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Abstract

Recording extracellulary from neurons in the brains of animals in vivo is among the most

established experimental techniques in neuroscience, and has recently become feasible in

humans. Many interesting scientific questions can be addressed only when extracellular

recordings last several hours, and when individual neurons are tracked throughout the entire

recording. Such questions regard, for example, neuronal mechanisms of learning and mem-

ory consolidation, and the generation of epileptic seizures. Several difficulties have so far

limited the use of extracellular multi-hour recordings in neuroscience: Datasets become

huge, and data are necessarily noisy in clinical recording environments. No methods for

spike sorting of such recordings have been available. Spike sorting refers to the process of

identifying the contributions of several neurons to the signal recorded in one electrode. To

overcome these difficulties, we developed Combinato: a complete data-analysis framework

for spike sorting in noisy recordings lasting twelve hours or more. Our framework includes

software for artifact rejection, automatic spike sorting, manual optimization, and efficient

visualization of results. Our completely automatic framework excels at two tasks: It outper-

forms existing methods when tested on simulated and real data, and it enables researchers

to analyze multi-hour recordings. We evaluated our methods on both short and multi-hour

simulated datasets. To evaluate the performance of our methods in an actual neuroscientific

experiment, we used data from from neurosurgical patients, recorded in order to identify

visually responsive neurons in the medial temporal lobe. These neurons responded to the

semantic content, rather than to visual features, of a given stimulus. To test our methods

with multi-hour recordings, we made use of neurons in the human medial temporal lobe that

respond selectively to the same stimulus in the evening and next morning.

Introduction

Tracking single- and multi-unit activity over hours, possibly during sleep, allows to address

important questions regarding neural mechanisms of learning and memory consolidation. For
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example, a popular theory posits that declarative memory consolidation during sleep depends

on the re-activation of neuronal ensembles that were active during earlier behavior [1, 2].

Over the last years, it has become possible to record from hundreds of channels simulta-

neously [3–5], and modern recording systems allow to record continuously for hours and

days, producing datasets that are typically hundreds of gigabytes in size.

Many spike sorting algorithms have been evaluated in the past [5–11]. The datasets used in

these studies were usually simulations or recordings characterized by stationary (constant)

noise levels, absence of non-neural artifacts, and short duration.

Even though spike sorting algorithms perform well on small datasets, tracking the activity

of individual neurons over many hours has remained a major challenge: spike sorting algo-

rithms have to be computationally efficient to deal with spike counts in the order of hundreds

of thousands per channel, must account for both slow and sudden changes in spike waveform,

and have to cope with periods of excessive signal contamination, as inevitable in multi-hour

recordings in clinical settings. Furthermore, current spike sorting methods often require man-

ual optimization, a time-consuming task in the case of multi-hour recordings.

Here, we present and evaluate Combinato: A software framework for unsupervised spike

sorting of noisy long-term recordings. The core of our framework is a novel spike sorting

algorithm based on block-wise iterative superparamagnetic clustering (SPC; [12]). This core

algorithm is accompanied by methods for artifact rejection and tools for the visualization of

results.

The importance of ground-truth data for the validation of spike sorting methods is becom-

ing increasingly recognized [13]. We thus validated Combinato on a recently published dataset

of simulated neural activity [14], showing that our method outperforms state-of-the-art spike

sorting methods. This holds true even when the result of our automated spike sorting is com-

pared to the published result of manually optimized spike sorting results on the same data [8].

When tested on simulated recordings lasting ten hours, our algorithms were capable of recov-

ering on average 74.6% of the simulated neurons, despite drift and high noise levels in the

simulations.

We also evaluated the performance of our method in a visual stimulus presentation experi-

ment. The purpose of the experiment was to identify neurons that respond selectively and

invariantly to visually presented stimuli [15]. Without any manual intervention, Combinato

identified more neuronal responses than common spike sorting methods that require manual

optimization.

Lastly, evaluation on eight whole-night recordings from the temporal lobes of epilepsy

patients showed that our method tracks visually selective single- and multi-units over more

than 12 hours.

An implementation of Combinato in Python is publicly available along with installation

instructions and a user tutorial, available on GitHub (https://github.com/jniediek/combinato).

This implementation is licensed under the MIT License.

Design and Implementation

Before describing our spike sorting framework in detail, we will provide a brief outline of its

structure; see Fig 1 for an illustration of individual steps. The first two steps are channel selec-

tion (Fig 1A) and spike extraction. These steps are conceptually independent from any specific

spike sorting algorithm. The next step is pre-sorting artifact removal (Fig 1B), after which

clean spikes are passed to block-wise iterative sorting (Fig 1C). Remaining spikes are then

assigned by template matching (Fig 1D), and non-neural clusters are detected and removed

(Fig 1E). The last step is to re-combine all clusters from the different blocks (Fig 1F).
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Fig 1. Schematic of data processing. Data displayed in green boxes are passed on to the subsequent stage. A Channels with no unit activity (i.e.,

broken or empty channels) are discarded. Displayed are bandpass-filtered recordings of two channels in the human MTL (passband 300 Hz to 1000 Hz). B

After spike extraction, pre-sorting artifact rejection is performed. Displayed are density plots of all spikes extracted from a 12-hour recording (same

channel as left panel in A). Artifact rejection removes� 27 000 spikes, and� 350 000 remain. C Clean spikes from B are split into blocks of 20 000. In this

example, the 350 000 spikes are split into 18 blocks. All blocks are spike-sorted in parallel. For each block, clusters from several “temperatures” are

selected. Displayed is an example for one block. Black dots in the temperature plot correspond to clusters that were selected, red dots to clusters that were

not selected because their spikes had already been selected at lower temperatures, and the purple dot marks the highest temperature used. Large

clusters are again subjected to iterative spike sorting. D Template matching is used to assign the remaining spikes to clusters. E Artifact clusters are

removed. F Physiological clusters are grouped, both within each block and across blocks.

doi:10.1371/journal.pone.0166598.g001
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Channel selection and spike extraction

In a typical multi-channel setup, not all electrodes record meaningful signals. Reasons for cor-

rupted signals include: bad/broken wiring in the electrodes, inadequate electrode impedance,

excessive pick-up of 50/60 Hz power line noise and its higher harmonics. Furthermore, in

recordings from the human brain, a micro-electrode bundle sometimes has its tip in white

matter or cerebrospinal fluid, where recording of action potentials is impossible.

To exclude unsuitable channels from subsequent analysis, our analysis framework contains

a viewer program. The program displays segments of each channel’s signal at different tempo-

ral resolutions (for a screenshot, see Fig 2A).

Viewing the data at different time scales allows to assess presence of action potentials, con-

tamination by electrical noise, and contamination by low-frequency artifacts. Examples of one

selected and one discarded channel are shown in Fig 1A.

Spikes are detected and extracted from all selected channels by a standard method similar

to WaveClus [6], for details see Section A in S1 Text.

Pre-sorting artifact rejection

Long-term recordings, especially from human subjects in a clinical setting, inevitably contain

periods of excessive noise, e.g. due to subject movement or electrically interfering medical

equipment. During such periods, recordings are typically contaminated by events of non-neu-

ral origin. We detect such artifacts both before and after spike sorting. Before spike sorting, we

use the following procedure, the parameters of which can be modified according to specific

demands:

(1) Removal of time periods exceeding reasonable neuronal firing rates. For each recording

channel, event counts are calculated in time-bins of 500 ms, with an overlap of 250 ms. Time-

bins containing more than 100 events (corresponding to a firing rate of 200 Hz) are excluded

from further processing.

(2) Events exceeding a certain amplitude. All events exceeding a threshold of 1 mV are

excluded.

(3) Removal of overlapping detections. Because our spike detection algorithm does not

impose any artificial refractory period, two extracted spikes can overlap. This happens when

the interval between two subsequent threshold crossings is shorter than the extraction window

(typically around 2 ms); for example, when there is sinusoidal electrical noise in the range of 2

kHz or when two different neurons fire action potentials with a very short lag. Depending on

the respective scientific question, keeping both waveforms might be desirable (e.g. when ana-

lyzing synaptic coupling). When two detections occur within 1.5 ms, our default is to keep the

waveform with the larger maximum, and discard the other one.

(4) Events occurring concurrently on many channels. Movement artifacts and periods of

excessive electrical noise typically occur simultaneously on many channels, whereas an action

potential is typically recorded on one channel only. We thus partition the spike times extracted

from all channels into time-bins of 3 ms, with an overlap of 1.5 ms, and count, for each bin,

the recording channels with at least one event. A time-bin is excluded if it contains an event on

50% or more of the channels.

Note that criteria (1) to (3) are applied independently on individual channels, whereas (4)
takes into account all recording channels at the same time.

Segmentation and spike sorting in blocks

After the exclusion of artifact events, the remaining spikes are segmented into independent

blocks, such that each block consists of Nblock consecutive spikes (by default, Nblock = 20 000;
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Fig 2. Graphical user interface. A Screenshot of the graphical user interface (GUI) used for channel selection. Raw and filtered data traces of all

channels in a recording session are displayed along with spike sorting results from every channel for which sorting has already been performed. B

Screenshot of the GUI used for visualization and manual optimization of spike sorting results. The interface shows several informative statistics for one

unit. The individual elements are explained in panels C through I. C Density plot of all spike waveforms within a cluster group. D Same as C, but using a

logarithmic scale. E Overlay plot of all mean spike waveforms in a group of merged clusters. F Histogram of inter-spike intervals. G Cumulative spike

counts over time (700 minutes in this example). Note that the unit in this example appears to become more active after the first 200 minutes of recording.

Detailed inspection of the other cluster groups is necessary to decide whether this is really the case or merely an effect of over-clustering and false re-

grouping. H Distribution of spike maxima. The three vertical pink lines indicate the minimum, median, and maximum of the detection thresholds over time.

Note that in this example, spike maxima are clearly separated from the detection threshold. I Spike amplitude maxima over time. The pink line is the

extraction threshold. Note that the extraction threshold is relatively stable, while the maxima show considerable drift.

doi:10.1371/journal.pone.0166598.g002
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see Table 1 for complete parameter values). These blocks are then spike-sorted independently

using parallel processing to make efficient use of modern multi-core computers. The algorithm

that processes each block is based on superparamagnetic clustering (SPC; [12]) of wavelet coef-

ficients, as introduced to spike sorting in WaveClus [6]. However, our procedure differs from

WaveClus in the following ways: clusters at several different “temperatures” of the SPC algo-

rithm are selected automatically; clusters are re-clustered in an iterative procedure; similar

clusters are merged automatically; template matching is performed at two different stages;

unassigned spikes are iteratively re-clustered. What follows is a detailed description of our per-

block algorithm.

Feature selection. Similar to WaveClus, a four-level wavelet decomposition is computed for

each spike using Haar wavelets. This yields an (n × k)-array of wavelet coefficients, where n is

the number of spikes and k the number of sampling points. To reduce feature dimensionality,

we select, out of these k dimensions, the 10 dimensions in which the distribution of wavelet

coefficients differs most from normality, as quantified by the Kolmogorov–Smirnov test statis-

tic [6].

Clustering. The 10 selected wavelet coefficients are passed on to superparamagnetic cluster-

ing (SPC). SPC depends on a parameter T (called “temperature” due to its motivation from

statistical physics). For each value of T, SPC partitions the input data in a particular way. Our

default is to use nT = 21 different values for T, equally spaced in [0, 0.2]. We use these indepen-

dent nT data partionings in a combined way to select data clusters.

The idea is to iterate through all temperatures from low to high: at each temperature Tj the

clusters present at Tj are sorted by size (i.e., number of spikes). Then, the i-th largest cluster at

Tj is selected for later processing if it is larger than the i-th largest cluster at surrounding tem-

peratures Tj−1 and Tj+1. During this iteration over the temperatures, a unique cluster identifica-

tion number is assigned to each selected cluster, and all spikes belonging to a selected cluster

are marked as its members. Importantly, all spikes already marked at lower temperatures

T< Tj are not reassigned, but remain members of the clusters selected earlier.

In other words, local maxima of “cluster size” as a function of “temperature” are selected

for later processing, and spikes are irreversibly assigned to clusters by moving from low to

high temperatures.

The following constraints apply: (1) A maximum number of Cmax clusters are selected at

any given temperature. (2)A cluster needs to contain at least Smin spikes in order to be selected,

where Smin is defined either as an absolute number or as a fraction of the total number of

spikes. (3) The cluster assignment procedure begins at the second temperature only, where

local maxima are defined. Typical values for Smin and Cmax are discussed in the Results section.

Table 1. Relevant parameters for the proposed spike sorting framework along with their default

values.

Name Description Default value

Nblock Number of spikes per sorting block 20 000

Cmax Maximum number of clusters at one temperature 5

Smin Minimum number of spikes in a cluster 15

Rmin Minimum cluster size for iterative clustering 2000

Nrep Number of clustering iterations 1

f1 Radius for within-block template matching 0.75

f2 Radius for across-blocks template matching 3

Cstop Threshold at which merging of clusters stops 1.8

doi:10.1371/journal.pone.0166598.t001
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In this way, at each temperature up to Cmax clusters are read out from SPC, such that each

cluster contains at least Smin spikes. The cluster selection at different temperatures is illustrated

by Fig 1C (right panel). Note that typically a large fraction of spikes is not assigned to any clus-

ter at all, which makes a subsequent template matching step necessary.

Splitting of large clusters. Making use of all available temperatures considerably reduces the

chances that a generated cluster contains spikes of two or more neurons (so-called under-clus-
tering). To further reduce the risk of under-clustering by splitting clusters into sub-clusters,

SPC clustering is run once again on every cluster that contains at least Rmin spikes (by default,

Rmin = 2000).

First template matching. After clusters have been generated as outlined above, template match-

ing is used to assign the yet unassigned spikes to existing clusters. For each cluster, its mean spike

waveform is calculated, along with a measure of its total variance, s :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
varðxiÞ

q

, where

var(xi) denotes the variance of the cluster at the i-th sampling point. Then, the Euclidean distance

between each spike and every cluster is calculated. Each spike is assigned to the cluster closest to

it, provided the distance is smaller than f1 � s. Here f1 is a factor that controls the radius around a

mean waveform where template matching is possible, in units of the variability of that cluster. By

default, we use the conservative value f1 = 0.75 for this step because another template matching

step is applied later, when pooling clusters from all blocks.

Re-iteration. After this first template matching step, the clustering procedure can be re-iter-

ated on all spikes that are still not assigned to any cluster. This iteration of clustering and tem-

plate-matching can be repeated Nrep times, but on our data, such iterations were unnecessary

(hence by default Nrep = 1, see Results).

Template matching across blocks

After all blocks of spikes from one channel have been independently spike-sorted, template

matching is applied across blocks to assign the remaining unclustered spikes, using the same

algorithm as for the within-block template matching. Here, we use f2 = 3. Spikes that are still

not assigned to any cluster remain in a special “residual” cluster.

Post-sorting artifact rejection

Although our pre-sorting artifact detection algorithm removes large fractions of non-neural

events before spike sorting, it is still desirable to decide for each cluster whether it corresponds

to neuronal activity or to residual noise in the recording. Often, artifact events appear in a ste-

reotypical manner, e.g. in the case of sinusoidal electrical noise (see right panel of Fig 1E for an

example of such an artifact cluster).

Our algorithm designates a cluster as non-neural if it meets any of the three following crite-

ria based on its mean waveform. (1) The mean waveform has more than 5 local maxima. (2)
The ratio of the largest local maximum to the second largest local maximum is less than 2,

where only maxima separated by at least 0.3 ms are considered. (3) The amplitude range cov-

ered in the second half of the mean waveform is greater than the global maximum.

Furthermore, the standard error of the mean at each sampling point is calculated across all

spikes in the cluster. A cluster is designated as an artifact if the mean of these standard errors

across all sampling points is greater than 2 μV.

Merging of clusters from all blocks

At this stage of processing, each block of spikes has been spike-sorted independently, remain-

ing spikes have been assigned by template matching, and artifact clusters have been identified.
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The next step is to create groups of clusters belonging to the same unit. The input to this merg-

ing procedure is the pool of all non-artifact clusters from all blocks. The merging procedure

has two aims: First, after spike sorting, two or more clusters in one block often correspond to

the same unit (resulting from so-called over-clustering). Merging highly similar clusters within

one block reduces the amount of over-clustering. Second, the same unit typically appears

across many blocks (in sufficiently stable recordings, the same units should appear in all
blocks). Merging highly similar clusters across blocks ensures that units can be tracked over

the entire duration of the recording. Guided by empirical testing, we decided to perform both

merging procedures—within and across blocks—in parallel. We use a simple hierarchical clus-

tering method for cluster merging, based on the Euclidean distance between mean spike wave-

forms of the cluster groups. After merging the two clusters whose distance is minimal, the

mean waveform is updated, and distances are re-calculated. Merging stops once the minimal

distance is greater than a predefined threshold Cstop (by default, Cstop = 1.8). Importantly, our

algorithm saves the original cluster identity of each spike, so that cluster grouping can later be

undone if desired. It is also possible to use this cluster identity as a feature for subsequent anal-

yses. Examples of cluster merging both within and across blocks are shown in Fig 1F.

Optional manual verification

Our spike sorting framework comes with a graphical user interface (GUI), which is used to

visualize sorting quality, to modify the grouping of clusters, and to mark additional artifact

clusters, if necessary. Fig 2B shows a screenshot of the GUI. Different cluster visualization fea-

tures are explained in Fig 2C through 2I. Some of these features are inspired by a recent publi-

cation [16]. The sparsely firing unit used as an example in Fig 2C through 2I was tracked over

the time course of 700 minutes. The total number of spikes in this recording was approxi-

mately 330000. More detailed instructions on how to use the GUI are contained in S3 Text.

Results

Our method proved useful both for spike sorting of short recordings (up to one hour), and for

long-term tracking of unit activity over many hours. To demonstrate the broad applicability of

our framework, we evaluated it using four different datasets: (1) simulated model data (simu-

lated recording duration 10 minutes), (2) simulated model data with drift (simulated recording

duration 10 hours), (3) short recordings from a visual stimulus presentation experiment, (4)
whole-night recordings from epilepsy patients.

Validation on simulated model data

It is becoming increasingly recognized that in order to estimate the reliability of spike sorting

methods, using data with ground-truth is necessary [13]. To evaluate our method in a setting

where ground truth is available, we used a recent dataset of simulated neural activity. Details

regarding this dataset have been published [8] and the data are available online (http://bioweb.

me/CPGJNM2012-dataset) [14]. The dataset consists of 95 simulations, each one representing

10 minutes of continuous recording, sampled at 24 kHz. Each simulation contains the activity

of 2 to 20 neurons, superimposed on background noise and multi-unit activity. There are 5

simulations for each number of neurons, resulting in a total of 95 simulations. We chose this

dataset because the performance of expert operators of WaveClus on it has been evaluated [8].

Using this dataset, we analyzed our algorithm’s reliability by comparing its performance to

ground truth, as well as to expert operators’ results.
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In a first step, spike detection was performed on the simulated dataset. Averaged over the

95 simulations, only 79.2% (SD 8.3%) of all spikes were found, which is indicative of the noise

in the simulations (same numbers with WaveClus).

We then used our spike sorting method to spike-sort the extracted spikes. No post-sorting

artifact detection was performed because the simulations did not contain any artifacts. We

spike-sorted the first of the 95 files several times with various settings to empirically determine

suitable parameters based on visual inspection of the spike sorting results, and then used these

parameters to evaluate our method on the remaining 94 simulations. We used only one simu-

lated channel for parameter optimization in order to avoid overfitting of parameters. For a

more complete evaluation of the various parameters, see the following subsection.

We used the following parameter values: Cmax = 7; Cstop = 1.6; Nrep = 2; Rmin = 1000; all

other parameters were kept at their default values (see Table 1 for description of parameters).

The deviations from default in Cmax, Cstop, and Nrep reflect the relatively large number of true

clusters in the simulated data, and the change in Rmin accounts for the short overall duration

of 10 minutes. We used our algorithm in its completely automatic mode without any manual

interaction to strictly avoid a bias of any sort. Fig 3A shows samples of temperature plots with

selected clusters marked.

To quantify the success of spike sorting, we used the same score as in [8]: A given unit U is

considered a hit if it fulfills the following two criteria: (1) at least 50% of the spikes in U belong

to one neuron; (2) at least 50% of the spikes of that neuron are in U. See Fig 3C for an example

where our algorithm automatically generated 13 clusters, 11 which of were hits.

We calculated the number of hits for each of the 95 simulations in the test set. We then

grouped the datasets by the number of neurons present, and calculated the fraction of hits for

each group (cf. Table 1 in [8]).

Our algorithm significantly outperformed manual expert operators. In its completely auto-

matic mode, it generated 71.5% (SD 13.8%) hits (percentage of simulated neurons), while the

authors of [8] achieve 66.7% (SD 18.1%) on the same data with experts manually operating

WaveClus (T = 31.5, P = 0.033, Wilcoxon signed-rank test).

Restricting analysis to the more difficult group of simulations with at least 8 neurons, our

algorithm generated 64.5% (SD 8.2%) hits, while [8] achieved 58.9% (SD 14.1%) hits (T = 12.0,

P = 0.034, Wilcoxon signed-rank test).

We visualized the proportion of hits for each number of neurons present in the simulations

in Fig 3B (cf. Fig 4 in [8]).

We also verified that the number of hits can be further increased by manually optimizing

sorting using our graphical interface. Fig 3D shows an example where manually undoing an

automatic merge of two clusters produced an additional hit.

Evaluation at different parameter settings. Having evaluated the performance of our

algorithm with one parameter setting, we systematically investigated the influence of the

parameters on the sorting result. We analyzed the same simulated dataset using a total of

48 different parameter settings. Specifically, we tested all combinations of the following:

Cmax 2 {5, 7}, Rmin 2 {500, 1000, 2000}, Nrep 2 {1, 2}, Cstop 2 {1.2, 1.4, 1.6, 1.8}. For each of

these settings, we quantified the success of spike sorting by counting the number of hits in

each simulation. The results are displayed in Fig 4. We used a Wilcoxon signed-rank test in

order to compare the number of hits at each parameter setting to the number of hits obtained

by manual expert operators in [8]. Our method outperformed manual operators for 24 of the

48 different settings used, and in 13 settings, this difference was statistically significant.

At the ranges tested here, Rmin, Cstop, and Nrep monotonically influenced the number of hits

generated: Increasing Cstop above 1.2 always led to a decrease in the number of hits with all
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Fig 3. Performance of our algorithm on simulated data. A Cluster sizes at different temperatures for one of 95 simulations (simulation_5). Each

marked location corresponds to an automatically selected cluster; up to Cmax = 7 clusters are selected at each temperature. Left panel, input to this

clustering step were all spikes in one simulated channel. Right panel, input to this clustering step were all spikes not assigned to any cluster during the first

clustering step. B Performance of our algorithm on all simulated datasets. Each simulated dataset contained action potentials from 2 to 20 neurons. For

each simulation, we calculated the number of hits: a unit U generated by our spike sorting method was considered a hit if at least 50% of the spikes in U

belonged to one neuron and at least 50% of the spikes of that neuron were in U. Displayed is the number of hits as a function of the number of neurons in

the simulations (error bars denote s.e.m.). Note that our algorithm is capable of detecting more than eight neurons, a typical maximum for manual

operation of WaveClus [8]. C All automatically generated clusters from simulation_5. Shown are spike counts and the percentage of spikes in the detected

unit that actually belonged to the corresponding neuron in the simulation. Eleven clusters were hits, two clusters were no hits. Note that cluster C11 was

perfectly detected despite its low firing rate of 0.12 Hz. D Undoing an automatic merge in cluster C1 with our graphical interface generated another hit.

doi:10.1371/journal.pone.0166598.g003
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Fig 4. Performance of our algorithm on simulated data at different parameter settings. Results for a

total of 48 different parameter settings are displayed. Each column of panels corresponds to one value of Rmin

(indicated above each column), and each row of panels corresponds to one pair of values for Nrep and Cmax

(indicated left of each row). Colors correspond to four different values of Cstop, as indicated by the legend in

the lower left. Each line plot shows the number of hits as a function of the number of neurons in the simulation

(error bars denote s.e.m.), compare Fig 3B. Each bar plot represents the number of hits as a fraction of the

number of neurons in the simulation (error bars denote standard deviation). The presence of asterisks or ‘ns’

above each bar indicate that the fraction of hits obtained at this particular choice of parameters is higher than

the one obtained by manual expert operators in [8] (‘ns’ if P� .05; * if P < .05; ** if P < .01; *** if P < .001). A

Wilcoxon signed-rank test was used for all comparisons. Bars without ‘ns’ or asterisks indicate parameters at

which the fraction of hits was lower than the one obtained by manual expert operators.

doi:10.1371/journal.pone.0166598.g004
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other parameters fixed (12 cases). The same was true when we increased Rmin above 500 (16

cases), and when we changed Nrep from 2 to 1 (24 cases).

The highest fraction of hits was obtained for the setting Cmax = 7, Rmin = 500, Nrep = 2, and

Cstop = 1.2. At this setting, 83.6% (SD 8.0%) hits (percentage of simulated units) were generated

by our methods (manual operators in [8]: 66.7%, T = 3.0, P = 0.0003, Wilcoxon signed-rank

test). The percentage of hits at the best of the 48 parameter settings tested was higher than at

the parameter setting we had found by manually optimizing one simulated channel only

(83.6% versus 71.5%). At the best of the 48 parameter settings, when including only the more

difficult group with at least 8 neurons, our algorithm generated 80.0% (SD 5.8%) hits (manual

operators in [8]: 58.9%, T = 0, P = 0.001, Wilcoxon signed-rank test).

Evaluation on multi-hour simulations. To test our algorithm’s capabilities at tracking

neurons over many hours, we concatenated the simulated data from [8] after extracting spikes.

For each number of simulated neurons, ranging from 2 to 20, we chose the first simulation

containing this specific number of neurons and concatenated it 60 times, resulting in a total of

19 simulations of 10 hours duration each. In order to make the spike sorting task more diffi-

cult, we applied two modifications to each concatenated dataset: (1) We simulated electrode

drift by multiplying the extracted spikes with a factor that linearly increased from 1 to 1.5 over

the course of the 10 hours. (2) After this scaling, we added Gaussian noise to each datapoint of

the extracted spikes. The noise had a mean of zero and a standard deviation of 20% of the max-

imum value attained in each simulation.

We then used our algorithm on the concatenated, modified simulations. We tested four dif-

ferent parameter settings: Informed by the systematic parameter evaluation discussed above,

we used Cmax = 7, Rmin = 500, and Nrep = 2. The parameter Cstop was set to 1.2, 1.4, 1.6, and 1.8,

respectively. An example of a simulated unit that was successfully tracked over 10 hours is

shown in Fig 5.

Fig 6 shows the number of hits obtained at each setting and number of neurons. The highest

number of hits, obtained at Cstop = 1.4, was 74.6% (SD 17.1%).

Validation on a picture presentation experiment

After validating our method’s performance on simulated data, we then turned to data recorded

from human subjects during a cognitive paradigm. Six epilepsy patients were implanted bilat-

erally with micro-electrodes in the medial temporal lobes (MTLs), for details see Section B in

S1 Text. We used a picture presentation paradigm to screen for neurons in the MTL that

responded selectively and possibly invariantly to a small number of visual stimuli. In these

“screening sessions”, the six patients were presented with 130 to 150 pictures (mean 138.3) of

well-known persons, landscapes, animals, and other objects. Pictures were presented in a pseu-

dorandomized order on a laptop screen. Each picture was presented six times, for a duration

of one second. Details of this paradigm have been described previously [15, 17, 18].

We used our viewer program (see Fig 2A) to exclude recording channels that clearly carried

no unit activity. Starting from an initial total number of 536 channels, this left us with 409

recording channels (range 36 to 87 per session, median 70) from the amygdala, hippocampus,

entorhinal cortex, and parahippocampal cortex.

We used our software in its completely automatic mode to extract spikes, remove artifact

spikes, sort spikes, and mark artifact clusters. The pre-sorting artifact rejection removed differ-

ent fractions of spikes on different channels: 6.3% of all spikes were removed, but on some

channels, up to 76.6% of the spikes were removed. See Table 2 for details and Fig 7 for an

example of a channel on which clean clusters and clear neuronal responses were detected only

after our pre-sorting artifact algorithm removed large amounts of noise. Fig 7D also shows
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examples of a correct post-sorting artifact rejection, as well as an artifact cluster that the post-

sorting artifact criterion missed (Cluster 4 in Fig 7D). Table 2 and Fig 7 also give an impression

of both the amount and characteristics of noise in the data used here.

To test the performance of our automated algorithm against an established standard, we

again chose WaveClus. We asked trained operators to analyze the same dataset: operators

sorted the data with WaveClus and optimized sorting results manually using its graphical

interface. These operators were uninformed about the analyses described here. Manual opera-

tion of WaveClus typically resulted in fewer units per channel than application of our auto-

mated method, see Fig 8D. We controlled for this difference in further evaluations (see below,

and Discussion section).

We tested to which extent the single- and multi-unit responses found by manual spike sort-

ing with WaveClus could be recovered by our automated method.

In the following, we use the term WaveClus sorting to refer to the clusters generated by

manual operation of WaveClus, and Combinato sorting to refer to the clusters generated by

our automated method.

Fig 5. Example of a simulated neuron successfully tracked over 10 hours. This specific simulation was created by concatenating simulation_10
60 times, resulting in a total of 820800 spikes. Drift was simulated by multiplying the extracted spikes by a linearly increasing factor. Gaussian noise was

added to the extracted spikes before sorting. The tracked unit has 38 411 spikes. Of these, 38 012 spikes belong to one unit in the simulation (which

consists of 40 200 spikes), and 399 spikes belong to different units. The unit was successfully tracked despite the drift. Each subpanel is labelled

according to its content. In the panel Amplitude over time, the tracked unit is displayed in blue, and the same unit without drift and without added noise is

displayed in orange for comparison. Drift and added noise are clearly visible in the tracked unit.

doi:10.1371/journal.pone.0166598.g005
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To identify response-eliciting pictures and the corresponding single- or multi-units, we

used a simple response score algorithm [17–19]. Briefly, action potentials from all six repeti-

tions of a picture presentation (6 × 1000 ms) were binned into 19 overlapping time-bins with a

duration of 100 ms each and an overlap of 50 ms. The Mann–Whitney U test was applied to

Fig 6. Performance of our algorithm on multi-hour simulated datasets. A Results for a total of 4 different

parameter settings are displayed. The number of hits is shown as a function of the number of neurons in the

simulations. See B for color legend. B Each bar represents the mean number of hits as a fraction of the

number of neurons present in the simulation. Error bars denote standard deviation. The colors of the bars

correspond to the lines in A.

doi:10.1371/journal.pone.0166598.g006

Table 2. Effect of pre-sorting artifact removal.

Artifact type % chan. affected % spikes removed

mean over all chan. max. over affected chan. of all spikes

Firing rate 6.4 13.1 67.2 2.3

Amplitude 30.1 0.5 3.7 0.1

Double detection 96.3 8.7 48.6 3.7

Concurrent 64.3 3.5 41.2 0.3

Any of the above 96.6 12.0 76.6 6.3

These values show the variability of artifacts across channels. For example, only 6.4% of all channels were affected by the artifact criterion related to high

firing rates, but on these affected channels, an average of 13.1% and a maximum of 67.2% of the spikes were removed. See main text for a detailed

description of different types of artifacts.

doi:10.1371/journal.pone.0166598.t002
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Fig 7. Our algorithm applied to recordings from the human medial temporal lobe (MTL). A 15 seconds of bandpass filtered data (passband 300 Hz

to 1000 Hz) from a micro-electrode in the right anterior hippocampus. Extraction threshold is marked in red. Several artifact events are clearly visible. B

This recording channel is extremely noisy: Our pre-sorting artifact detection removed� 77% of all spikes from the recorded data. The pink lines depict the

cumulative count of events over the course of the recording (28 minutes). C Cluster sizes at different temperatures. Left panel, input to the first clustering

step were all non-artifact spikes. Right panel, input to the second clustering step were residual spikes not assigned to any cluster in the first clustering step.

Color code of marked dots as in Fig 3. D Output of our sorting algorithm. Post-sorting artifact detection correctly identified several artifact clusters, but

missed one (number 4). Six non-artifact clusters remain. E Result that expert operators generated manually with WaveClus. Two clusters were identified,

� 17000 spikes were left unassigned. F Results of the picture presentation experiment. Displayed are raster plots corresponding to Clusters 1 and 2 from

D, and to Cluster 1 from E. Responses to four different pictures are shown. It is clearly visible that Cluster D 2 responds sharply to pictures of four male
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each time-bin separately against a baseline distribution consisting of all 500 ms intervals pre-

ceding all picture onsets. These 19 p-values were subjected to the Benjamini–Hochberg proce-

dure [20], yielding one single score. The combination of a neuronal cluster and a stimulus

picture was then called a response if the p-value obtained by this procedure was below 0.001,

and if action potentials were fired during at least four presentations of the picture.

We calculated response scores for all stimuli and all clusters from both sortings. For every

channel, we included its unsorted multi-unit activity as an additional cluster. The response

score algorithm yielded a total of 2672 numerically identified responses. Fig 8A shows the dis-

tribution of all response scores.

Our aim was to compare how WaveClus and Combinato perform in finding responsive

neurons. Therefore, we could have compared how many numerically identified responses

both methods yielded (WaveClus, 1274; Combinato, 1398). However, this comparison neglects

two important aspect stemming from potential over-clustering: First, if Combinato tended to

over-cluster the data, would a simple response count not be inflated due to responses from sin-

gle neurons that would appear in multiple clusters because of over-clustering? Second, would a

higher number of clusters not increase the number of detected responses simply because of

false-positive detections? In light of these potential pitfalls, we used the following approach to

ensure a fair comparison between WaveClus and Combinato.

We asked five expert human raters to rate each of the 2672 identified responses. For each

response generated by the algorithm, raters were presented with a raster plot of the neural

activity during the six picture presentations, showing spikes from one second prior to picture

onset to one second after picture offset. Each rater was asked to assign a value of either one or

zero to each raster plot, indicating whether or not it contained the typical pattern of a neuronal

response. The total rating of the response was then defined as the sum of all raters’ scores,

resulting in a number between zero and five. The raters were informed about the purpose of

the procedure, but uninformed about the stimulus picture and clustering method that had

generated each raster plot. As a measure of inter-rater agreement, we calculated Cohen’s κ for

each of the ten pairs of raters [21]. The median κ was 0.466 (range 0.258 to 0.525).

Fig 8B shows the distribution of ratings. The rating procedure confirmed the high false-pos-

itive rate of the numeric response score: of all 2672 numerically detected responses, 1596

(59.7%) received a rating of less than 3, while 1076 (40.3%) were rated 3 or better. As expected,

the mean numeric response score at a specific rating was a strictly decreasing function of the

rating, see Fig 8C. Spearman’s rank correlation coefficient between the ranks and the scores

was ρ = −0.399 (P = 10−102), and Kendall’s rank correlation coefficient was τb = −0.291

(P = 10−112).

We then used the ratings to control for possible over-clustering in the comparison of Wave-

Clus and Combinato. First, if more than one cluster on a given channel responded to the same

stimulus, we kept only the response that had received the highest rating, and dropped all oth-

ers. This applied to 108 stimulus–channel combinations in the Combinato sorting and 46

stimulus–channel combinations in the WaveClus sorting, see Fig 8E. After removing all but

celebrities, while the responses of Cluster E 1 to the second, third and fourth picture are barely recognizable. No other cluster from D responded to any

stimulus. S, score of the response; R, rating given to the response by human raters (see main text for details). Stimulus pictures displayed here have been

replaced by similar pictures for legal and privacy reasons. Copyright notes: F.1 Photographer: Armin Kübelbeck, CC BY-SA 3.0, Wikimedia Commons

(https://commons.wikimedia.org/wiki/File:Campino_02.jpg) F.2 “Mel Gibson at the Cannes film festival” by Georges Biard is licensed under CC BY-SA 3.0,

Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Mel_Gibson_2011_cropped.jpg) F.3 cropped from “German actor Jan Josef Liefers at the

Cinema for Peace gala” by Thore Siebrands, licensed under CC BY 3.0, ipernity (http://www.ipernity.com/doc/siebbi/10852332) F.4 cropped from “Letztes

Training von Olli Kahn beim FC Bayern München” by Dirk Vorderstraße, licensed under CC BY 2.0, Flickr (https://www.flickr.com/photos/

dirkvorderstrasse/10560731386).

doi:10.1371/journal.pone.0166598.g007
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Fig 8. Evaluation of our algorithm on a visual stimulus presentation experiment. A Distribution of response scores. Some scores are extremely

small, but the majority of scores lies in the interval [10−4, 10−3] (1939 out of 2672; 72.6%) B Each response’s rating is defined as the sum of the binary

votes of five human raters. Of all 2672 ratings, 1596 (59.7%) were < 3, and 1076 (40.3%) were� 3. C Mean score and standard deviation of responses

at each rating. The relationship between mean scores and ratings is strictly monotonic, but the variance of scores at each rating is large. D Histogram

of the numbers of clusters that were generated, on the same recordings, by Combinato and WaveClus. On average, Combinato generated more

clusters. E Analysis of possible over-clustering. Displayed is the number of stimuli for which a response was detected in more than one cluster of the

same recording channel. F Total numbers of detected responses. The numbers were corrected for possible over-clustering: only one response was

counted per stimulus and channel, even if the response was detected in multiple clusters. Of all responses, 620 were detected both by Combinato and

WaveClus. An additional 289 responses were detected only by Combinato, and further 158 responses only by WaveClus. The opaque parts of the bars

correspond to responses that were rated 3 or better by expert raters. G Distribution of recording channels and responses across regions. Opaque parts

of the bars as in F.

doi:10.1371/journal.pone.0166598.g008
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one response for all of these stimulus–channel combinations, 778 responses remained in the

WaveClus sorting, and 909 responses remained in the Combinato sorting. By applying this

control, we ensured that no stimulus–channel combination could contribute more than once

to these counts, which effectively ruled out response count inflations due to over-clustering.

Fig 8F depicts the distribution of these responses: 620 responses were detected in both the

Combinato and the WaveClus sorting, an additional 289 responses in the Combinato sorting

only, and an additional 158 responses in the WaveClus sorting only.

Second, to ensure that the higher response count in the Combinato sorting was not just due

to false-positive detections, we restricted our analyses to responses rated 3 or better. Here, 265

responses were detected in both sortings, 73 in the Combinato sorting only, and 66 in the

WaveClus sorting only.

Responses were detected in all regions we recorded from. Fig 8G shows the regional distri-

bution of responses as detected in the Combinato sorting.

A number of responses was detected by only one of the methods: 32% of the responses

detected by Combinato were not detected by WaveClus, and 20% of the responses detected by

WaveClus were not detected by Combinato. When including only responses rated 3 or better,

22% of the responses detected by Combinato were not detected by WaveClus, and 20% of the

responses detected by WaveClus were not detected by Combinato.

Fig 9 shows five examples of responses that were detected by only one of the methods.

These examples illustrate that several different factors can contribute to the difference in

response detection. First, small differences in cluster composition can strongly influence the

numeric response score (Fig 9B, 9C and 9E). In these cases, responses are detected numerically

by only one of the methods, despite relatively similar cluster composition. Second, better sepa-

ration of clusters can render responses detectable that would otherwise go unnoticed (Fig 9A).

Third, the fact that we require at least one spike to be fired during at least four picture presen-

tations leads to the exclusion of some clusters that would otherwise have a low numeric

response score (Fig 9D).

Validation on whole-night recordings

Combinato was designed to work with long, possibly noisy, recordings. To test its performance

on such data, we used whole-night recordings from eight epilepsy patients, for details see Sec-

tion B in S1 Text. Recordings started between 18:00 and 21:00 and ended between 8:00 and

11:00 (see middle column in Fig 10 for exact times).

We used selective neuronal responses to images and written names in order to assess

whether our method can track the activity of a single neuron over the course of an entire

night. For this purpose we conducted a “screening session” at the beginning and end of each

whole-night recording. These screening sessions differed only slightly from the experiment

described in the previous section: here, eight to eleven pictures were presented to the patients.

For each picture, a written representation of the picture’s content was also presented (in seven

out of the eight patients). Each picture and each written name was presented ten to thirty

times.

We used Combinato to extract and sort unit activity from all recordings. We then analyzed

the screening sessions at the beginning and end of each recording. To illustrate our findings in

a qualitative way, we selected one representative channel from each recording. Fig 10 shows

the unit activity recorded in these channels from eight different patients. We chose channels

carrying a selective neuronal response in both screening sessions (evening and morning), see

columns “Evening” and “Morning” in Fig 10. These responses allowed to analyze whether our

method splits one neuron’s activity into several different units in whole-night recordings.
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The units displayed in Fig 10 exhibit several phenomena: In three cases (Fig 10A, 10B and

10E), the response to the stimulus was contained in the same cluster both in the evening and

morning, and no other cluster showed any response to the same stimulus. In Fig 10A and 10B,

the response raster plots from evening and morning are highly similar, whereas in Fig 10E, the

response is much more pronounced in the evening than in the morning.

In the five remaining cases (Fig 10C, 10D, 10F, 10G and 10H), more than one of the gener-

ated clusters responded to the stimulus. In Fig 10C, a clear amplitude shift over the course of

the night is visible in the responsive clusters. The graphical user interface can be used here to

Fig 9. Responses detected by only one spike sorting algorithm. Displayed are five different visual stimuli,

and corresponding neuronal responses. Each row (A–E) shows the visual stimulus presented and two raster

plots. The raster plots on the left correspond to a unit in the Combinato sorting, and the raster plots on the right

correspond to a unit in the WaveClus sorting, on the same channel. Differences in spike sorting become

apparent. A Combinato generated a sparse unit that enabled detection of the neuronal response. The unit

generated by manual operators of WaveClus was not detected as a response. B, C Tiny differences in the

units’ composition led to a large difference in the numeric response score. D The unit generated by Combinato

violates the requirement that one spike has to be fired during at least four picture presentations. E Differences

in unit composition led to a large difference in the numeric response score. S, numeric score of the response;

R, rating given to the response by human raters. Stimulus pictures displayed here have been replaced by

similar pictures for legal and privacy reasons. Copyright notes: A Superbass, CC BY-SA 3.0, Wikimedia

Commons (https://commons.wikimedia.org/wiki/File:Tatort_Keppler_Saalfeld.jpg)B “Violet” by J. Niediek is

licensed under CC BY 4.0 C cropped from “Pakistani journalist Hamid Mir interviewing Osama bin Laden” by

Hamid Mir, CC BY-SA 3.0, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Hamid_Mir_

interviewing_Osama_bin_Laden.jpg) D “Cathedral” by J. Niediek is licensed under CC BY 4.0 E “Photo Wall”

by J. Niediek is licensed under CC BY 4.0.

doi:10.1371/journal.pone.0166598.g009
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Fig 10. Tracking of selectively responding neurons over an entire night. A–H show data from eight patients. Continuous unit recordings started in the

evening and ended the next morning. “Screening sessions” were performed at the beginning and in the end of each recording. Displayed are raster plots

for one stimulus image per screening session. Inter-stimulus interval histograms for the evening and morning are displayed. In all patients but A, written

names corresponding to the images were also presented. The middle column (“Night”) shows the activity of units tracked automatically during the entire

recording. Each small dot marks the time point and maximal voltage of one action potential. Colors correspond to the raster plots from the screening

sessions: units marked in gray do not respond to the images/written names. Units marked in blue, red, or yellow respond to the images/written names as

shown in the raster plots. Mean waveforms of all responsive units are displayed for each hour recorded. A Stable waveform and response pattern. B

Amplitude variations are visible. As typical for parahippocampal units, unit does not respond to the written name. C An amplitude shift in the responsive

neuron (possibly caused by micro-movement of the electrode) results in the detection of two different units, most likely belonging to one neuron. D Two

responsive clusters are generated. No response to the written name. E Stable waveform, but very weak response in the morning. F Solid response in the

evening and morning, but with separate units. No definite conclusion about the success of tracking can be made. G The blue cluster generates most of the

response. The red cluster also contributes to the response. Both clusters are tracked with a stable waveform. H Similar to G, with three responsive

clusters. The red cluster generates most of the response. The blue and yellow clusters contribute to the response. All three clusters have a stable

waveform. Hipp., hippocampus; Para., parahippocampal cortex; Amyg., amygdala. Stimulus pictures displayed here have been replaced by similar

pictures for legal and privacy reasons. Copyright notes: A “Lake” by J. Niediek is licensed under CC BY 4.0 B “Antalya” by J. Schmidtkunz is licensed
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merge the two units into one continuous track. In Fig 10D, 10G and 10H, more than one sta-

ble, responsive cluster exists throughout the recording. In each of these cases, one of the

tracked clusters creates the majority of the response, with small contributions by the other

clusters. All clusters were successfully and independently tracked. Careful inspection of wave-

forms and cross-correlograms using the graphical user interface is necessary to decide whether

over-clustering occurred. In the remaining case (Fig 10F), two clusters are tracked throughout

the night with a stable waveform, but one cluster responds in the evening, and the other one

in the morning. In this case, too, careful inspection of waveforms and cross-correlograms is

necessary.

In all eight cases in Fig 10, there is a continuous background of spikes from clusters show-

ing no response to the selected stimulus. Note that in Fig 10B and 10D there was no response

to the written names of the pictures. These cells were either selective to a different semantic

content of the pictures or not semantically invariant at all.

For eight more examples of units tracked throughout an entire night, see S1 Fig.

Discussion

Spike sorting has been an important tool in electrophysiological research for decades. Existing

algorithms are not optimized to be used with multi-hour datasets and do not handle noisy

recordings well. We here presented a complete framework for spike sorting of multi-hour

recordings under noisy conditions. Our evaluations showed that our tools outperform current

spike sorting methods both on simulated data, and in the analysis of a visual stimulus presenta-

tion experiment. Furthermore, our method allows to reliably track single units in the human

MTL over the course of an entire night.

Presence of numerous, possibly sparse, neurons

Pedreira and colleagues stated that current spike sorting methods—even manually guided

ones—can rarely detect more than 8–10 neurons [8]. We have shown that our automated

method can reliably detect more than 10 neurons (Figs 3B and 4). Our algorithm copes with

the presence of many neurons by selecting many clusters at several temperatures, and by

applying SPC iteratively. Pedreira and colleagues also observe that sparsely firing neurons are

particularly hard to detect with current spike sorting methods [8]. As our evaluation shows,

our method is capable of correctly detecting sparse neurons, e.g. units C10 and C11 in Fig 3C,

consisting of 220 and 73 spikes, respectively (2.21% and 0.73% of the 9942 spikes that were the

input to clustering).

Large numbers of clusters per channel

In many cases, our automated method generated more units than manual operators of Wave-

Clus (Fig 8D). This could be due to several reasons. First, our post-sorting artifact rejection

sometimes missed artifact clusters, e.g. unit D 4 in Fig 7D. Such missed artifact clusters

under CC BY 4.0 C cropped from “[. . .] Sebastian Vettel (Ferrari)” by Morio, CC BY-SA 4.0, Wikimedia Commons (https://commons.wikimedia.org/wiki/

File:Sebastian_Vettel_2015_Malaysia_podium_2.jpg D cropped from “50th Munich Security Conference 2014: Vitali Klychko and Frank-Walter

Steinmeier [. . .]” by Mueller / MSC (Marc Müller), CC BY 3.0 DE, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:MSC_2014_Klychko-

Steinmeier3_Mueller_MSC2014.jpg) E “[. . .] Horst Schimanski [. . .]” by H. Schrapers is licensed under CC BY-SA 2.5, Wikimedia Commons (https://

commons.wikimedia.org/wiki/File:HorstSchimanski.jpg) F cropped from “Simpsons 20 Years” by Gabriel Shepard, CC BY-SA 3.0, DeviantArt (http://

gabrielshepard.deviantart.com/art/Simpsons-20-Years-124858104) G “Avocado” by D. E. Bruschi is licensed under CC BY 4.0 H “My friend” by J. Niediek

is licensed under CC BY 4.0.

doi:10.1371/journal.pone.0166598.g010
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artificially increase the unit count. Since no ground truth is available for artifact clusters, the

accuracy of our post-sorting artifact rejection is difficult to estimate.

Second, there are cases where manual operators of WaveClus failed to separate two or more

true units. An example is provided in Fig 7D through 7F: the raster plots (Fig 7F) show that

our method correctly separated units D 1 and D 2, while operators of WaveClus generated the

under-clustered unit E 1.

Third, as Fig 8E indicates, over-clustering occurred more frequently in our method than

with manual operators of WaveClus. To avoid any bias introduced by over-clustering, we

counted no more than one responding cluster per stimulus and channel, so that over-cluster-

ing could not artificially increase the number of responses. With and without this correction,

our method detected more neuronal responses than manual operators of WaveClus. When the

goal is to maximize the number of detected responses, a potentially increased likelihood of

over-clustering is justified. However, by modifying Combinato’s parameters, researchers can

systematically shift the balance between over- and under-clustering according to the demands

of the respective scientific question, an option (to our knowledge) not available in other spike

sorting methods.

As summarized in [8], theoretical considerations predict higher numbers of neurons per

recording channel than typically observed with current spike sorting techniques. Thus our

result might represent unit counts more realistically than other methods.

Properties of block-wise sorting

We segmented spikes into blocks for spike sorting. This has various advantages over spike sort-

ing all spikes at once: First, periods of signal contamination are often confined to short seg-

ments of the recording, and thereby affect only a small number of blocks. The remaining,

uncontaminated blocks are spike-sorted independently, without the detrimental effects of

large numbers of non-neural artifacts.

Second, especially in multi-hour sleep recordings, some units may be active only during

short parts of the recording. In a block-wise approach, these units have high chances of being

detected in the corresponding blocks, but might be overlooked if spikes from the entire record-

ing were sorted in one step.

Third, the computational time of spike sorting algorithms typically scales super-linearly

with the number of spikes sorted. A block-wise approach not only avoids these super-linear

computational costs, but also enables us to use a parallelized implementation for the sorting of

different blocks.

We used a fixed number of spikes per block (20 000 by default). Other ways of defining

blocks are conceivable, e.g. a fixed amount of recording time for each block. There are two pos-

sible problems with a time-based definition of blocks: First, clinical recordings often suffer

from short periods of signal contamination, during which a large number of artifactual spikes

is generated. In a time-based approach, short periods of signal contamination thus pollute

blocks of otherwise uncontaminated recording. In our approach, if large numbers of artifactual

spikes are generated, these are confined to blocks that correspond to short amounts of record-

ing time.

Second, in a time-based approach, researchers would necessarily have to adapt the block

length to the firing rates of the neurons recorded. Without such an adaptation, there would be

the risk of accumulating too few or too many spikes for successful spike sorting in each block.

However, even though this adaptation could be performed automatically, it would introduce

another algorithmic step without obvious benefits.
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Several alternative approaches to the problem of sorting hundreds of thousands of spikes

are conceivable. One idea would be to generate clusters from a small random subset of all

spikes and use these clusters as templates in a template matching procedure. A possible prob-

lem with this approach is that sparse units could be missed if no corresponding template was

generated. Furthermore, even short periods of signal contamination can lead to the presence

of large amounts of non-neural artifacts, which could in turn compromise the template match-

ing procedure if no templates for the artifacts exist. Another idea is implemented in spike sort-

ing tools that use template matching as the main principle for clustering [7, 11]. While these

methods have the advantage of working online, they continuously have to solve the problem of

when to open a new cluster, based on single spikes. This decision problem might become

harder in the presence of non-neural artifacts. Further studies are necessary to determine how

such methods perform in comparison to our framework.

Applicability to neuroscientific studies

The four validation schemes used in this study show that our framework is ready for use in a

neuroscientific study. Fig 7D demonstrates our method’s ability to spike-sort highly contami-

nated recordings.

Fig 8G shows response counts for each region we recorded from. Because each response is

defined as a pair of a stimulus and a neuronal unit, individual units can contribute more than

once to the counts. Several studies report the fraction of units that respond to at least one stim-

ulus (14% of all units in the MTL [15]; 11% of all units in the MTL [22]; 9–16% of all units in

individual MTL subregions [17]). These studies also report responses by one neuron to more

than one stimulus, either by example [22] or as a summary statistic: in one study, the average

percentage of stimuli eliciting a response in a responsive neuron was 4.7% in the parahippo-

campal cortex, 1.7% in the entorhinal cortex and hippocampus, and 2.4% in the amygdala

[17].

An exhaustive analysis of response counts is beyond the scope of the present work. Never-

theless, we report here the response statistics for the Combinato sorting: 11.9–26.7% of all

units responded to at least one stimulus, depending on MTL subregions. The average percent-

age of stimuli eliciting a response in a responsive neuron was 3.7% in the parahippocampal

cortex, 1.5% in the entorhinal cortex, 2.3% in the hippocampus, and 2.1% in the amygdala.

The average percentages of response-eliciting stimuli per responsive neuron we observed

are in good agreement with the findings of [17]. As discussed in [17], a likely reason for the

higher average number of response-eliciting stimuli in the parahippocampal cortex with

respect to the other regions is that parahippocampal units respond less selectively to the stimu-

lus material used here.

Our evaluation of whole-night recordings demonstrates the feasibility of tracking respon-

sive units in the human MTL over the course of an entire night. This might provide the means

to address some important neuroscientific questions for the first time. Apart from mechanisms

related to memory consolidation, processes underlying the generation of epileptic seizures are

a relevant topic of research [23]. A question of particular interest would be how firing patterns

of single neurons change in the hours before an epileptic seizure [24].

Micro-electrode recordings from the human brain are a novel and still developing tech-

nique. Our method can be used to evaluate the stability of multi-hour recordings in order to

optimize recording procedures and to identify potential problems and pitfalls. Suitable meth-

ods to assess recording stability have been proposed by several authors [25, 26]. Another inter-

esting question concerns the activity of visually responsive neurons during sleep. Bondar and

colleagues [27] addressed questions regarding the response stability of such neurons in the
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infero-temporal cortex of rhesus monkeys, by comparing responses across different recording

sessions. However, a similar study with human subjects has not been published, and the activ-

ity patterns of such neurons during sleep are yet unknown.

Future directions

We concatenated existing simulated datasets to evaluate our algorithms on multi-hour data

where ground truth is available. Despite the fact that we increased the difficulty of the spike

sorting task by adding drift and noise, our algorithms correctly identified 74.6% of the simu-

lated units. For further quantitative evaluations, simulation algorithms as in [28, 29] could be

used to create multi-hour datasets with ground truth available.

Many spike sorting algorithms employ template matching at some point. Template match-

ing can be performed in many different ways. Our template matching algorithm is based on

the Euclidean distance in waveform space. Rutishauser and colleagues use distances based on

the Euclidean distance, with the option to use pre-whitened waveforms [7]. Friedman and col-

leagues use a more complex matching method (“rebuilding from cores”). Integrating such

template matching algorithms into our tools could lead to further improvement [10].

The trade-off between over- and under-clustering deserves further investigation. As we

have shown, our methods make it possible to automatically sample a wide range of settings,

which directly influence unit counts. Depending on the specific research question at hand, dif-

ferent points along this parameter range will prove optimal.

In contrast to human recordings, animal electrophysiologists have long been using stereo-

trodes, tetrodes, and multitrodes, which increase both clustering quality and unit yield [25,

30]. As of yet, our software has been tested only with single-wire electrodes. An adaptation

to multi-wire electrodes would require only small changes in the code and would certainly

broaden the scope of our software.
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3. Berényi A, Somogyvári Z, Nagy AJ, Roux L, Long JD, Fujisawa S, et al. Large-scale, high-density (up to

512 channels) recording of local circuits in behaving animals. J Neurophysiol. 2014; 111(5):1132–1149.

doi: 10.1152/jn.00785.2013 PMID: 24353300

4. Misra A, Burke JF, Ramayya AG, Jacobs J, Sperling MR, Moxon KA, et al. Methods for implantation of

micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. J

Neural Eng. 2014; 11(2):026013. doi: 10.1088/1741-2560/11/2/026013 PMID: 24608589

5. Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, et al. Spike sorting for

large, dense electrode arrays. Nat Neurosci. 2016; 19(4):634–641. doi: 10.1038/nn.4268 PMID:

26974951

6. Quian Quiroga R, Nadasdy Z, Ben-Shaul Y. Unsupervised Spike Detection and Sorting with Wavelets

and Superparamagnetic Clustering. Neural Comput. 2004; 16(8):1661–1687. doi: 10.1162/

089976604774201631 PMID: 15228749

7. Rutishauser U, Schuman EM, Mamelak AN. Online detection and sorting of extracellularly recorded

action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods. 2006; 154(1–

2):204–224. doi: 10.1016/j.jneumeth.2005.12.033 PMID: 16488479

8. Pedreira C, Martinez J, Ison MJ, Quian Quiroga R. How many neurons can we see with current spike

sorting algorithms? J Neurosci Methods. 2012; 211(1):58–65. doi: 10.1016/j.jneumeth.2012.07.010

PMID: 22841630

9. Kadir SN, Goodman DFM, Harris KD. High-Dimensional Cluster Analysis with the Masked EM Algo-

rithm. Neural Comput. 2014; 26(11):2379–2394. doi: 10.1162/NECO_a_00661 PMID: 25149694

Single-Unit Recordings under Noisy Conditions: Tracking Neurons over Hours

PLOS ONE | DOI:10.1371/journal.pone.0166598 December 8, 2016 25 / 26

http://dx.doi.org/10.1016/0306-4522(89)90423-5
http://www.ncbi.nlm.nih.gov/pubmed/2687720
http://dx.doi.org/10.1038/nrn2762
http://dx.doi.org/10.1038/nrn2762
http://www.ncbi.nlm.nih.gov/pubmed/20046194
http://dx.doi.org/10.1152/jn.00785.2013
http://www.ncbi.nlm.nih.gov/pubmed/24353300
http://dx.doi.org/10.1088/1741-2560/11/2/026013
http://www.ncbi.nlm.nih.gov/pubmed/24608589
http://dx.doi.org/10.1038/nn.4268
http://www.ncbi.nlm.nih.gov/pubmed/26974951
http://dx.doi.org/10.1162/089976604774201631
http://dx.doi.org/10.1162/089976604774201631
http://www.ncbi.nlm.nih.gov/pubmed/15228749
http://dx.doi.org/10.1016/j.jneumeth.2005.12.033
http://www.ncbi.nlm.nih.gov/pubmed/16488479
http://dx.doi.org/10.1016/j.jneumeth.2012.07.010
http://www.ncbi.nlm.nih.gov/pubmed/22841630
http://dx.doi.org/10.1162/NECO_a_00661
http://www.ncbi.nlm.nih.gov/pubmed/25149694


10. Friedman A, Keselman MD, Gibb LG, Graybiel AM. A multistage mathematical approach to automated

clustering of high-dimensional noisy data. Proc Natl Acad Sci. 2015; 112(14):4477–4482. doi: 10.1073/

pnas.1503940112 PMID: 25831512

11. Knieling S, Sridharan KS, Belardinelli P, Naros G, Weiss D, Mormann F, et al. An Unsupervised Online

Spike-Sorting Framework. Int J Neur Syst. 2015; 26:1550042. doi: 10.1142/S0129065715500422

12. Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data. Phys Rev Lett. 1996; 76

(18):3251–3254. doi: 10.1103/PhysRevLett.76.3251 PMID: 10060920

13. Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD. Towards reliable spike-train recordings from

thousands of neurons with multielectrodes. Curr Opin Neurobiol. 2012; 22(1):11–17. doi: 10.1016/j.

conb.2011.10.001 PMID: 22023727

14. Rey HG, Pedreira C, Quian Quiroga R. Past, present and future of spike sorting techniques. Brain Res

Bull. 2015; 119, Part B:106–117. doi: 10.1016/j.brainresbull.2015.04.007 PMID: 25931392

15. Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neu-

rons in the human brain. Nature. 2005; 435(7045):1102–1107. doi: 10.1038/nature03687 PMID:

15973409

16. Hill DN, Mehta SB, Kleinfeld D. Quality Metrics to Accompany Spike Sorting of Extracellular Signals. J

Neurosci. 2011; 31(24):8699–8705. doi: 10.1523/JNEUROSCI.0971-11.2011 PMID: 21677152

17. Mormann F, Kornblith S, Quian Quiroga R, Kraskov A, Cerf M, Fried I, et al. Latency and Selectivity of

Single Neurons Indicate Hierarchical Processing in the Human Medial Temporal Lobe. J Neurosci.

2008; 28(36):8865–8872. doi: 10.1523/JNEUROSCI.1640-08.2008 PMID: 18768680

18. Mormann F, Dubois J, Kornblith S, Milosavljevic M, Cerf M, Ison M, et al. A category-specific response

to animals in the right human amygdala. Nat Neurosci. 2011; 14(10):1247–1249. doi: 10.1038/nn.2899

PMID: 21874014

19. Mormann F, Niediek J, Tudusciuc O, Quesada CM, Coenen VA, Elger CE, et al. Neurons in the human

amygdala encode face identity, but not gaze direction. Nat Neurosci. 2015; 18(11):1568–1570. doi: 10.

1038/nn.4139 PMID: 26479589

20. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995; 57(1):289–300.

21. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas. 1960; 20(1):37–46. doi:

10.1177/001316446002000104

22. Quian Quiroga R, Kraskov A, Koch C, Fried I. Explicit Encoding of Multimodal Percepts by Single Neu-

rons in the Human Brain. Curr Biol. 2009; 19(15):1308–1313. doi: 10.1016/j.cub.2009.06.060 PMID:

19631538

23. Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain.

2007; 130(Pt 2):314–333. doi: 10.1093/brain/awl241 PMID: 17008335

24. Gast H, Niediek J, Schindler K, Boström J, Coenen VA, Beck H, et al. Burst firing of single neurons in

the human medial temporal lobe changes before epileptic seizures. Clin Neurophysiol. 2016; 127

(10):3329–3334. doi: 10.1016/j.clinph.2016.08.010 PMID: 27592159

25. Schmitzer-Torbert N, Jackson J, Henze D, Harris KD, Redish AD. Quantitative measures of cluster

quality for use in extracellular recordings. Neuroscience. 2005; 131(1):1–11. doi: 10.1016/j.

neuroscience.2004.09.066 PMID: 15680687

26. Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis NK. Recording Chronically From

the Same Neurons in Awake, Behaving Primates. J Neurophysiol. 2007; 98(6):3780–3790. doi: 10.

1152/jn.00260.2007 PMID: 17942615

27. Bondar IV, Leopold DA, Richmond BJ, Victor JD, Logothetis NK. Long-Term Stability of Visual Pattern

Selective Responses of Monkey Temporal Lobe Neurons. PLoS One. 2009; 4(12):e8222. doi: 10.1371/

journal.pone.0008222 PMID: 20011035

28. Martinez J, Pedreira C, Ison MJ, Quian Quiroga R. Realistic simulation of extracellular recordings. J

Neurosci Methods. 2009; 184(2):285–293. doi: 10.1016/j.jneumeth.2009.08.017 PMID: 19703490

29. Hagen E, Ness TV, Khosrowshahi A, Sørensen C, Fyhn M, Hafting T, et al. ViSAPy: a Python tool for

biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms. J Neu-

rosci Methods. 2015; 245:182–204. doi: 10.1016/j.jneumeth.2015.01.029 PMID: 25662445

30. Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G. Accuracy of Tetrode Spike Separation as
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