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Abstract: Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a
specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and
their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous
works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction
(TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were
additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were
obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional
electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by
microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in
homogeneous complexes, whose visualization was achieved using multiphoton and transmission
electron microscopy. The average particle size (380 nm) and the average zeta potential (−18.51 mV)
were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon
cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10−3

and 1.7 × 10−3 mg/mL, respectively. The microfluidic technique allowed control of the coupling
between the QD and the protein, substantially improving the labelling process, providing a rapid and
efficient method that enabled the traceability of lectins. Future studies will focus on the potential use
of the QD-labelled lectin to recognize tumor tissues.

Keywords: plant lectins; protein labelling; quantum dots; Tepary bean; microfluidics

1. Introduction

Lectins are a heterogeneous group of glycoproteins of non-immune origin, ubiquitous in nature
but especially abundant in plants, which specifically and reversibly bind to carbohydrates, producing
cell agglutination due to a non-catalytic domain in their structure [1–5]. These traits make lectins
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of great interest in the biomedical area, in which they have stood out for their effects against cancer
cells [6–8]. The anticancer mechanisms of lectins are due to their binding to specific carbohydrates of
cancer cell membranes, such as the sialyl-Lewisx (SLex), Thomsen-nouvelle (Tn), and sialyl-Tn (sTn)
antigens [9]. This binding allows the detection of malignant cells [10,11] and, additionally, triggers
cytotoxic activity through apoptosis and autophagy induction, resulting in the inhibition of tumour
growth [2,12–14]. Although the complete mechanism of lectin activation has not been described, some
signalling pathways have been proposed [4,15–17], and the cytotoxic effects of different lectins on
cancer cells have also been reported [4,14,15,18–21].

Tepary bean (Phaseolus acutifolius) lectins have been studied because of their toxic and cytotoxic
effects on cancer cell lines [22,23]. A Tepary bean lectin-rich fraction (TBLF), obtained by molecular
size exclusion chromatography of the seeds’ extract, was tested on different cancer cell lines; where
colon cancer cells showed the highest sensitivity to the treatment [22], related to apoptosis induction
and cell cycle arrest [24]. Acute and subchronic assays of the TBLF—administered intragastrically
to rats—exhibited low toxicity and good tolerability, as well as immune system activation. Adverse
effects were related to the atrophy of the small intestine villi and colonic cryptic foci, hypertrophy of
the pancreatic acini, and a decrease of body weight gain [25,26]. In preclinical studies, colon cancer was
induced to rats using dimethylhydrazine or azoxymethane; where TBLF inhibited early premalignant
lesions and aberrant cryptic foci, and cell death was related to caspase-dependent apoptosis [12]. The
molecular structure of a Tepary bean lectin was elucidated by Torres-Arteaga et al. [27]. In order to
study the specific interaction between the lectin and cancer cells, it is necessary to develop some novel
imaging techniques for lectin detection.

The characterization of the interaction of lectins with cellular structures is fundamental for the
understanding of their mechanisms of action and the subsequent biomedical uses [28]. However, the
study of lectins demands high purity of the protein, and observation of the interaction with cellular
components, as well as the intra and intercellular dynamics, requires the implementation of labelling
techniques that facilitate their visualization and traceability.

Quantum dots (QD) are semiconductor nanocrystals used in fluorescence and confocal microscopy
that have shown superior optical properties to those of conventional fluorescent dyes and proteins [29].
Most of these nanoparticles are biocompatible with proteins and antibodies, preserve a photostable
emission during prolonged excitation, and show a tuneable range of excitation, a narrow emission
spectrum and high fluorescence performance [30–33]; furthermore, they present a large surface area
that enables the controlled conjugation of biomolecules [34]. All these characteristics are desirable
for the labelling and monitoring of proteins in vitro and in vivo [35–38]. Considering their optical
attributes, QD may also constitute a suitable option for imaging diagnoses of diseases [39].

On the other hand, microfluidics is a platform with biomedical applications that involves the
performance, precise control, and manipulation of fluids and particles on the scale of tens to hundreds
of micrometres, by the use of fluidic channels which allow the coupling or separation of particles. The
advantages of using these devices include reduced volumes of reagents and samples, fast processing,
ultra-high sensitivity, high portability, low cost and the alternative of automation [40,41]. Microfluidics
also enable the integration of optical biosensors [42].

Different lectins have been conjugated with QD by distinct techniques for in vitro imaging [32,43–45];
however, to the best of our knowledge, microfluidics have not been used for lectin labelling. Therefore,
the objective of the present work was to purify a Tepary bean lectin (Phaseolus acutifolius), couple it to
quantum dot nanoparticles via microfluidics, and characterize the complex, with the aim of using it for
lectin tracking on biological systems.
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2. Results

2.1. Lectin Purification

A Tepary bean lectin fraction (TBLF) was purified by molecular size exclusion chromatography;
protein was detected at 280 nm and fractions with agglutination activity were pooled (12,300
Agglutination units (AU)/protein mg) and subsequently separated by ionic-exchange chromatography,
where two main peaks with agglutination activity were observed, and the second peak (TBL-IE2) was
selected (Figure 1). Figure 2 shows the SDS-PAGE analysis for the TBLF and the TBL-IE2 fractions.
Following the Schiff/periodic acid stain, two protein bands were found for TBLF, with approximate
molecular weights of 28 and 56 kDa while a single protein band for TBL-IE2 was observed, with an
apparent molecular weight of 28 kDa. This protein band was recognized by Western blot analysis using
the specific antibody for Tepary bean lectin. The two-dimensional electrophoresis for the TBL-IE2
fraction showed the same molecular weight protein with an isoelectric point of approximately 4.7.
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Figure 1. Chromatographic separation of the TBL-IE2 fraction. (A) Molecular size exclusion
chromatography (Sephadex G-75). Red dots indicate fractions with agglutination activity (units
per mg of protein), and the blue line shows the absorbance of the protein at 280 nm. TBLF is shown at
the top. (B) Ion-exchange chromatography. Red dots indicate the fractions’ agglutination units per mg
of protein, the absorbance at 220 nm of the protein fractions is shown in blue, and the green line marks
the gradient from 0 to 1 M NaCl. The second peak, named TBLF-IE2, is indicated at the top.
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Figure 2. SDS-PAGE profile for the TBL-IE2 fraction. A 10% SDS-PAGE was performed. (A) Coomassie
staining for TBLF and TBL-IE2 electrophoresis; (B) Schiff’s periodic acid staining of TBLF and TBL-IE2;
(C) Western Blot for TBLF and TBL-IE2; (D) two-dimensional electrophoretic profile for TBL-IE2.

2.2. Lectin Labelling and Analysis

After the purification, the lectin was successfully labelled with QD (TBL-IE2-QD); 75% of the
agglutination activity was conserved (9300 AU/mg of protein). The purified protein did not exhibit
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autofluorescence at the 400–700 nm spectrum (Figure 3). On the other hand, the analysis of QD
alone showed one peak of fluorescence at 570 nm, and the TBL-IE2-QD complex showed a spectral
emission between 560 nm and 574 nm. The results for the transmission electron microscopy showed
different molecular sizes for TBL-IE2 and TBL-IE2-QD, as shown in Figure 4. The particle size was not
significantly different between TBL-IE2 and TBL-IE2-QD, with averages of 461 and 379 nm particle
diameter, respectively. The zeta potential for TBL-IE2 was −8.23 mV, and for the TBL-IE2-QD complex
was −18.51 mV. It was possible to observe that, when using a non-microfluidic method, the complexes
formed heterogeneous clusters.
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Figure 3. Fluorescence images for the TBL-IE2-QD complex. Analysis in visible light, excitation
analysis at 570 nm, visible light and excitation at 570 nm merged, and lambda analysis from 400 to
700 nm (taking a reading every 2 nm). (A) TBL-IE2, lambda figure size 94.01 µm × 94.01 µm where no
fluorescence was observed; (B) Quantum dots, lambda figure size 34.46 µm × 34.46 µm, with a single
peak at 570 nm; (C) Analysis of the TBL-IE2-QD complex, lambda figure size 134.95 µm × 134.95 µm—a
peak can be observed at 574 nm, and a second peak at 560 nm with less intensity.
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Figure 4. Physicochemical characterization of TBL-IE2 and TBL-IE2-QD complex. Transmission
electron microscopy images for the TBL-IE2 and TBL-IE2-QD. The differences between the unlabelled
and labelled lectin are shown at 180,000 Kv magnification; (A) TBL-IE2, (B) TBL-IE2-QD complex
coupled by microfluidics, and (C) TBL-IE2-QD complex coupled by covalent bonding. (D) Particle size
analysis of TBL-IE2, compared to independent assays of the TBL-IE2-QD conjugate. (E) Zeta potential
analysis of TBL-IE2, compared to independent assays of the TBL-IE2-QD conjugate. Asterisk shows
statistically significant differences (p < 0.05).

2.3. Cytotoxic Effects of TBL-IE2 and TBL-IE2-QD on HT-29 Cell Line

The cytotoxic effect of both the labelled and unlabelled lectins was observed on HT-29 human
colon cancer cells (Figure 5). A similar effect was observed between them, since the TBL-IE2 showed a
CL50 of 1.0 × 10−3 mg/mL and TBL-IE2-QD, 1.7 × 10−3 mg/mL.
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Figure 5. Cytotoxic effect of TBL-IE2 and TBL-IE2-QD complex on HT-29 cells. The cell survival
percentage rate after different treatments of TBL-IE2 and TBL-IE2-QD is shown. Small letters (*)
TBL-IE2 and (&) TBL-IE2-QD indicate statistically significant differences between concentrations for
each treatment (Tukey, p < 0.05).
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3. Discussion

There is much in the literature about the purification processes of lectins; however, their conjugation
with nanoparticles for microscopic visualization has only been explored in the last 15 years. At least a
dozen lectins have been coupled with cadmium-telluride (CdTe), sulfide (CdS), and selenide (CdSe)
QD, for various purposes as biosensors [46,47], multimodal nanoprobes [48], theranostic systems [49],
and for the study of cancer glycobiology [50].

Different methods for lectin–QD coupling have been developed by distinct research groups,
including adsorption, electrostatic, and hydrophobic interactions; covalent bonding, which entails
the formation of an amide, imine, or disulphide bond; stabilizer exchange, where a thiol-containing
molecule is added to the QD; and QD surface modification with NH2 polyethylene glycol [32]. Some
labelling techniques report the recognition of carbohydrates in fungi, bacteria, or cancer cells using
traditional methods. It has also been found that labelling is improved using coupling agents such as
EDC or sulfo-NHS [51–53], although the physicochemical characteristics of the lectin–QD complex
have not been fully described. To date, no studies have reported the coupling of a lectin with QD using
a microfluidic platform.

The selection of the conjugation process plays an important role, as the biochemical properties
of the lectin and the optical qualities of the QD need to be preserved [32]. In the present work, after
labelling, the properties of both the lectin (agglutination and cytotoxicity) and the QD (fluorescence
emission) were conserved. Some other methodologies have been reported for the purification of lectins
from other sources [54]; however, one of the main problems of these methods is the poor yield of the
protein of interest. Therefore, it is important to focus on the production of recombinant lectins [55].

Our results showed that the purified lectin TBL-IE2 exhibited an apparent molecular weight
of 28 kDa, similar to that reported by Garcia-Gasca et al. [22], that was determined by protein and
glycoprotein staining and by Western blotting. The two-dimensional electrophoresis showed a single
protein band, with an isoelectric point of approximately 4.7, as reported by Torres-Arteaga et al. [27],
slightly lower than that reported for Con A lectin, which was determined to have an isoelectric point of
5 [56,57]. After the labelling, the TBL-IE2-QD agglutination activity was conserved at 75%, as already
reported by other authors [58].

The lectin did not show autofluorescence, since lectins that present saccharides are non-fluorescent
molecules [59]. On the other hand, the analysis of the QD alone showed one peak of fluorescence spectral
emission at 570 nm. This emission was similar to the fluorescence reported for cadmium telluride QD
for protein-labelling processes [60]. The spectral emission of the TBL-IE2-QD complex was similar to
the pure QD, suggesting that the interaction between carboxyl and the amino functional groups of the
QD surface with lectin amino acids did not produce significant changes in the fluorescence emission.

By TEM analysis, morphological differences were observed between the labelled and the unlabelled
lectins, where it was possible to observe QD bound to the lectin, since free QD were previously eliminated
by dialysis. The microfluidic method has been utilized in previous works [61] for the coupling of
different particles, but—to the best of our knowledge—no works have reported the labelling of lectins
with QD by this technique.

Previous works from other authors concerning lectin labelling with QD by non-microfluidic
methods have been reported, although the physicochemical characterization of the obtained complexes
has been only reported rarely [62]. In the present work, a visual TEM comparison of the morphology of
the lectin–QD complexes obtained by microfluidics versus covalent bonding technique was performed,
where heterogeneous complexes with QD clusters were observed when covalent labelling was used.
With the use of the microfluidic method, the QD were homogeneously distributed among proteins, an
observable trait in all samples, indicating the reproducibility of the technique.

On the other hand, an advantage of the use of the microfluidic technique was the low usage of
samples; for example, Carvalho et al. [58] reported using 28 mg/mL of their lectin, while we used
20 µg/mL. The particle size was determined for both the unlabelled and labelled lectins, where no
significant differences were observed (461 and 379 nm, respectively). The complex decreased 18% in
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size, suggesting that the lectin-QD conjugation compacted the protein structure. The zeta potential
of TBL-IE2-QD was significantly lower than the one of TBL-IE2, which may be attributed to the QD
net charge. It has been reported in previous studies that the most appropriate pH for the labelling
of several lectins is 7 [32,45], when labelling is achieved by adsorption or covalent bonding with
glutaraldehyde [63,64]; however, in the present work, the best results were obtained at pH 6.

Regarding the cytotoxic effect, a similar dose-dependent effect was observed, where the LC50 values
for the TBL-IE2 and the TBL-IE2-QD conjugate were 1.0 × 10−3 and 1.7 × 10−3 mg/mL, respectively,
indicating that the labelled lectin retained its cytotoxic activity. This result suggests that the lectin-QD
interaction did not affect the biological activity of the lectin, thus allowing its use for the study of the
mechanism of action. However, the toxicity of QD remains a concern in biological systems, because of
the release of heavy metal ions (as Cd+2), the generation of reactive oxygen species, and intracellular
effects [65,66]. Nevertheless, the cytotoxicity of QD depends on the fabrication materials, coating and
other factors, so their harmfulness cannot be generalized. After the labelling, the cytotoxic effect of
TBL-IE2 on HT-29 cells remained unchanged. The available reported results suggested that protein
labelling with QD represents a promising tool for the development of diagnostic methods such as
cancer marker detectors [67], particularly through the use of lectins [68].

4. Materials and Methods

4.1. Biological Materials and Quantum Dots

Tepary bean seeds were purchased in a local market at Hermosillo, Sonora, Mexico, and a sample
was identified and deposited in the Dr. Jerzy Rzedowski Herbarium at the Faculty of Natural Sciences,
Autonomous University of Queretaro, Mexico (QMEX00007888). Cadmium-Telluride Quantum Dots
(CdTe QD) functionalized with carboxyl groups (COOH-) were purchased as solid powder nanoparticles
(4–6 nm) (Sigma-Aldrich®, St. Louis, MO, USA). Human HT-29 colorectal adenocarcinoma cell line
was obtained from ATCC® (HTB-38™) (American Type Culture Collection Rockville, CT, USA).

4.2. Lectin Extraction and Purification

Lectins from Tepary bean seeds were extracted using approximately 100 g of defatted raw bean
flour dissolved in 1 L deionized water [22]. Briefly, the crude extract was precipitated from 40% to 70%
ammonium sulphate saturation, and the precipitated proteins were collected after centrifugation at
39,200 ×g for 30 min. The pellet (P40–70) was dissolved in 15 mL of deionized water and dialyzed in a
3 kDa membrane (Spectrum Laboratory, Inc. Standard RC Tubing No. 9200676) against deionized
distilled water at 4 ◦C, until it reached a 2 µΩ conductance. The protein obtained from the sequential
precipitation was dialyzed and then fractionated using a Sephadex G-75 gel filtration chromatography
column (155.5 × 1.55 cm) equilibrated with 0.02 M ammonium bicarbonate buffer, with a pH of 7.8
at 4 ◦C, collecting 3 mL samples at a flow rate of 0.3 mL/min. The protein was monitored at 280 nm
and agglutination activity was assayed using 2% glutaraldehyde-fixed [69] human A+ erythrocytes
(provided by the Querétaro State Blood Transfusion Center), following the method described by
Jaffé [70] and Adamová et al. [71] with modifications.

The fractions with agglutination activity were pooled and separated by ionic exchange
chromatography using an Econo Pac High Q Cartridge, 1 × 5 cm (Bio Rad), equilibrated in 0.01
M Tris-HCl buffer (pH 8). The adsorbed protein was eluted with a linear gradient from 0 to 1 M of
NaCl in 0.01 M Tris-HCl pH 8. Fractions of 2 mL were collected at a flow rate of 1.0 mL/min and protein
was determined at 220 nm. Fractions with agglutination activity were pooled, dialyzed, lyophilized,
and evaluated using SDS-PAGE [72] and 2D electrophoresis. All samples were analysed by Bradford
staining [73]. Samples that displayed a single protein band after SDS-PAGE, as well as a single band
after carbohydrate staining, were selected for coupling to QD nanoparticles. All procedures were
carried out at 4 ◦C.
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4.3. One- and Two-Dimensional Electrophoretic Separations and Immunoblotting Determination

The purified lectins were separated by SDS-PAGE, using 10% resolving gels according to
Laemmli [72]. Coomassie blue R-250 was used for protein staining. Glycoproteins present in the
polyacrylamide gels were stained following the PASS technique [74,75]. In addition, the proteins
were transferred to a nitrocellulose membrane. A primary anti-rabbit antibody for Tepary bean
lectins previously designed in our laboratory was used. Subsequently, a secondary antibody
(AffiniPure Anti-Rabbit IgG Santa Cruz, CA, USA) was employed for specific protein identification. The
immunoreactive proteins were visualized using the AmershamTM ECLTM Western Blotting Analysis
SystemM kit. Two-dimensional electrophoresis was carried out according to Görg et al. [76] using a 7 cm
immobilized pH gradient (IPG) strip with a linear pH gradient from pH 4 to 7. The second-dimension
separation was carried out using a 10% polyacrylamide gel. Silver staining was performed according
to the protocol reported by Blum et al. [77].

4.4. TBL-IE2-QD Coupling by Microfluidic Technique

The coupling procedure was carried out with a polydimethylsiloxane (PDMS) microchip with
a channel diameter of 0.7 mm, manufactured and kindly provided by Dr. Natalia Hassan from
Metropolitan Technological University of Chile (Santiago, Chile). First, the microchip was washed with
a combination of H2O2:HCl:H2O, 1:1:5 (v/v/v) at a flow rate of 1.2 mL/h using two infusion syringe
pumps (KDS 100 Legacy, KD Scientific, Holliston, MA, USA), followed by rinsing with 1 mL of milliQ
water at a flow rate of 6 mL/h. Subsequently, 300 µL of trimethyl octadecyl silanol at 20 µL/mL was
injected through the channels at a flow rate of 1.8 or 2.4 mL/h, and a sequential rinse was performed
with 2 mL of dimethyl sulfoxide (DMSO), 2 mL of milliQ water, and 2 mL of acetone. Air was applied
under pressure in order to dry the microchip and 15 cm long Tygon® hoses were used and replaced
after the preparation steps. Thereafter, a lectin solution was prepared by dissolving 200 µg of lectin in
10 mL of 0.1 M MES buffer pH 7.

QD stock solution was prepared by dissolving 10 mg of CdTe-QD powder in 1 mL of deionized
water (pH 6). The QD were then diluted in 1× PBS (pH 6) at a concentration of 9.5 × 10−3 mg/mL. The
lectin (20 µg/mL) was placed in a 10 mL syringe (Terumo®, NJ, USA), supplied at a flow rate of 1.8 mL/h,
while QD were placed in a 10 mL a glass syringe (Hamilton®, Reno, NV, USA) to avoid interaction
with the syringe surface, and supplied with a flow rate of 2.4 mL/h. The product was collected in
low-protein-binding polypropylene microtubes (Figure 6) and dialyzed through a 3.5 kDa membrane
to eliminate the uncoupled QD, after which the corresponding characterization tests were performed.
In order to compare the efficiency of microfluidics, the same lectin and QD dilutions at the same pH
were used for coupling by covalent bonding (a non-microfluidic method), using glutaraldehyde as a
coupling agent, which were kept in continuous agitation for 15 min and then dialyzed.
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4.5. Determination of the TBL-IE2, QD, and TBL-IE2-QD Fluorescence Emission by Multiphoton Microscopy

The TBL-IE2 lectin, the QD alone, and the TBL-IE2-QD complex obtained by microfluidics were
analysed by laser multiphoton microscopy. Samples were independently mounted on glass slides and
covered with high-performance Zeiss cover glasses (D = 0.17 mm ± 0.005 mm refractive index = 1.5255
± 0.0015, Abbe number = 56 ± 2) and observed under a microscope (LSM 880 NLO, Zeiss, Germany)
equipped with a multiphoton laser Ti: Sapphire (Chameleon vision II, COHERENT, Scotland, UK)
capable of tuning between ranges from 690 to 1060 nm. The operating conditions in all experiments
were Chameleon laser-operated at 1.0% power and with an open pinhole. The complete areas for
observations were carried out with immersion oil objective 60×/1.3, NA∞−0.17, Zeiss Plan Neofluar.
Images were acquired by separating the emission into three channels, blue or UV region (371–440 nm),
green/yellow region (488–550 nm), and red region (560–730 nm). For spectral detection, “lambda mode”
was used by ZEN lite blue 2.5 software (Carl Zeiss Microscopy GmbH, Jena; Germany), scanning
emission from 400 to 700 nm for all samples, taking a reading every 2 nm. The images were obtained
severally by excitation in two wavelengths at 780 nm and 850 nm. All images were captured in CZI
format at 1131 × 1131 pixels, version Zen Blue 2.5 2018. A lectin solution was prepared by dissolving
200 µg of lectin in 10 mL of 0.1 M MES buffer (pH 7).

4.6. Morphological Analysis by Transmission Electron Microscopy (TEM)

The morphology of the TBL-IE2-QD complex was examined with a MorgagniTM 268 transmission
electron microscope (Philips/FEI, Eindhoven, The Netherlands). For the morphology analysis, 3 µL of
the sample was placed onto 200 mesh Cu and incubated for 10 min in presence of uranyl. Drying of
the sample was carried out at room temperature for 5 min. The samples were then contrasted with
2.5% uranyl acetate (Electron Microscopy Science; Hatfield, PA, USA) and incubated for 15 min. The
operating conditions in each of the experiments were 80 kV high voltage (EHT), captured in high
magnification in TIFF format with a 1376 × 1032-pixel size, and captured in greyscale. In this format, 0
was assigned to black and 255 to white in the greyscale.

4.7. TBL-IE2-QD Zeta Potential and Hydrodynamic Diameter Determination

The hydrodynamic diameter (Z-average) and zeta potential of the TBL-IE2 and TBL-IE2-QD
complex were determined with a Zetasizer ZS90 (Malvern®, Malvern, UK). Briefly, 20 µg/mL samples
were placed in polystyrene disposable cells. Each sample was analysed on a Zetasizer Nano ZS90 DLS,
at a 90◦ angle in triplicate, each measurement consisting of 10 runs of 60 s. For the zeta potential and
particle size, the samples were placed in folded-capillary disposable cells and evaluated in triplicates
of 15 runs. Results were reported as mean ± standard deviations.

4.8. Cytotoxicity Assay

A total of 1 × 104 HT-29 cells were seeded in 24 well microplates (Corning®) (Sacramento, CA,
USA) and filled with 0.5 mL of Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% foetal bovine serum (FBS) (Biowest, Nuaillé, France). After 48 h, the medium was substituted
with 1 mL DMEM with 2% FBS for cell cycle synchronization. After 24 h, the following treatments
were applied: 0.005, 0.001, 0.05, 0.01, and 0.1 mg/mL of TBL-IE2 or TBL-IE2-QD dissolved in 1 mL
Dulbecco’s modified Eagle’s medium (DMEM) with 2% bovine serum albumin (BSA). The control
wells were filled with 1 mL DMEM with 2% BSA. Cells were trypsinized and collected after 8 h of
treatment, and immediately counted using a Neubauer chamber. All processes were carried out in
quadruplicate, in three independent assays.

4.9. Statistics

To determine whether the cytotoxic effects of TBL-IE2 lectin and the TBL-IE2-QD complex were
significantly different, an analysis of covariance (ANCOVA) was performed using concentration as a
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covariate. Data analysis was performed using R software (The R Foundation for Statistical Computing,
Vienna, Austria), version 3.5.3 [78].

5. Conclusions

Previous work with Tepary bean lectins has demonstrated the effectiveness of this proteins in
triggering cytotoxic effects on malignant cell lines and tissues. In the present work, a lectin (TBL-IE2)
from this bean was purified, characterized, and successfully coupled to quantum dot nanoparticles
by microfluidics. This technique has the advantage of low sample usage and controlled coupling,
and resulted in the formation of homogeneous complexes that enabled their optical visualization and
physicochemical characterization. The TBL-IE2-QD retained 75% of its biological activity, showing a
similar cytotoxic effect respective to the native lectin, and also maintained similar agglutination activity.
Our results suggest that the lectin–QD complex may be suitable for use in the future for TBL-IE2
tracking and bioimaging for in vitro assays, in order to increase the knowledge about its interaction
with cancer cells. Further experiments are needed to analyse its viability for use in in vivo systems.
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