We combined results from our platform with
gene expression and metabolite features and identified the upre-
gulation of amino acid transporters that facilitate oxidative reduc-
tive capacity and cell-cycle deregulation as key regulators of radi-
ation sensitivity.

Conclusions: Our results reveal new insights into the genetic
determinants of tumor sensitivity to radiotherapy and nominate a
multitude of cancer mutations that are predicted to impact treat-
ment efficacy.

Introduction
Radiotherapy is an integral component of cancer therapy, with

considerable contributions to the curative and palliative management
of patients (1). However, while drug treatments for cancer are increas-
ingly informed by genetic data, radiotherapy continues to be delivered
without accounting for the considerable genetic variation across
tumors (2). Variation implies that generic treatment strategies opti-
mized using decades of population data can lead to significant under-
or overtreatment of individual patients (3). This imprecision limits
radiotherapeutic efficacy and could lead to the unnecessary irradiation
of organs.

The genetic features that regulate the sensitivity of cancers to
ionizing radiation remain largely unknown (4). Phenotypic evaluation
from human data have established some associations between SNPs or
somatic variants and clinical outcomes (5, 6). Functional assays that

test genetic alterations for gene activity have been generally useful in
validating some genetic associations (7). In the radiation sciences,
however, these efforts have historically focused on individual genes or
cellular functions (e.g., DNA double-strand break repair; refs. 8, 9).
However, the cellular response to radiation represents a complex
phenotype with significant locus heterogeneity (10). Therefore, it is
evident that the efforts to date identify a very limited set of the potential
genetic alterations that could regulate the sensitivity of cancers to these
treatments.

The identification of functionally relevant cancer variants
remains a challenge because tumor genetic alterations can be highly
diverse and complex (11). Although mutations in oncogenes often
display mutational hot spots that lead to increased activity, specific
variants in these hotspots can have a range of activity (12). Sim-
ilarly, variants in genes with loss-of-function (LOF) alterations
usually comprise a mixture of neutral or functionally consequential
mutations that are scattered over the length of a gene, complicating
variant interpretation. Computational (13, 14) and functional
genomic (15–17) approaches have been devised to ameliorate these
challenges. However, these methods largely predict the impact of
variants on gene function rather than test functional variants for
individual phenotypic outputs. They also reduce complex statistical
and phenome (e.g., gene expression) associations to low dimension
categorical bins (drivers versus passengers) or univariate scales.
Because it is likely that the relationships between complex pheno-
types and genetic parameters are both nonlinear and non-
monotonic (18, 19), the means to unambiguously predict the impact
of a common or rare cancer variant on complex phenotypes like
radiation sensitivity are currently very limited.

To address these collective limitations, we conducted a systematic
arrayed profiling effort to identify gene variants that alter the cellular
sensitivity to ionizing radiation.
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Materials and Methods
Cell culture

Adenovirus-12 SV40 hybrid transformed immortalized upper
airway bronchial epithelial cells (BEAS-2B) were grown in advanc-
ed DMEM-F12 media (ThermoFisher, MA) supplemented with
1% FBS, 100U/mL penicillin, 100mg/mL of streptomycin, 292mg/mL
L-Glutamine and 1% HEPES. hTERT-immortalized human urothelial
(TRT-HU1) cell line was grown in DMEM media (ThermoFisher,
MA) supplemented with 10% FBS, 100U/mL penicillin, 100 mg/mL
of streptomycin, and 292 mg/mL L-Glutamine. Cancer cell lines
NCI-H520 and HCC15 were authenticated per the cell lines from
the Cancer Cell Line Encyclopedia (CCLE) protocol and grown
in RPMI (ThermoFisher, MA) supplemented with 10% FBS
(ThermoFisher, MA), 100 U/mL penicillin, 100 mg/mL of strepto-
mycin, 292 mg/mL L-Glutamine (Corning, NY). All cultures were
maintained at 37�C in a humidified 5% CO2 atmosphere and tested
to ensure the absence of Mycoplasma.

Plasmids
Variant-expressing lentiviral plasmids were generated in three

steps: PCR, in vitro recombination, and transformation. Briefly, gene
open reading frames (ORF) were PCR amplified by using primers that
incorporate the desired mutant. Fragments were then transferred
directly to the destination vectors pLX306 and/or pLX307 by LR
reaction (Invitrogen, MA) and the constructs were transformed into
competent cells. The discontinuity at themutation site was repaired by
endogenous bacterial repair mechanisms. After viral infection
[multiplicity of infection (MOI) > 0.8], BEAS-2B cells were selected
in the presence of 1 mg/mL puromycin.

Exon-intron junctional CRISPR (j-CRISPR). plentiCRISPRv2 plas-
mid (Addgene, Plasmid #83480), which contains the Cas9 coding
sequence and a cloning site for single-guide RNA (sgRNA), was
digested with BsmBI. Two complementary oligonucleotides with two
4-bp overhang sequences were annealed and ligated into digested
pLentiCRISPRv2. sgRNAs were designed with the Synthego CRISPR
web design tool (https://www.synthego.com/products/bioinformatics/
crispr-design-tool/). After viral infection, BEAS-2B cells were selected
in the presence of 5mg/mL blasticidin (ThermoFisher, MA). Mono-
clonal cells were generated from a polyclonal pool of transduced stable
cells by limited dilution. Genomic DNA from monoclonal or poly-
clonal cell lines was extracted using the QIAamp DNA Mini Kit
(Qiagen, MD) following the manufacturer’s instructions. PCR was

performed with primers that flank the region(s) of interest to amplify
the target sequences. PCR products were purified using the QIAquick
Gel ExtractionKit (Qiagen,MD) and sequenced by the Sangermethod.
Sequence chromatograms comprising mixed spectra were analyzed
using the Unipro UGENE software.

Genetic addback
Wild-type and variant containing ORFs of KEAP1 and TP53BP1

were cloned into pLX306 and pLX307, respectively, and integrated
into the respective j-CRISPR modified or non-target control (NTC)
BEAS-2B cell lines. After viral infection (MOI > 0.8), cells were
selected in the presence of 1 mg/mL puromycin.

Antibodies and reagents
Anti-KEAP1 (clone D6B12, #8047, 1:1,000), anti–b-actin (clone

13E5, #4970, 1:4,000), anti-LKB1 (clone D60C5, #3047, 1:1,000),
anti-Vinculin (#4650, 1:4,000), anti-TP53BP1(#4937, 1:1,000), anti-
bcatenin (clone D10A8, #25362, 1:2,000), anti-phospho-p44/42
MAPK (#9101, 1:3,000), anti-phospho-MEK1/2 (clone 41G9, #9154,
1:1,000 dilution), anti-xCT/SLC7A11 (cloneD2M7A, #12691, 1:1,000)
were from Cell Signaling Technology, MA. Anti-NRAS antibody
(#ab77392) was from Abcam, MA. Erastin (#17754) was from
Cayman Chemical. Sotorasib (#HY-114277) used ex vivo was from
MedChemExpress.

High-content radiation platform
Cells were plated using aMultidropCombi liquid handler (Thermo-

Fisher, MA) in at least quadruplicate wells at two distinct cell densities
(150 and 200 cells/well) in white-walled 96-well plates (Corning, NY).
At 7 to 9 days postirradiation, media was aspirated and 45 mL
CellTiter-Glo reagent (50% solution in PBS; Promega, WI) was added
to each well. Relative luminescence units were measured using a
Synergy HTX or LX (Biotek, VT) luminescence plate reader. The
luminescence signal was plotted as a function of cell density and a cell
density within the linear range for luminescence (or growth) was
selected to generate integral survival for each cell line (20). Cells were
treated with g-radiation delivered at 0.92Gy/min with a 137Cs source
using a GammaCell 40 Exactor (Best Theratronics; Ontario, Canada)
or using a XRad 2000, X-ray irradiator delivered at 0.525 Gy/min (Rad
Source, GA). For quality assurance, thermoluminescent dosimeters
were used to verify correct dose administration.

Radiation survival and synergy
The AUC was estimated using trapezoidal approximation.

Values representing radiation doses 0, 2, 4, and 6 Gy were used
to generate an AUC value for each variant or vector control. The
survival values for each trapezoid were multiplied by the dose
interval, [f(X1)þf(X2)/2] � DX and summed. The survival values

were re-scaled by log 2� ðVariant ðAUCÞ
Vector ðAUCÞ Þ within plate per run. The

degree of combination synergy was quantified by comparing the
observed combination response against the expected response, cal-
culated using a reference model that assumes no interaction between
the two therapies. SynergyFinder Plus was used to estimate the degree
of synergy for radiation and drug combination studies (21).

Clonogenic survival
Cells were plated at appropriate dilutions, irradiated and incubated

for 8 to 9 days for colony formation. Colonies were fixed using
methanol or 1% formaldehyde and stained using 0.5% (w/v) crystal
violet in 25%methanol. A colony was defined as consisting of 25 to 50
cells or greater. Colonies were counted using a hand-operated clicker.

Translational Relevance

Efforts to nominate and translate biomarker-guided radiother-
apy into clinical practice have had limited success to date. We
developed and integrated in silico and experimental profiling
platforms designed to identify new genetic biomarkers of radiation
sensitivity. We found that tumor radiation sensitivity represents a
complex phenotype that is characterized by significant inter- and
intra-gene allelic variation.We also found that that although cancer
genomes reflect tissue-specific variant tendencies, genetic variants
that alter radiation sensitivity can confer phenotypic effects across
several tissue types. The large-scale culling of large genomic
datasets for variants that regulate radiation sensitivity and the
validation of these features as predictive diagnostics and thera-
peutic targets in preclinical model systems and clinical cohorts
represents an important milestone in the radiation sciences.
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Integration of survival as a function of dose, or AUC, was calculated
form values representing doses 0, 2, 4, and 6 Gy and each allele was
compared with its vector control.

Whole Exome Sequencing
Genetic data profiled by The Cancer Genome Atlas (TCGA) were

obtained from the Firebrowse (http://firebrowse.org/). Exome capture
was performed using paired-end sequencing on the Illumina HiSeq
platform. Cancer cell lines were profiled at the genomic level and
processed as described in detail (22). The processed data is available for
download at http://www.broadinstitute.org/ccle.

RNAseq
RNA was isolated from variant, wild-type, or vector expressing

BEAS-2B cells and quantified. mRNA libraries were generated from
the total RNA using the Illumina mRNA TruSeq kit following the
manufacturer’s directions and sequenced using the Illumina HiSeq
5000 platform. The acquired RNA reads were aligned to hg19 genome
assembly using STAR (23). RNA counts were normalized within
sample and log transformed.

Metabolomics
Cells were collected and pellets were flash frozen in liquid nitrogen.

Frozen pellets were stored at �80�C until extraction. Samples were
thawed and resuspended in 1 mL of ice cold 80% methanol (HPLC
grade) and subjected to three freeze–thaw cycles alternating between
liquid nitrogen and a 37�Cwater bath. Next, samples were centrifuged
at 20,000 g for 15 minutes at 4�C. The resulting supernatants were
transferred to fresh tubes and dried. Samples were resuspended in
10 mL per 200,000 cells. Samples were analyzed by high-performance
liquid chromatography and high-resolution mass spectrometry and
tandem mass spectrometry (HPLC–MS/MS). The sample volumes of
10 mL, which contained 200,000 cells, were injected. Data acquisition
and analysis were carried out by Xcalibur 4.0 software and Tracefinder
2.1 software, respectively (both from ThermoFisher, MA).

Information-based association score
The association between the radiation sensitivity profiles (i.e., log2

AUC) and single-sample gene set enrichment analysis (ssGSEA)
profiles for each gene set ormetabolites (�250 in total) was determined
using the information coefficient (IC; ref. 20). ssGSEA enrichment
scores were calculated on the basis of the weighted difference of the
Empirical Cumulative Distribution Functions of the genes in the set
relative to the genes not included in an individual set. The result is a
single score per cell line per gene set, transforming the original dataset
into a more interpretable higher-level description. Gene sets were
obtained from the C2 sub-collection of the Molecular Signatures
database, an additional collection of oncogenic signatures, and other
cancer-related gene sets curated from the literature, resulting in a
dataset that has 4,628 pathway profiles for each sample. ssGSEA values
were used as input to compute the IC. The nominal P values for the
information-based association metric scores between the ssGSEA
scores, individual metabolites, and radiation response scores were
estimated using an empirical permutation test.

Western blot analysis
Whole-cell lysates were prepared using M-PER lysis buffer and

clarified by centrifugation. Proteins were separated by SDS-PAGE and
transferred onto 0.45 or 0.2 mmol/L nitrocellulose membranes (Maine
Manufacturing; Sanford, ME). Membranes were blocked and incu-
bated in primary antibody for 1 to 3 hours at room temperature,

washed, and incubated for 1 hour with secondary antibodies. Blots
were developed with a chemiluminescence system (Amersham/GE
Healthcare).

Microscopy and cellular staining
HCC15 CTNNB1D cells expressing vector alone or CTNNB1 var-

iants were plated in a black walled 96-well imaging microplate
(Corning, NY) at a density of 1,000 cells/well. Mock and irradiated
(6 Gy) cells were fixed and permeabilized 72 hours post treatment
using the Image-iT Fixation/Permeabilization Kit (Thermo Fisher
Scientific). After fixation, the cytosol and nuclei were stained using
actin green probes (green; ThermoFisher, MA) and DAPI (blue;
ThermoFisher, MA), respectively. For each cell line, at least 4 wells
with 16 images per well (64 images in total) were captured at 40X
magnification using a Cytation 5 cell imaging multimode reader
(BioTek, VT). All images were processed manually using the ImageJ
software. We applied an ellipsoid fit and used size and circularity
parameters based on the DAPI intensity to quantify micronuclei (24).

Mouse studies
All animal studies were conducted under protocols approved by the

Institutional Animal Care andUseCommittees. BEAS-2B cells expres-
sing the designated variants or patient-derived xenografts (PDX) were
injected into the flank of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG)
mice. For PDX studies, biological material was obtained after written
informed consent under approval from the Institutional Review Board
(IRB). Tumor volumes were measured by caliper and calculated using
the formula: (length�width)/2 (2). Mice were randomized into
treatment arms when tumors reached�200 to 400mm (3) in volume.
Sotorasib (Selleckchem, TX) was formulated according to the man-
ufacturer’s specifications and administered at 30 mg/kg to mice daily
or every other day based on treatment tolerance. Irradiated mice were
anesthetized and protected with a lead shield containing a circular
opening overlying the flank. Mice were irradiated using a 320 kVp
orthovoltage machine (XRAD-320 Precision X-ray, CT) at a dose of 0
to 6 Gy (increments of 2 Gy) with a dose rate of 2.17 Gy/min with a
source to skin distance of 60 cm using a 1 mm Cu filter. For quality
assurance, thermoluminescent dosimeters were used to verify correct
dose administration. To establish if intergroup differences were sig-
nificant, we used regression with random effect and autoregressive
errors (25).

Clinical data and statistical analyses
We identified 302 patients treated with high-dose radiation to the

lung using stereotactic body radiotherapy from 2010 to 2020. The
study, NU00212113, was approved by the Northwestern University
IRB andwas performed in accordancewith the ethical standards as laid
down in the 1964 Declaration of Helsinki and its later amendments or
comparable ethical standards. Patients with primary (stage I–IV) lung
cancer aswell as patients with other cancer types comprising solitary or
oligometastases to the chest with available next-generation sequencing
(NGS) data were included. Mutation status was determined using
pyrosequencing technology for 2 genes (KRAS and EGFR) or NGS
panels of 22 or 161 genes based on routine clinical care at Northwest-
ern University (Chicago, IL) from 2010–2020. A total of 85 and 107
patients were profiled for KRAS and CTNNB1 mutational status,
respectively. Radiation treatment failure was defined as radiographic
progression within 1 cm of the planning target volume to maintain a
consistent definition of local/marginal failure in clinical trials of
stereotactic body radiation therapy (26). CT scan(s), followed by at
least one PET/CT, determined radiographic progression. Amaximum
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SUV exceeding the initial pretreatment PET scan or serial increases
in SUV on posttreatment PET scan was considered a local failure. If
PET/CT findings were consistent with failure, a biopsy was requested.
Prescription radiation dose was adjusted for the number of fractions
of radiation by calculating the biologically effective dose (BED) with
a standard a/b ratio of 10. Length of follow up was determined from
the end date of radiotherapy and patients who had not died were
censored at the time of last chest imaging. Cumulative incidence
curves for local failure were estimated using the competing risk
method, and Gray test was used to determine significance between
cumulative incidence curves (27). Statistical analysis was performed
using R 4.1.2 (The R Foundation, Vienna, Austria; ref. 28).

Data availability
The RNA sequencing data has been deposited in theGene Expression

Omnibus database (GSE216711).Genomic data pertaining to cancer cell
lines was downloaded from the CCLE (http://www.broadinstitute.org/
ccle). Other datasets analyzed during the current study are available
within the article, its supplementary files, or from the corresponding
author upon request.

Code availability
All custom or modified code is available upon request. There are no

restrictions to access.

Results
Inter- and intra-gene variation in survival after irradiation

We nominated single-nucleotide variants (SNV) that have a higher
likelihood of altering the sensitivity of cells to radiation using a new in
silico pipeline (Fig. 1A). We first measured the mutual dependence or
IC between the radiation sensitivity profiles of 533 cancer cell lines and
SNV features (20, 22). The ICmetric has several advantages compared
with monotonic methods of regression, including higher sensitivity to
nonlinear associations and significantly better resolution at the
extreme ends of the radiation sensitivity matching ranges (29). We
nominated variants using two complementary labeling methods: (i)
variants in the gene of interest, yes [1] versus no [0] or (ii) variants in a
structured domain by UniProt (30) of the gene of interest, yes [1]
versus no [0]. The latter design was used to improve the detection of
functional variants because structural domains frequently contain
residues that are critical for maintaining domain stability and, hence,
gene function. Variants derived from commonly mutated genes
(CMG) (>2% frequency) as annotated by TCGA in pan-cancer
studies (31) and 22 variants with no mutual association (NMA;
IC � 0) with radiation sensitivity were also included to assess
the performance of in silico enrichment. Altogether, 488 alleles
(396 SNVs) from 92 genes were generated and profiled.

Because it can be difficult to contextualize the role for a particular
variant within distinct genetic backgrounds (11), we implemented a
systematic, arrayed approach using a cell with minimal background
genetic alterations. Whole-exome sequencing (WES) of the adenovi-
rus-12 SV40 hybrid transformed immortalized upper airway bronchial
epithelial cells, or BEAS-2B (32), showed no known oncogenic or
tumor suppressor mutations (Supplementary Data 1). Moreover,
BEAS-2B cells were amenable to high-content radiation survival
profiling, were clonogenic, and were previously shown to undergo
oncogene-driven transformation, thus facilitating both testing and
downstream validation (12).

Putative gain-of-function (GOF) variants were stably integrated and
tested in an arrayed format using a previously benchmarked high-

content radiation platform (Fig. 1B; refs. 10, 20). To characterize LOF
variants, ORFs were stably integrated into a genetically modified
BEAS-2B lacking the respective gene (i.e., KEAP1 and TP53BP1, see
below). After irradiation, we measured integrated survival as a func-
tion of dose, normalized to in plate vector control, and log2 trans-
formed the ratio (Supplementary Data 2). The signal-to-noise ratio
between NFE2L2E79K and vector alone was 1.19� 0.09 and was stable
for the duration of the profiling period (Supplementary Fig. S1). To
benchmark the platform with other measures of radiation survival,
high-content survival values for a subset (n¼ 39) of the alleles profiled
were compared with values from the clonogenic assay (for each cell
line, n ≥ 2; Supplementary Fig. S2). High-throughput and colony
integral outputs were significantly correlated (Pearson r ¼ 0.43 and
P ¼ 0.007).

A scatter plot of radiation survival values demonstrated variants in
genes that impacted signal transduction, cell cycle, gene transcription
(via transcription factors), and cellular metabolism (Fig. 1C; Supple-
mentary Fig. S3). Critically, there was significant variation in survival
across and within individual genes. To assess differences in the
distribution of response across some profiled genes, we plotted the
probability density distribution of survival values (Fig. 1C, inset).
Some genes had unimodal changes in radiation sensitivity (i.e.,
TGFBR1) whereas other had bi- or multimodal distributions. Inter-
estingly, CTNNB1 had a bimodal distribution that spanned a wide
range of sensitivity, potentially reflecting diametrically distinct func-
tional variants within the same gene. A confluence of impactful
variants clustered at hotspots residues in some genes, whereas other
genes did not demonstrate residue or structural domain selectivity
(Supplementary Fig. S4). Importantly, in silico nominated variants had
wider ranges of radiation sensitivity compared with variants from
CMGs or with NMA based on cancer cell line profiling (Supplemen-
tary Fig. S5). Taken together, systematic radiation sensitivity profiling
of unary variants in BEAS-2B cells revealed significant inter- and intra-
gene variation and our in silico nomination pipeline significantly
improved salient variant detection.

Characterization of gene variants associated with radiation
survival

The distribution of radiation sensitivity indicated that genetic
variants altered the radio-phenotype along a continuum (Fig. 2A).
We measured the dynamic range of the platform using benchmarked
genetic alterations for radiation resistance and sensitivity:NFE2L2E79K

and TP53BP1D, respectively. NFE2L2E79K has been shown to confer
resistance to radiation (10, 20) and TP53BP1 functions in DNA repair
and its deletion has been shown to confer radiation sensitivity (33).
Using the SD (s) as cut points, we classified variants into resistant,
sensitive, or functionally neutral groups. Using these criteria, 22%,
10%, and 68% of the variants were resistant, sensitive, or neutral,
respectively.

Because radiation sensitivity in cancer cell lines informed the
selection of our nominated variants (see Fig. 1A), we measured the
association between variants and corresponding cancer cell line sen-
sitivity (Fig. 2B). We found a significant association between the two
platforms, suggesting that previous biological outputs of radiation
sensitivity (10) coupled with structured protein domain-based enrich-
ment can significantly improve functional variant identification.
Because the measured association spanned distinct cancer types and
cell lines, these results also suggested that some variants can alter
radiation sensitivity across distinct genetic backgrounds.

We compared functional variants in our platform with classifica-
tions from other variant interpretation tools (Fig. 2C; Supplementary
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Figure 1.

High-content profiling of common and rare genetic variants for radiation sensitivity. A, Computational pipeline for the nomination of candidate SNVs. Associations
weremeasuredusing the IC. The variant candidate listwas supplementedwith CMGs in cancer if theywere not directly nominated by the pipeline and 22 variantswith
IC � 0. B,Wild-type or variant-expressing ORFs of genes were stably integrated into BEAS-2B cells and tested in an arrayed format (unique SNV per well) using a
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Data 3; refs. 34, 35).We found that overall, oncogenic variants were the
most likely to confer radiation resistance, followed by variants pre-
dicted to be of unknown significance (VUS), unclassified, and neutral.
Similarly, predicted driver variants were most likely to confer resis-
tance, followed by passenger and unclassified variants. Functional
impact type, however, was not associated with radiation sensitivity
suggesting that both GOF and LOF variants can similarly impact
radiation sensitivity. To determine the association between radiation
sensitivity and the frequency of variants in cancer, we compared the
two variables stratified by gene type: oncogene versus tumor suppres-
sor (Fig. 2D; ref. 36). Most variants that altered radiation sensitivity
had a low rate of occurrence in cancer, irrespective of their gene
classification.

Despite the overall trends, there were many oncogenic and driver
variants that did not alter radiation sensitivity. Moreover, several
variants conferred a strong phenotype despite the lack of previous-
ly established clinical or biological significance. For example,
KEAP1E117K and RHOAF106L conferred radiation resistance despite
their classification as VUS (Fig. 2C, E and F). For KEAP1E117K, gene
expression gene set analysis demonstrated activation of the Nrf2
pathway indicating a dominant negative effect (Supplementary

Fig. S6). These results indicated that phenotypic profiling represents
a more sensitive methodology for annotating impactful variants.

Genetic addback reveals distinct categories of variants
LOF variants associated with genes that impact radiation sensitivity

are unlikely to be identified unless they also confer dominant-negative
effects in parental BEAS-2B cells. We devised a j-CRISPR strategy to
ameliorate this profiling gap. Junctional refers to design of a sgRNA
that spans the exon-intron junction of the target gene loci. After
knockout, variant-expressing ORFs are predicted to be resistant to the
introduced guides because they lack introns. Although genetic add-
back could be achieved using other approaches (37, 38), j-CRISPR
offers the facile and highly efficient means to effect the biallelic loss of
target genes (39) while retaining the capability to use our large-scale
SNV library in its current form.

We benchmarked j-CRISPR using the tumor suppressor genes,
KEAP1 and TP53BP1 (Fig. 3). sgRNAs that target the exon 2::intron
2–3 junction of KEAP1 and the exon 5::intron 5–6 junction of
TP53BP1 were used to delete each target gene. After infection, selec-
tion, and monoclonal outgrowth, Sanger sequencing from a repre-
sentative KEAP1 knockout (KEAP1D) clone identified a homozygous
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Figure 2.

Characteristics of SNVs that alter the radio-phenotype. A, 488 (396 SNVs and 92 associated wild-type) alleles are displayed. Each value represents one biological
replicate. Radiation sensitivity was discretized into categories of resistant and sensitive based on >NFE2L2E79Kmedian�s (red) and < TP53BP1D medianþs (blue),
respectively. B, Variants represented in cancer cell lines previously profiled for radiation survival were partitioned into quantiles (1st, the most sensitive; 4th, most
resistant). SNVs profiled in (A) were binned on the basis of the presence of the SNV in a cell line within the designated quantile. The log2 AUC from (A) were then
plotted by column plot, stratified by quantiles. Column height represents the mean and error bars represent SD. � , P values < 0.0001 by Welch t test. C, Boxplots
represent classification of profiled variants into categories defined by databases OncoKB (oncogenic and functional status) and MutaGene (driver or passenger).
Variants that were not found in either database were labeled “unclassified”. D, Scatter plots of variants identified as oncogenes or tumor suppressor genes (TSG) in
samples sequencedbyWES.E,BEAS-2B cells stably infectedwith vector alone (f) orKEAP1WTorKEAP1E117Kwere irradiated and the survival fractionsweremeasured
at day 9–10 by the clonogenic assay. Data points representmean� SEM. Bar plots represent the indicatedNFE2L2 expression signatures measured in BEAS-2B cells.
F, BEAS-2B cells stably infected with vector alone (f), RHOAWT, or RHOAF106L were treated with ionizing radiation and the survival fractions at day 9–10 were
measured by the clonogenic assay.
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indelmutation in proximity to the predicted cleavage site (Fig. 3A). To
examine whether the cleavage point is resistant to the introduced
synthetic guide, we introduced the KEAP1 ORF and demonstrated
the stable expression of KEAP1 (Fig. 3B). Critically, the addback of
KEAP1, despite its higher levels of protein expression, reversed the
KEAP1D resistance phenotype to baseline sensitivity levels (Fig. 3C).
We introduced 29 KEAP1 variants into both single-guide non-
targeting control (sgNTC) and KEAP1D cells and measured radiation
survival (Fig. 3D). It was evident thatKEAP1 variants had awide range
of impact on the sensitivity of cells to radiation across the sensitivity
spectrum. In addition,KEAP1D cells demonstrated an increased ability
to resolve LOF variants compared with sgNTC cells.

We normalized survival values to KEAP1 wild-type levels and
classified variants based on phenotypes across cellular contexts into
neutral, dominant-negative, hypomorphes, or hypermorphes. Intrigu-
ingly, we identifiedKEAP1 variants that had increased levels of activity
compared with wild-type KEAP1, resulting in greater radiation sen-

sitivity. A class of KEAP1 variants have been previously shown to have
an enhanced ability to bind Nrf2 (i.e., super-binders), resulting in the
modulation of Nrf2 activity (40). Our data adds to this list of putative
super-binders (e.g., R272C; ref. 41) and reveals the complexity inher-
ent in biomarker classification for putative radiation resistance bio-
markers likeKEAP1. We also compared KEAP1 variant sensitivity to a
gene expression-based phenotypic impact profilingmethod, eVIP (15).
eVIP scores derived from variant expression in the KEAP1 G333C
mutant cancer cell line, A549, showed some overall concordance
across categories of variants (Fig. 3E). Despite this trend, there was
a wide range of sensitivity values within eVIP classes and scores,
indicating a greater capability for our experimental assay in discerning
phenotypic impact.

Using an analogous approach, we targeted a critical element ofDNA
repair and cell-cycle regulation, TP53BP1 (33, 42). Sanger sequencing
from a polyclonal mixture of j-CRISPR edited TP53BP1D cells showed
multiple sequences around the expected cleavage point (Fig. 3F).
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Figure 3.

j-CRISPR/Cas9 knockout of KEAP1 or TP53BP1 followed by genetic addback identifies categories of SNVs that impact radiation sensitivity.A, Schematic depiction of
the KEAP1 sequence at the exon 2-intron junction. A representative sgRNA is shown in green. A representative sequence (chromatogram) of the exon2-intron
junction is shown. Gene inactivating sgRNA result in internal deletions (indels) of varied length at the junction (representative indel is shown). The sgRNA is predicted
to not bind the spliced ORF due to sequence heterology (mismatch). B, Immunoblots and (C) radiation survival analysis of a representative BEAS-2B KEAP1D clone
alone or with vector control (f) or wild-type KEAP1. Cells expressing NTC guides were characterized for baseline protein expression and radiation survival. D,
Radiation survival of either (top) KEAP1D or (bottom)NTC cells expressing the indicated KEAP1 variants (29 in total). Each heatmapwas normalized to an expression
vector control cell line and then to wild-type KEAP1 and ordered on the basis of log2 AUC [most sensitive (blue) to most resistant (red)]. Labels (hypermorphic,
neutral, hypomorphic, or dominant negative) indicate putative categories ofmutations inKEAP1. E, Scatter plot of the radiation survival of a subset ofKEAP1 variants
categorized as class I, II, III, or neutral mutations based on eVIP scores (15). F, Representative sequence (chromatogram) of the exon5-intron junction of TP53BP1D
pooled clones.G, Immunoblots and (H) radiation survival analysis of a representative BEAS-2B TP53BP1Dpooled clones expressing the indicated guides alone orwith
vector control (f) orwith expression ofwild-typeTP53BP1. Cells expressingNTCguideswere also characterized for baseline protein expression and radiation survival.
I, Radiation survival of either (top) TP53BP1-D1 or (bottom) NTC cells expressing the indicated TP53BP1 variants (5 in total). Each heatmap was normalized to an
expression vector control cell line (i.e., NTC cells expressing destination vector alone).
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TP53BP1D cells demonstrated significant radiation sensitivity com-
pared with sgNTC cells (Fig. 3G). We introduced the TP53BP1 ORF
expressing either wild-type or 5 gene variants associatedwith radiation
hyper-sensitivity based on cancer cell line data. Wild-type TP53BP1
addback toTP53BP1D cells reversed the sensitivity phenotype to levels
greater than baseline (sgNTC), indicating that TP53BP1 overexpres-
sion can enhance response to radiation-induced cell death (Fig. 3H).
Four of 5 (80%) of the tested variants showed a range of hypomorphic
activity compared with wild-type. Functional variant D1521Amapped
to the Tudor domain, V1246A and T1270I mapped to the oligomer-
ization domain, andG1297C is within an unstructured region between
the Tudor and oligomerization domains. These results indicated that
like KEAP1, TP53BP1 variants span a range of gene activity and
provide additional evidence that cancer cell line radiation sensitivity
profiling can improve functional variant identification.

Cellular context, in vivo, and inter-genic effects on variant
impact

The frequencies of variants across cancer types can vary on the basis
of the tissue of origin, tumor microenvironment, and the underlying
mutagen or mutational process (43). Moreover, organ and environ-
mental context can impact oncogenic signaling and phenotypes (44).
To determine the context-specificity of impactful variants, we sought
to assess the cellular, environmental, and inter-genic effects on the
radio-phenotype. First, we identified 18 variants that conferred resis-
tance to radiation in the BEAS-2B cell line. We introduced these
variants and their wild-type alleles (n ¼ 9) into the lung squamous
carcinoma cell lineNCI-H520 and the hTERT immortalized urothelial
cell line TRT-HU1 (Fig. 4A). Despite some variability in the magni-
tude of resistance for some variants, the resistance phenotypes were
largely concordant across cellular contexts; most alleles that were
resistant in the BEAS-2B cells were also resistant in NCI-H520 and
TRT-HU1 cells (by Clopper–Pearson intervals; Fig. 4B), indicating
that impactful variants were mainly cellular context indifferent.

We next sought to assess the impact of tumormicroenvironment on
radiation sensitivity using a murine xenograft tumor model. We
injected several BEAS-2B lines expressing NRAS, KRAS or EGFR
variants that conferred variable levels of radiation resistance
in vitro into the flank of NSG mice (Fig. 4C). Consistent with their
oncogenic roles, all injected variants led to tumor engraftment and
growth. Mice bearing BEAS-2B cells expressing the indicated variants
were block randomized into sham (f) or irradiated cohorts (2, 4, and
6 Gy; single fraction) and monitored for tumor growth delay (Sup-
plementary Fig. S7). The intra-gene rank order of resistance was
concordant for all 3 genes. For example, NRAS Q61K, G13R, and
G12C were the most to least resistant variants to radiation both
in vitro and in vivo. Moreover, the rate of tumor growth as mea-
sured by time to 1 cm3 and in vitro derived survival fraction measure-
ments were correlated across all doses (2, 4, and 6 Gy) (Spearman’s
r ¼ �0.53; R2 ¼ 0.28; P < 0.01), with variants that conferred greater
resistance demonstrating a shorter time to 1 cm (Fig. 4D; ref. 3). These
results indicated some concordance between in vivo and in vitro
sensitivity measures.

We also examined the influences of genetic context on individual
impactful variants. First, we used genetic data profiled by TCGA
(n ¼ 10,967 tumors) to identify co-occurring alterations with genes
implicated in radiation resistance. We generated whole-exome
covariate association P and q values across the top 10 genes asso-
ciated with radiation resistance and found a strong association
between alterations in STK11 and radiation-resistant genes KEAP1
and KRAS [log2 odds ratio of 3.8 and 1.39, respectively; (P < 0.001,

q < 0.001)]. STK11 is frequently inactivated in lung adenocar-
cinoma and leads to both increased primary tumor growth and
the acquisition of metastatic potential (45, 46). Consistent with
these observations, Upset and Venn plots showed the respective
genes to be significantly co-altered in lung adenocarcinoma (Fig. 4E
and F).

We examined the interactive effects of the respective co-altered
genes on radiation sensitivity.Wedeleted STK11 andKEAP1 alone and
together in BEAS-2B cells (Fig. 4G). KEAP1D, but not STK11D,
resulted in radiation resistance. However, KEAP1D/STK11D co-
deleted cells showed a significant increase in radiation resistance
compared with KEAP1D alone (Fig. 4H). We also integrated into
NTC or STK11D cells several KRAS variants and measured the impact
of the deletion on radiation sensitivity. The integral survival of the
KRAS variants were generally higher in STK11D cells, although this
effect varied across individual variants (Fig. 4I and J). Together, these
results indicated that genetic co-alterations cooperate to amplify the
resistance of KEAP1 and KRAS altered cells.

Integrative multiomic profiling of impactful variants
We used ssGSEA projections to identify gene expression pathways

that are associatedwith radiation sensitivity.We compared the profiles
of 4,628 gene set/pathway with the radiation sensitivity values across
42 alleles (Fig. 5A). The top gene sets associated with radiation
resistance represented pathways including transmembrane transport,
cellular signaling (e.g., Ras, MAPK, TGFb, RhoA), and lipid metab-
olism, among others (Supplementary Data 4). Gene sets associated
with transmembrane transport activity included, in part, genes asso-
ciated with amino acid transport like xCT (SLC7A11) and ASCT2 (or
SLC1A5). xCT is the light chain subunit of cystine/glutamate anti-
porter system xc- and ASCT2 is the neutral amino transporter that
preferentially transports glutamine (47). By regulating the levels of
essential glutathione precursors, namely cysteine and glutamine, these
transporters play a vital role in maintaining redox homeostasis.
Consistent with these roles, a directed analysis of genes associated
with glutathione synthesis including GLS2, GCLM, GCLC, and GSR
demonstrated significant associations with radiation resistance
(Fig. 5B and C; Supplementary Data 5). These results suggest that
the plurality of variants associated with radiation resistance rewire the
transcriptome to improve oxidative reductive capacity, putatively by
increasing glutathione levels.

To validate these findings, we profiled > 250 metabolite targets
comprising sentinel analytes in BEAS-2B cells expressing selected
impactful variants. Global pathway enrichment analysis revealed, in
part, nucleotide, glutamate, and glutathione metabolism as highly
associated with radiation resistance (Supplementary Fig. S8). These
pathways have been previously shown to be linked, mainly by gluta-
mine metabolism (48). In addition to glutamine representing a critical
precursor for glutathione synthesis, the synthesis of the pyrimidine
nucleotides begins with the formation of carbamoyl phosphate from
glutamine andCO2. In purine nucleotide synthesis, nitrogen atN3 and
N9 are contributed by the amide group of glutamine. Consistent with
these observations, metabolomic analysis revealed that the end pro-
ducts of nucleotide synthesis were elevated in radioresistant cells,
accompanied by increased levels of some important intermediates
(Fig. 5C; Supplementary Fig. S9).

We associated levels of individual metabolites with radiation sur-
vival using the IC associationmetric (Fig. 5D; Supplementary Data 6).
Consistent with gene and gene set expression correlations of increased
amino acid cellular uptake and glutathione synthesis, there was a
significant association between the levels of glutathione, glutamine-
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Figure 4.

The impact of cellular context, tumor microenvironment, and co-occurring genetic events on SNVs associated with radiation resistance. A, Scatterplot of radiation
survival values for 27 alleles (9 wild-type and 18 variants) expressed in the indicated cell lines. Data are expressed as the means� SEM. B, The proportion of alleles
(variants and wild-type) that localized to each cartesian quadrant (I–IV) are shown. 95% CIs were calculated by the binomial proportion CI (Clopper–Pearson). An �

indicates CIs that do not cross the (random dart) estimate of 25% of variants per quadrant. C, BEAS-2B cells expressing the indicated variants were injected into the
flankofNSGmice andmeasured for tumor growth.D,Micewereblock randomized into the following treatment arms: sham (f) or X-ray (2, 4, or 6Gy). Scatter plot and
linear regression of in vitro radiation survival values (SF, surviving fraction) and in vivo tumor growthdelay after irradiation (normalized to f).E andF,Upset andVenn
diagram plots for co-occurrence of KRAS, KEAP1, and STK11 alterations comprising gene mutations or deep deletions of KEAP1 or STK11 in lung adenocarcinoma
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and (H) radiation survival of NTC, KEAP1D, STK11D, or KEAP1D/STK11D in BEAS-2B cells. �� , P value < 0.05 for interaction based on two-way ANOVA test. Two distinct
sgRNA targeting STK11 were tested (D-1 and D-2) for radiation survival. I, Wild-type or variant-expressing KRAS were introduced into either NTC or STK11D cells.
Radiation survival, measured byAUC, for the indicated alleles or vector control (f). Scatter plot and linear regressionwith 95% confidence band of the best-fit line are
shown. J, Orthogonal distance measurements to the line of equality (diagonal) for each allele in (I).
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derived metabolites (a-ketoglutarate and 2-HG), and cysteine with
radiation resistance. These data suggested that variants that conferred
resistance to radiation increased glutathione synthesis, in part by
facilitating amino acid uptake andmetabolism.We noted that cysteine
levels were notably higher in EGFR and RAS variant-expressing cells.
We, therefore, posited that cystine deprivation would have a greater
impact on the sensitivity of these variants compared with their wild-
type counterparts. Indeed, cystine dropout had marginal effects on
wild-type allele-expressing or vector control cells but significantly
diminished the magnitude of radiation resistance in NRASQ61K-

expressing cells (Fig. 5E). Importantly, cystine addback restored
radiation resistance in cells expressing Q61K but not wild-type NRAS
or vector alone cells. Altogether, these results indicated that rewiring
the metabolome to increase uptake of essential glutathione precursors
represents a critical mechanism for conferring radiation resistance for
some variants.

On the basis of the role of xCT in therapeutic resistance in some
variants, we predicted that the xCT inhibitor, erastin, can function as a
sensitizer in cells expressing select variants (49). Indeed, NRASQ61K-
expressing cells treated with erastin and radiation showed a synergistic
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Figure 5.

SNVs can reconfigure the transcriptome and metabolome to enhance survival after irradiation. A, single sample, (B) single-gene GSEA, and (D) ssMETA analyses
identify gene sets, genes, and metabolites respectively, that correlate with resistance to radiation across 42 profiled alleles (12 wild-type, 30 variants). Heatmap of
enrichment scores (red, positive; blue, negative). A subset of the topgene sets, genes, andmetabolites are shown.C,Schematic of themetabolic pathways associated
with radiation resistance. Genes depicted in red font [similarly demarcated in (B)] are associated with amino acid (i.e., cystine and glutamine) transport and
glutathione synthesis. Blue arrows indicate the direction of metabolite level changes associated with resistance. E, Variant-expressing BEAS-2B cells were grown in
cysteine dropout media supplemented with vehicle or cystine at the indicated concentrations and treated with ionizing radiation. The survival fraction at 7 to 8 days
after irradiation is shown. Data are expressed as the means � SEM. F, Cells were treated with erastin for 24 hours followed by mock treatment or irradiation at the
indicated doses. The survival fraction at 7 to 8 days after irradiation is shown. Themean synergy score fromaHSAmodel are shown. The significance of the difference
between the estimated mean synergy score compared with the null hypothesis of non-interaction are shown (P value).
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decrement in clonogenic survival [highest single agent (HSA) mean¼
21.61; P < 0.0001; null hypothesis indicating non-interaction; Fig. 5F].
Vector alone andwild-typeNRAS-expressing cells showed less synergy
with radiation. These results indicate that xCT inhibitors can be potent
therapeutic sensitizers in cells containing categories of radiation-
resistant variants, nominating combinatorial treatments as a poten-
tially effective treatment strategy in tumors that are driven by these
variants.

Categories of CTNNB1 mutations differentially alter radiation
sensitivity

The top gene sets associated with radiation sensitivity represented
pathways including cell cycle (i.e., G2–M progression), RNA proces-
sing, and nuclear structure, among others (Supplementary Data 4).
b-catenin activity, driven by exon 3 variants in CTNNB1, were highly
correlated with radiation sensitivity and active for gene sets associated
with progression through anaphase via the anaphase promoting
complex (APC; Fig. 6A). Exon 3 of CTNNB1 encodes several ser-
ine-threonine phosphorylation sites that regulate the stability and
nuclear localization of b-catenin (50). Mutations in exon 3 have been
associated with the nuclear accumulation of b-catenin resulting in
constitutive Wnt/b-catenin signaling. In contrast to the exon 3 con-
taining N-Terminal (NT) domain, the armadillo repeats (ARM) and
the C-Terminal (CT) domain of CTNNB1 are less commonly mutated
(Fig. 6B; ref. 31). The functional impact of these variants, if any,
remains unclear.

We noted a trend toward differential sensitivity in cancer cell lines
with mutations in the NT versus the ARM domains (Fig. 6C). To
examine these effects directly, we introduced the CTNNB1 ORF
expressing either wild-type or 16 variants spanning all domains into
BEAS-2B cells and measured radiation sensitivity. Consistent with cell
line data trends, we showed that exon 3 variants conferred radiation
sensitivity (Fig. 6D). Moreover, mutations in the ARM domain were
significantly more likely to confer radiation resistance [log2 AUC 95%
confidence interval (CI), 0.28–0.24; P¼ 0.02; one sample t test]. These
results indicated that mutations in CTNNB1 can have diametrically
opposed effects.

To study the impact of CTNNB1 variants in a cancer context, we
performed j-CRISPR deletion of CTNNB1 in HCC15, a lung squa-
mous cell carcinoma cell line with an activating missense mutation
in exon 3, S45F (Fig. 6E). CTNNB1D cells were significantly more
resistant to radiation compared with NTC cells (Fig. 6F). The
addback of the same 16 CTNNB1 variants to the HCC15 CTNNB1D
cells demonstrated a radiation sensitivity profile like that observed
in BEAS-2B cells (Fig. 6G). NT mutant-expressing cells had higher
levels of b-catenin localized to the nucleus, consistent with their
hypermorphic activity (Fig. 6H). In contrast, some ARM domain
mutant-expressing cells had substantially lower cellular b-catenin
levels, indicating a potential dominant negative role for a subset of
these mutants.

We examined the impact of unchecked progression through ana-
phase via the APC in categories of CTNNB1 variants. We posited that
cell-cycle progression despite DNAdamage could result in higher rates
of mitotic catastrophe in cells expressing exon 3 mutants. To test this,
we quantified chromosomal instability after irradiation by measuring
the number of micronuclei (Fig. 6I and J). HCC15 expressing exon 3
variants had substantially higher micronuclei than vector alone cells.
Conversely, ARMdomainmutant (V600G)-expressing cells had lower
numbers of micronuclei. These results suggest that hypermorphic
CTNNB1 mutants confer radiation sensitivity by increasing the prob-
ability of mitotic catastrophe after irradiation.

To examine the clinical relevance of the CTNNB1 variants, we
identified patients with primary lung cancer or other cancer types
that metastasized to the chest who were treated with high-dose
radiotherapy alone to these index lesions. We annotated cases for
local failure outcomes, which we defined as radiographic progres-
sion within the irradiated volume (Fig. 6K). Patients with CTNNB1
mutant tumors were younger, more likely to have non–lung pri-
mary metastases, more likely to be treated with oligometastatic
intent, and had longer median follow-up and overall survival (Sup-
plementary Table S1). The two groups had otherwise similar patient,
tumor, and treatment characteristics. 107 patients from our cohort
underwent CTNNB1 exon 3 genotyping; 11 patients had tumors with
CTNNB1 mutations. Patients with CTNNB1 mutant tumors had a
significantly lower rate of local treatment failure than those with
CTNNB1 wild-type tumors, with 3-year cumulative incidences of
27.9% (95% CI, 16.0%–38.1%) and 0% (95% CI, not applicable),
respectively (Fig. 6L). Importantly, there were no significant differ-
ences in the radiation dose delivered (Welch t test, P¼ 0.12) or tumor
size (Welch t test, P¼ 0.21; Fig. 6M) between patients with mutant or
wild-type CTNNB1. A multivariate regression model that included
CTNNB1 gene status, tumor size, and dose showed that CTNNB1
mutation status as the only variate that remained significant (Sup-
plementary Table S2).

KRAS variants confer resistance to high-dose radiation
Most variants increased survival consistently across the tested

dose range (2–6 Gy; Supplementary Data 2). However, there were
exceptions to this trend. In particular, KRAS variants showed
enhanced survival selectively at the highest doses of radiation
(Fig. 7A). To confirm these findings, some KRAS variants were
introduced into BEAS-2B cells and retested using the variant testing
platform. Consistent with the initial profiling data, KRAS variants
showed greater log-fold resistance compared with vector control
cells at higher radiation doses (Fig. 7B). In addition, there were
evident intra-gene differences in the extent of resistance across
domains (P-loop, Switch I, and Switch II), amino acid positions, and
individual variants. For example, despite representing a confirmed
oncogenic variant, D33E did not confer resistance at any dose of
radiation (51). Overall, mutations within the switch II domain (e.g.,
Q61H and Q61L) were generally more likely to confer resistance
(Fig. 7B and C). These results indicated that KRAS mutants confer
cellular resistance to high-dose radiation with some intra-gene
variant differences.

On the basis of these results, we posited that patients with KRAS
mutant tumors are more likely to develop local treatment recurrence
after high-dose thoracic radiation. To test this, we identified patients
with primary lung cancer treated using high-dose radiation to the
lung. We annotated cases for local failure outcomes, which we defined
as radiographic progression within the irradiated volume (Fig. 7D).
85 patients from our cohort underwent KRAS genotyping; 33 patients
had tumors with KRASmutations (Fig. 7E). Patients with KRAS wild-
type and mutant tumors had similar patient, tumor, and treatment
characteristics (Supplementary Table S3). Critically, there were no
significant differences in the two variates previously associated with
local treatment failure in this setting: radiation dose delivered and
tumor size (Fig. 7F and G; refs. 52, 53). Despite these similarities,
patients with KRAS mutant tumors had a significantly higher rate of
local treatment failure than those with KRAS wild-type tumors, with
3-year cumulative incidences of 31.7% (95% CI, 16.3–40.6) and 13.3%
(95% CI, 5.3–25.1), respectively (Fig. 7H). A multivariate regression
model that included KRAS gene status, tumor size, and radiation dose
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showed that KRAS mutation status as the only variate that remained
significant (Supplementary Table S4).

Because KRAS mutant tumors were resistant to radiation in cells
and in patients, we posited that KRAS inhibitors may ameliorate
treatment resistance. We tested a sequential treatment strategy with
sotorasib, a small molecule that irreversibly inhibits KRASG12C, and
radiation to optimize tumor control and potentially prevent treatment
resistance. To assess the selectivity of the putative interaction between

sotorasib and radiation, we profiled 3 lung adenocarcinoma PDX with
KRASwild-type, G12V, or G12C alleles (Fig. 7I). PDXs were passaged
by single-step propagation into 20mice representing 5 cohorts includ-
ing mock (f), sotorasib alone, radiation alone, sotorasib followed by
radiation, and radiation followed by sotorasib. Radiation followed by
sotorasib was themost effective sequence of therapy in the PDX driven
by KRASG12C, indicating genotype and treatment sequence selective
interactive tumor responses (Fig. 7I). These results indicated that
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Figure 6.

CTNNB1 exon 3 variants confer radiation sensitivity via aberrant mitoses. A, ssGSEA identified gene sets associated with sensitivity to radiation. Heatmap of
enrichment scores (red, positive; blue, negative). A subset of the top gene sets are shown. B, The crystal structure of wild-type CTNNB1 (PDB ID: 2z6h). Structural
domains are shown. C, Cancer cell line radiation survival stratified by CTNNB1 domain. Tukey’s boxplots [median and interquartile range (IQR)] are shown. D, 16
unique CTNNB1 variants within the respective structural domains were assessed for radiation sensitivity in BEAS-2B cells. Tukey’s boxplots (median and IQR) are
shown. � ,P<0.05byWelch t test.E, Immunoblot and (F) radiation survival ofNTCorCTNNB1D HCC15 cells. � ,P<0.05byWelch t test.G,Radiation survival,measured
by log2 AUC values, for the designated variant-expressing cell lines were compared by scatterplot. Data are expressed as the means � SEM. H, Immunoblots of a
representative HCC15 CTNNB1D pooled clones expressing vector control (f), wild-type CTNNB1, or the indicated variants. I, Fluorescence staining of the indicated
CTNNB1 variants expressed in HCC15CTNNB1D cells. Arrows delimitmicronuclei. J,Quantification ofmicronuclei, normalized to the vector control for each treatment
arm (mock versus irradiated). � , P < 0.05 by Welch t test. K, Representative CT images of a patient with a CTNNB1mutant metastatic lung adenocarcinoma treated
with high-dose thoracic radiation. Longitudinal CT image (after) demonstrates durable local control within the irradiated volume. L, Tukey’s boxplots of the pre-
therapy CT-derived maximum axial diameter of treated tumors stratified by CTNNB1 genotype (P ¼ 0.21; t test with Welch correction). M, Estimated cumulative
incidence curves for local failure in the study population apportioned by CTNNB1 genotype. Gray test was used to test for equality across the two groups.
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Figure 7.

KRAS variants confer resistance to high-dose radiation in cells, PDX, and patients.A,Normalized (to in plate vector control cells) survival ofKRAS variant–expressing
BEAS-2B cells at the indicated doses are displayed by Tukey’s boxplots [median, interquartile range (IQR), and 1.5x of the IQR]. Individual points represent single
biological replicate. B, 12 unique KRAS variants within the P-loop (blue), Switch I (green), or the Switch II (red) domain were retested for radiation resistance. The
y-axis represents the log-fold change in survival compared with vector control treated cells at the indicated dose. Data bars represent mean � SEM. C, The crystal
structure of wild-type KRASwith GDP-bound is shown (PDB ID: 4obe). Selected structural regionswith themost common hotspotmutations are highlighted: P-loop
(residues 10–14), switch-I (residues 30–40), and switch-II (residues 58–72). D, Representative CT and PET/CT images of a patient with an early-stage KRASmutant
lung tumor treated with high-dose radiation. Serial CT images demonstrate treatment response followed by recurrence within the irradiated volume. Pretreatment
and locally recurrent tumor PET/CT SUVmax values are shown. E, Stacked bar plot representing the number of individualKRAS variants in the clinical cohort (n¼ 33).
F, Frequency distribution (light brown) and Gaussian fit for the fractional dose and the BED. Prescription radiation dose was adjusted for the number of fractions of
radiation by calculating the biological effective dose (BED) with a standard a/b ratio of 10. G, Tukey’s boxplots of the pre-therapy CT-derived maximum axial
diameter of treated tumors stratified by KRAS genotype. H, Estimated cumulative incidence curves for local failure in the study population apportioned by KRAS
genotype. Gray test was used to test for equality across the two groups. I,NSGmice bearing PDXwith the indicated KRAS alleles in the flankwere block randomized
into one of five treatments arms. Sotorasibwas given for 14 days every other day or as tolerated. Radiationwas delivered in a single 6Gy dose. Sequential treatments
were given 24 to 48 hours after the completion of the first therapy. Data are expressed as themean� SEM; n¼4 independent animals for each arm. TheP value of the
x2 test between the indicated curves were deemed significant if < 0.05 (�). �� , P < 0.05 for interaction based on two-way ANOVA.
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adjuvant sotorasib treatment after high-dose radiationmay ameliorate
local treatment failures.

In the KRASG12C tumor, there was a lack of additivity or synergy in
the sotorasib followed by radiation arm despite single-agent efficacy
with drug and radiation alone. A mechanism that could explain the
observed drug-radiation sequence dependence is rapid nonuniform
adaptation after anti-Kras G12C drug. This adaptive mechanism has
been shown to confer pathway reactivation after sustained inhibition
using conformation dependent Kras G12C inhibitor (54). To assess
whether the KRASG12C-driven tumor respresented in Fig. 7I was
adapting to inhibition by sotorasib, we treated an ex vivo derivative
of this tumor with drug for 24 and 72 hours followed by removal of the
drug for 24 or 48 hours—the removal was intended to mimic the
murine treatment schedule of a 24- to 48-hour break between drug and
radiation. Lysates from these treatment conditions showed pathway
reactivation after 72 hours of treatment (Supplementary Fig. S10).
These results suggested that Kras activity can rapidly reemerge after
sotorasib treatment, thus opposing the potential for additivity or
synergy with combinatorial treatments.

Discussion
This study represents the largest analysis to date of the impact of

gene mutations on radiation sensitivity. We profiled 396 unique SNVs
across 92 genes using a previously benchmarked high-content irra-
diation platform (10). Our results provide new insights into the
interplay between genetic features and radiation sensitivity and
advance several principles that can guide theranostic and combina-
torial strategies for patients receiving these treatments. We nominated
variants for experimental profiling based on the radiation sensitivity
data from a previously completed large-scale profiling effort (10). The
nominated variants were significantly more likely to alter radiation
sensitivity than those that were randomly selected or from CMGs that
were not highly ranked by our association metrics. These results
reinforce the importance of unbiased cellular profiling efforts in
identifying new genetic determinants that are not merely associated
with but also directly regulate radiation sensitivity.

We introduced gene variants into an immortalized upper airway
lung epithelial cell line (BEAS-2B) with minimal underlying genomic
alterations. In this manner, this cell line served as a tabula rasa for the
introduction of variants culled from cancer genomes. This permitted
the examination of variants without the potentially confounding
influences of cancer genomic complexity. Despite these purported
advantages, it is possible that the phenotypic output of some variants
could be cellular context dependent. For example, variant activity
could depend on the state of the signaling network within a cell and/or
the tissue of origin (44). Our data, however, demonstrates that most
impactful gene variants altered radiation sensitivity across oncogenic
(i.e., immortalized and transformed cells) and tissue-delimited states.
This supports the view that although cancer genomes reflect tissue-
specific variant tendencies, genetic variants that alter radiation sen-
sitivity can confer phenotypic effects across several cancer types.

Our results reveal critical differences between biomarkers for
targeted drug therapeutics, which mainly adhere to a single gene-
drug paradigm, and ionizing radiation. The genetic determinants of
radiation sensitivity demonstrated significant locus heterogeneity,
comprising amultitude of genes with roles in several cellular pathways
that regulate the extent of cellular damage (e.g., enhanced reductive
capacity) and/or the recovery from that damage after it is incurred (e.g.,
cell-cycle arrest and DNA repair). Integrative RNA and metabolite
analyses suggested that although diverse at the origin, a multitude of

variants converge on a few cellular pathways that ultimately alter
radiation sensitivity. Despite this convergence, the interpretation of
gene variants that alter radiation sensitivity as categorical variates, as is
the case for targeted therapeutics, is imprecise and can obscure
potentially actionable data. For example, we observed significant
intra-gene variation in the magnitude of radiation sensitivity for both
GOF and LOF variants. Genes like KEAP1, for example, which has
been previously shown to confer resistance to radiation in clinical
cohorts (55), demonstrated a near continuous effect size with no
discernible hotspots, indicating that a comprehensive mutagenesis
approach is likely to be required to adequately catalogue all functional
variants (56). Moreover, oncogenes with significant mutational hot
spots like KRAS and an established mechanistic role in regulating
radiation resistance (57, 58) also had a range of activity across
individual variants. Coupled with the ability to precisely adjust deliv-
ered doses of radiation, these results indicate that radiotherapeutic
genomic biomarkers will be significantly more useful if they are both
comprehensive and quantify themagnitude of the impact of individual
mutations.

We validated some our findings using clinical cohorts that care-
fully annotated a radiotherapy specific outcome (i.e., local failure)
rather than surrogates of treatment failures like progression-free
survival or overall survival. Consistent with the functional data,
we found that CTNNB1 exon 3 and KRAS mutant tumors were
associated significantly with local control and failure, respectively.
In both cases, gene mutation status was the strongest predictor of
local failure in a model that incorporated radiation dose and tumor
volume. These results indicate that frequent (i.e., KRAS) and rare
(i.e., CTNBB1) genetic features can be identified using our func-
tional genomic tools. It remains unclear whether higher doses of
radiation could potentially overcome KRAS-mediated treatment
resistance because a generic radiation dose was delivered to most
patients in our cohort. An alternative strategy supported by our
PDX data suggests that KRAS G12C inhibitors may prevent local
failures when delivered after radiotherapy. Moreover, our results
suggest that dose de-escalation for CTNNB1 exon 3 mutant tumors
may be warranted. Both results set the stage for combinatorial thera-
peutic or prospective biomarker-stratified radiation dose modulation
clinical studies, respectively.

Although we identified several genetic determinants that regulate
the survival of cells after exposure to radiation, there are surely
substantial additional variants. Many of the genes that we profiled
were represented by relatively few variants and others were not
represented. Although in silico prediction tools (13, 14) could aid in
the characterization of these untested genes and variants, our results
indicate that these tools alone are not sufficient to quantify categorical
or continuous radiation sensitivity effects. Therefore, the bespoke
functional genomic radiation platform presented herein coupled with
iterative cycles of preclinical testing and clinical validation will be
pivotal for refining clinical predictions. Lastly, although KRAS/STK11
and KEAP1/STK11 gene interactions represent a powerful initial
assessment of the impact of co-altered genes on interactive radiation
sensitivity, they are not comprehensive. Interrogating functionally
relevant co-occurring genetic events will represent a critical step
forward in the accurate prediction of clinical radiosensitivity.

In summary, our results reveal new insights into the mutational
landscape of cancer’s vulnerability to ionizing radiation. This
information is poised to guide the transformation of radiotherapy
from the current generic approach to one in which therapeutic
strategies are guided by genetic alterations in individual patient
tumors.

Gopal et al.

Clin Cancer Res; 28(24) December 15, 2022 CLINICAL CANCER RESEARCH5356



Authors’ Disclosures
M.E. Abazeed reports grants from NIH during the conduct of the study;

personal fees from American Society for Clinical Pathology, Mirati Therapeutics
Inc.; and nonfinancial support from Siemens Healthineers outside the scope of
the submitted work; in addition, M.E. Abazeed has a patent for compositions
and methods for sensitizing a neoplastic cell to radiation issued, a patent for
genospecific radiosensitization issued, a patent for decision support system for
individualizing radiotherapy dose issued, and a patent for molecular predictors of
patient response to radiotherapy treatment issued. No disclosures were reported
by the other authors.

Authors’ Contributions
P. Gopal:Conceptualization, resources, data curation, formal analysis, validation,

investigation, visualization, methodology, writing–original draft, writing–review and
editing. B.D. Yard: Conceptualization, resources, data curation, formal analysis,
validation, investigation, methodology, writing–review and editing. A. Petty:
Resources, data curation, investigation, methodology. J.C. Lal: Data curation,
formal analysis, investigation, writing–review and editing. T.K. Bera: Resources,
investigation, writing–review and editing. T.Q. Hoang: Resources, investigation.

A.D. Buhimschi: Resources, validation, investigation, writing–review and editing.
M.E. Abazeed: Conceptualization, resources, data curation, formal analysis,
supervision, funding acquisition, visualization, methodology, writing–original
draft, project administration, writing–review and editing.

Acknowledgments
M.E. Abazeed was supported by NIH R37CA222294 and P30CA060553. We

thank the Northwestern University NUSeq and Metabolomics Cores for con-
tributing to NGS and metabolite data, respectively.

The publication costs of this article were defrayed in part by the payment of
publication fees. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

Note
Supplementary data for this article are available at Clinical Cancer Research Online
(http://clincancerres.aacrjournals.org/).

Received June 15, 2022; revised August 24, 2022; accepted October 10, 2022;
published first October 12, 2022.

References
1. Delaney G, Jacob S, Featherstone C, BartonM. The role of radiotherapy in cancer

treatment: estimating optimal utilization from a review of evidence-based
clinical guidelines. Cancer 2005;104:1129–37.

2. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin
patterns dominate themolecular classification of 10,000 tumors from 33 types of
cancer. Cell 2018;173:291–304.

3. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al.
Use of normal tissue complication probability models in the clinic. Int J Radiat
Oncol Biol Phys 2010;76:S10–19.

4. Bergom C, West CM, Higginson DS, Abazeed ME, Arun B, Bentzen SM,
et al. The implications of genetic testing on radiation therapy decisions:
a guide for radiation oncologists. Int J Radiat Oncol Biol Phys 2019;105:
698–712.

5. Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, et al.
Radiogenomics Consortium Genome-Wide Association Study meta-analysis
of late toxicity after prostate cancer radiotherapy. J Natl Cancer Inst 2020;
112:179–90.

6. Pitter KL, CaseyDL, LuYC,HannumM,ZhangZ, SongX, et al. PathogenicATM
mutations in cancer and a genetic basis for radiotherapeutic efficacy. J Natl
Cancer Inst 2021;113:266–73.

7. Przybyla L, Gilbert LA. A new era in functional genomics screens. Nat Rev Genet
2022;23:89–103.

8. Bardelle C, Boros J. Development of a high-content high-throughput screening
assay for the discovery of ATM signaling inhibitors. J Biomol Screen 2012;17:
912–20.

9. Tseng H-M, ShumD, Bhinder B, Escobar S, Veomett NJ, Tomkinson AE, et al. A
high-throughput scintillation proximity-based assay for human DNA ligase IV.
Assay Drug Dev Technol 2012;10:235–49.

10. Yard BD, Adams DJ, Chie EK, Tamayo P, Battaglia JS, Gopal P, et al. A genetic
basis for the variation in the vulnerability of cancer to DNA damage.
Nat Commun 2016;7:11428.

11. LawrenceMS, Stojanov P, Polak P, KryukovGV, Cibulskis K, SivachenkoA, et al.
Mutational heterogeneity in cancer and the search for new cancer-associated
genes. Nature 2013;499:214–8.

12. Gopal P, Sarihan EI, Chie EK, Kuzmishin G, Doken S, Pennell NA, et al. Clonal
selection confers distinct evolutionary trajectories in BRAF-driven cancers.
Nat Commun 2019;10:5143.

13. Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P,
et al. Accelerating discovery of functionalmutant alleles in cancer. CancerDiscov
2018;8:174–83.

14. Gao J, ChangMT, JohnsenHC, Gao SP, Sylvester BE, Sumer SO, et al. 3D clusters
of somatic mutations in cancer reveal numerous rare mutations as functional
targets. Genome Med 2017;9:4.

15. Berger AH, Brooks AN,Wu X, Shrestha Y, Chouinard C, Piccioni F, et al. High-
throughput phenotyping of lung cancer somaticmutations. Cancer Cell 2016;30:
214–28.

16. Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al.
Mutational processes shape the landscape of TP53 mutations in human cancer.
Nat Genet 2018;50:1381–7.

17. Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L, Nguyen L, et al. Massively
parallel phenotyping of coding variants in cancer with Perturb-seq.
Nat Biotechnol 2022;40:896–905.

18. Boucher JI, Bolon DN, Tawfik DS. Quantifying and understanding the fitness
effects of protein mutations: Laboratory versus nature. Protein Sci 2016;25:
1219–26.

19. Gong LI, Suchard MA, Bloom JD. Stability-mediated epistasis constrains the
evolution of an influenza protein. Elife 2013;2:e00631.

20. Abazeed ME, Adams DJ, Hurov KE, Tamayo P, Creighton CJ, Sonkin D, et al.
Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res
2013;73:6289–98.

21. Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al.
SynergyFinder Plus: Toward better interpretation and annotation of drug
combination screening datasets. Genomics Proteomics Bioinformatics 2022:
S1672-0229(22)00008-0.

22. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity. Nature 2012;483:603–7.

23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

24. Pons C, Almacellas E, Tauler A, Mauvezin C. Detection of Nuclear Bio-
markers for Chromosomal Instability. In: Norberg H, Norberg E, editors.
Autophagy and cancer: methods and protocols. New York: Springer US;
2022. p. 117–25.

25. Vargas R, Gopal P, Kuzmishin GB, DeBernardo R, Koyfman SA, Jha BK, et al.
Case study: patient-derived clear cell adenocarcinoma xenograft model longi-
tudinally predicts treatment response. NPJ Precis Oncol 2018;2:14.

26. Timmerman RD, Hu C, Michalski J, Straube W, Galvin J, Johnstone D, et al.
Long-term results of RTOG 0236: a phase II trial of stereotactic body radiation
therapy (SBRT) in the treatment of patients with medically inoperable stage I
non–small cell lung cancer. Int J Radiat Oncol Biol Phys 2018;4:1287–8.

27. Scrucca L, Santucci A, Aversa F. Regression modeling of competing risk using R:
an in depth guide for clinicians. Bone Marrow Transplant 2010;45:1388–95.

28. TeamR R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing; 2013.

29. Cover TM, Thomas JA. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). New Jersey: Wiley-
Interscience; 2006.

30. UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids
Res 2021;49:D480–9.

31. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.
Integrative analysis of complex cancer genomics and clinical profiles using
the cBioPortal. Sci Signal 2013;6:pl1.

The Radiogenomic Atlas

AACRJournals.org Clin Cancer Res; 28(24) December 15, 2022 5357



32. Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JF, Su RT, et al.
Transformation of human bronchial epithelial cells by infection with SV40 or
adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate
coprecipitation with a plasmid containing SV40 early region genes.
Cancer Res 1988;48:1904–9.

33. Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N,
Chapman JR. 53BP1 Integrates DNA repair and p53-dependent cell fate
decisions via distinct mechanisms. Mol Cell 2016;64:51–64.

34. Goncearenco A, Rager SL, LiM, SangQX, Rogozin IB, PanchenkoAR. Exploring
background mutational processes to decipher cancer genetic heterogeneity.
Nucleic Acids Res 2017;45:W514–22.

35. ChakravartyD, Gao J, Phillips SM,Kundra R, ZhangH,Wang J, et al. OncoKB: A
precision oncology knowledge base. JCO Precis Oncol 2017;2017:PO.17.00011.

36. Brown AL, Li M, Goncearenco A, Panchenko AR. Finding driver mutations in
cancer: elucidating the role of background mutational processes. PLoS Comput
Biol 2019;15:e1006981.

37. Gonzalez F, Zhu Z, Shi Z-D, Lelli K, VermaN, Li QV, et al. An iCRISPR platform
for rapid, multiplexable, and inducible genome editing in human pluripotent
stem cells. Cell Stem Cell 2014;15:215–26.

38. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR
interference (CRISPRi) for sequence-specific control of gene expression.
Nat Protoc 2013;8:2180–96.

39. Garcia-Tunon I, Alonso-Perez V, Vuelta E, P�erez-Ramos S, Herrero M,
M�endez L, et al. Splice donor site sgRNAs enhance CRISPR/Cas9-mediated
knockout efficiency. PLoS One 2019;14:e0216674.

40. Hast BE, Cloer EW, Goldfarb D, Li H, Siesser PF, Yan F, et al. Cancer-derived
mutations in KEAP1 impair NRF2 degradation but not ubiquitination.
Cancer Res 2014;74:808–17.

41. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of
Keap1 function activates Nrf2 and provides advantages for lung cancer cell
growth. Cancer Res 2008;68:1303–9.

42. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus.
Nat Rev Mol Cell Biol 2014;15:7–18.

43. Schaefer MH, Serrano L. Cell type–specific properties and environment shape
tissue specificity of cancer genes. Sci Rep 2016;6:20707.

44. Poulin EJ, Bera AK, Lu J, Lin Y-J, Strasser SD, Paulo JA, et al. Tissue-specific
oncogenic activity of KRAS(A146T). Cancer Discov 2019;9:738–55.

45. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al.
LKB1 modulates lung cancer differentiation and metastasis. Nature 2007;
448:807–10.

46. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung
adenocarcinoma. Nature 2014;511:543–50.

47. Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med 2020;
52:15–30.

48. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, et al.
Glutamine synthetase activity fuels nucleotide biosynthesis and supports
growth of glutamine-restricted glioblastoma. Nat Cell Biol 2015;17:
1556–68.

49. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharma-
cological inhibition of cystine-glutamate exchange induces endoplasmic retic-
ulum stress and ferroptosis. Elife 2014;3:e02523.

50. Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W. Exon 3 mutations of
CTNNB1 drive tumorigenesis: a review. Oncotarget 2018;9:5492–508.

51. KimE, Ilic N, Shrestha Y, Zou L, Kamburov A, ZhuC, et al. Systematic functional
interrogation of rare cancer variants identifies oncogenic alleles. Cancer Discov
2016;6:714–26.

52. Dunlap NE, Larner JM, Read PW, Kozower BD, Lau CL, Sheng K., et al. Size
matters: a comparison of T1 and T2 peripheral non–small cell lung cancers
treated with stereotactic body radiation therapy (SBRT). J Thorac Cardiovasc
Surg 2010;140:583–9.

53. Kestin L, Grills I, GuckenbergerM, Belderbos J, HopeAJ,Werner-WasikM, et al.
Dose-response relationship with clinical outcome for lung stereotactic body
radiotherapy (SBRT) delivered via online image guidance. Radiother Oncol
2014;110:499–504.

54. Xue JY, Zhao Y, Aronowitz J,Mai TT, Vides A, Qeriqi B, et al. Rapid nonuniform
adaptation to conformation-specific KRAS(G12C) inhibition. Nature 2020;577:
421–5.

55. Binkley MS, Jeon Y-J, Nesselbush M, Moding EJ, Nabet BY, Almanza D,
et al. KEAP1/NFE2L2 mutations predict lung cancer radiation resistance
that can be targeted by glutaminase inhibition. Cancer Discov 2020;10:
1826–41.

56. Zheng L, Baumann U, Reymond JL. An efficient one-step site-directed and site-
saturation mutagenesis protocol. Nucleic Acids Res 2004;32:e115.

57. Yang L, Shen C, Estrada-Bernal A, Robb R, Chatterjee M, Sebastian N, et al.
Oncogenic KRAS drives radioresistance through upregulation of NRF2–
53BP1-mediated nonhomologous end-joining repair. Nucleic Acids Res
2021;49:11067–82.

58. Wang M, Han J, Marcar L, Black J, Liu Q, Li X, et al. Radiation resistance in
KRAS-mutated lung cancer is enabled by stem-like properties mediated by an
Osteopontin–EGFR pathway. Cancer Res 2017;77:2018–28.

Clin Cancer Res; 28(24) December 15, 2022 CLINICAL CANCER RESEARCH5358

Gopal et al.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /None
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /None
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [792.000 1224.000]
>> setpagedevice


