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Abstract

Deltamethrin is a widely used insecticide that kills a wide variety of insects and ticks. Delta-

methrin resistance develops as a result of intensive, repeated use, as well as increased

environmental contamination and a negative impact on public health. Its negative impact on

aquatic ecology and human health necessitated the development of a new technique for

environmental remediation and wastewater treatment, such as the use of nanotechnology.

The co-precipitation method was used to create Zn-Fe/LDH, Zn-AL-GA/LDH, and Fe-oxide

nanoparticles (NPs), which were then characterized using XRD, FT-IR, FE-SEM, and HR-

TEM. The kinetic study of adsorption test revealed that these NPs were effective at remov-

ing deltamethrin from wastewater. The larval packet test, which involved applying freshly

adsorbed deltamethrin nanocomposites (48 hours after adsorption), and the comet assay

test were used to confirm that deltamethrin had lost its acaricidal efficacy. The kinetics of the

deltamethrin adsorption process was investigated using several kinetic models at pH 7, ini-

tial concentration of deltamethrin 40 ppm and temperature 25˚C. Within the first 60 min, the

results indicated efficient adsorption performance in deltamethrin removal, the maximum

adsorption capacity was 27.56 mg/L, 17.60 mg/L, and 3.06 mg/L with the Zn-Al LDH/GA,

Zn-Fe LDH, and Fe Oxide, respectively. On tick larvae, the results of the freshly adsorbed

DNC bioassay revealed larval mortality. This suggests that deltamethrin’s acaricidal activity

is still active. However, applying DNCs to tick larvae 48 hours after adsorption had no lethal

effect, indicating that deltamethrin had lost its acaricidal activity. The latter result corrobo-

rated the results of the adsorption test’s kinetic study. Furthermore, the comet assay

revealed that commercial deltamethrin caused 28.51% DNA damage in tick cells, which was

significantly higher than any DNC. In conclusion, the NPs used play an important role in
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deltamethrin decontamination in water, resulting in reduced public health risk. As a result,

these NPs could be used as a method of environmental remediation.

Introduction

Deltamethrin (D) is a pyrethroid pesticide that is commonly used to control household and

crop pests. Its widespread use has resulted in serious environmental and public health issues.

Deltamethrin binds to sodium channels, causing hyperexcitability in neurons, paralysis, and

death in insects [1, 2]. Deltamethrin can cause reproductive toxicity, nerve damage, and

chronic disease in humans (long-term exposure), as well as being harmful to the environment

[3]. Deltamethrin acute toxicity was investigated in Amazonian fish species, with the results

revealing high toxicity (LC50-96 h values ranging from 6.69 to 23.63 μg/L) [4]. Exposure to haz-

ardous drug discharge via water stream during agricultural irrigation has a negative impact on

water quality. The extensive use of herbicides in agriculture has been linked to negative effects

on the environment and aquatic organisms (such as oxidative stress, genotoxicity, neurotoxic-

ity, and immunotoxicity) [5–7]. Residual pesticides are a major cause of many diseases, includ-

ing cancer, birth defects, and severe health effects. Ozone gas (O3) was used to remove leftover

deltamethrin, which was utilized as an insecticide in the treatment of wheat crops (Triticu-
maestivum L.) [8]. Additionally, soil is a very effective degrading agent for deltamethrin elimi-

nation (95 percent in 54 min at pH 10) in cotton field water [9]. Deltamethrin was removed

(88.3 and 82.8 percent, respectively) by degrading its residuals using two Serratiamarcescens
(DeI-1 and DeI-2, respectively) bacterial strains [10]. Atrazine has a detrimental effect on the

silver catfish, crayfish, and common carp’s liver metabolism and immunity [11–13]. B-glucan

(BG) was utilized to mitigate the adverse impact of pendimethalin (PMN) on the liver, kidney,

and immunological response of Oreochromisniloticus [14], and B-glucan supplementation

before atrazine exposure provided significant protection against atrazine-induced water pollu-

tion damage [15]. Rhipicephalus annulatus is one of the most common ixodid ticks, and it’s

found all over the world in hot climates [16]. Ticks are a carrier for deadly illnesses, including

Babesia and Anaplasma [17, 18], as well as a substantial economic loss owing to their impact

on cow productivity [19]. In addition, synthetic chemical acaricides, such as deltamethrin,

have been extensively employed to manage animal ectoparasites and domestic insect pests

(mosquitoes, cockroaches, flies, and fleas) [20]. Additionally, the emergence of acaricide resis-

tance has boosted the usage of these drugs, resulting in their use at higher dosages [21]. Pyre-

throids may contaminate water and cause stunted development in aquatic creatures, as well as

hepatic dysfunction, anti-oxidative imbalance, and immunosuppression in fish [7].

Nanotechnology is one of the most recent and excellent scientific fields, making major con-

tributions to the advancement of human health. Nanoparticles (NPs) have been used in a vari-

ety of areas due to their distinct characteristics, which include form, high catalytic reaction,

thermal conductivity, size distribution, and large surface area, all of which are desirable in a

variety of applications [22]. Furthermore, they have been widely used in environmental resto-

ration, contaminant removal, and clinical treatment [23]. The green synthesis of nanomaterials

using plants, fungi, bacteria, and algae that have biomedical reagents is considered an environ-

mentally friendly, biocompatible, cheap, and safe method [24]. Stabilizing Fe oxide is vital to

prevent the agglutination and degradation of their chemical and physical properties in colloi-

dal solutions. This has been achieved by coating Fe oxide using a coating agent, which often

requires the addition of secondary reagents after reduction. Many academics have lately

shown an interest in the elimination of organic contaminants using layered double hydroxide
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(LDH). This is due to its distinct characteristics, which include a large surface area, low toxic-

ity, and cheap cost, a high capacity for anion substitution, recoverability, and excellent chemi-

cal and thermal property stabilities [25]. Several methods for LDH modification have been

described, including the rebuilding process, the ion exchange process, and co-precipitation in

the presence of organics [26]. Many limitations of LDHs remain, including the inability to be

used in extremely acidic or basic media. The goal is to prepare LDH materials utilizing innova-

tive processes and sophisticated modifications, as well as ecologically friendly ways and simple

operation. However, iron oxide (magnetic nanoparticles), which is considered one of the most

safe and relatively simple nanoparticles to synthesize, has significant antimicrobial activity, as

well as drug and gene delivery systems [27], and several therapeutic applications in anemia

and cancer treatments [28]. We chose Zn–Fe LDH and Zn-Al LDH/GA as a model over other

LDHs and Fe oxide because of their high stability constant and low solubility product [22].

Furthermore, the growing volume of solid adsorbent waste necessitates the development of

novel recycling techniques. This is a crucial need all around the globe [29–32]. As a result of

our review, we investigated the ability of Zn-Fe LDH, Zn-Al/GA LDH, and Fe oxide to remove

deltamethrin and convert it to an inactive substance, thereby minimizing environmental pollu-

tion. This study highlights the potential application of various nanoparticles as an efficient del-

tamethrin adsorbent, broadening its scope for use in environmental remediation processes.

Through a kinetic analysis of the adsorption test, we aimed to evaluate an adsorbate system

with Zn–Fe LDH, Zn–Al LDH/GA, and Fe oxide used as suitable adsorbent materials. FT-IR,

XRD, FE-SEM, and HR-TEM were used to characterize the produced materials.

Materials and methods

Ethical approve

The study was conducted under the roles of the ethical standards approved by Faculty of Vet-

erinary Medicine, Beni-Suef University, Egypt and its specific approval number was (021–

172). All experiments were performed in accordance with relevant guidelines and regulations.

Used materials

For the synthesis of Zn-Fe LDH, Fe- oxide NPs, and Zn-Al-GA LDH nanoparticle-functiona-

lized deltamethrin hybrids, commercial deltamethrin 5% (Butox1, EC; 5% active ingredient,

Arab Company for Chemical Ind. Cairo, Egypt) (Table 1) was utilized. SDFCL, India, provided

iron nitrate, Fe (NO3) 9H2O, and zinc nitrate, Zn (NO3)2•6H2O. Alpha Chemika, India, and

Oxford Laboratory Reagent, India provided chloride salts, aluminum chloride (AlCl3), and

zinc chloride (ZnCl2). Sigma-Aldrich provided hydrochloric acid (Carlo Erba reagents),

sodium hydroxide (Biochem for Laboratory Chemicals in Egypt), and gallic acid. The Egyptian

market provided the clove buds. Deltamethrin removal from wastewater was detected using

Zn-Fe/LDH, Zn-Al-GA/LDH, and Fe oxide NPs. Furthermore, tick larvae were tested with

deltamethrin, deltamethrin/Zn-Fe LDH, deltamethrin/Fe oxide NPs, and deltamethrin/Zn-Al-

Table 1. Chemicals and physical characteristics of deltamethrin [33].

Pesticide name Deltamethrin

Appearance Off-white solid powder (technical grade)

Molecular formula C22H19Br2NO3

Molecular weight (g/mol) 505.2

Density (g/cm3) 0.550

λ max (nm) 290–385

https://doi.org/10.1371/journal.pone.0258749.t001
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GA LDH composites at various concentrations (recommended dosage (X) = 1uL/mL distilled

water).

Preparation of nanoparticles

Zn-Fe LDH and Zn-Al-GA LDH nanoparticles. The co-precipitation technique was

used to make Zn-Fe LDH (4:1) and Zn-Al-GA LDH (4:1:1) nanoparticles. Zinc and iron

nitrates were combined in 50 mL distilled water at room temperature in a 4:1 molar ratio.

Sodium hydroxide (2 mol/L) was added drop by drop to pH 8.0 with continuous stirring for

24 h until the precipitation of Zn-Fe LDH was complete. For Zn-Al LDH/GA preparation, the

same molar ratio (4:1:1) of Zinc and Aluminum chlorides and GA was used. The resulting pre-

cipitate was filtered and rinsed with distilled water multiple times at pH 7.0. For 24 h, the fil-

trate was dried in a vacuum oven at 50˚C [34, 35].

Synthesis of iron oxide NPs from clove bud extract. Five grams of dried grinding clove

buds (Syzgyiumaromaticum) were washed twice with distilled water to remove dust before

being combined with 250 mL of distilled water and boiled at 100˚C for 10 min. After cooling

to room temperature, the extract was centrifuged and filtered using No. 1 Whitman filter

paper. The filtrate was utilized to create Fe-oxide NPs. 15 mL of clove extract were combined

with 5 mL of 0.3 molar iron nitrate (adjusted to pH6 with 0.1 molar NaOH) and incubated at

room temperature for 10 h. The Fe NPs were centrifuged, washed three times with distilled

water, followed by ethanol, dried at 40˚C, and stored for characterization. Green produced Fe

oxide was calcined in an oven at 550˚C for 4 h under air [36].

Characterization of nanoparticles. To determine the structural composition of the syn-

thesized nanocomposites, X-ray diffraction was performed on a PANalytical (Empyrean) X-

ray diffraction with Cu-K radiation (wave length 0.154 nm) at an accelerating voltage of 40 kV,

current of 30 mA, scan angle range of 5 to 80˚, and scan step 0:04˚. Fourier Transform Infrared

Spectroscopy (FTIR) was performed on a PerkinElmer FTIR Spectrum BX PerkinElmer Life

and Analytical Sciences, CT, USA, using KBr pellets in a 1:100 ratio and spectra recorded in

the 400: 4000 wave numbers (cm-1) range to classify the binding groups present before and

after adsorption of deltamethrin on the adsorbent surface of different nanoparticle vehicles.

High resolution transmission electron microscope (HRTEM, JOEL JEM-2100) images with

200 KV as accelerated voltage and images of field emission high resolution Scanning Electron

Microscope (Gemini, Zeiss-Ultra 55) images were used to determine the morphological char-

acteristics and microstructure of nanoparticles (FESEM).

Adsorption study

Adsorption tests were carried out to determine the effect of the produced nanomaterials on the

applied deltamethrin. Falcon tubes (50 mL) contained 0.05 g of the produced adsorbent and 40

uL/mL of the pollutant deltamethrin. The pH of the solution was changed from 3 to 10 using HCl

or NaOH (0.10 N), and measurements were taken using a Metrohm 751 Titrino pH meter. All

tests were conducted in the dark, and the Falcon tubes were shaken for 48 hours at 250 rpm on an

orbital shaker (SO330-Pro). After each adsorption operation, the catalyst was separated from the

solution using syringe filters (Millipore Millex-G, 0.22 μm pore size). A UV–Vis spectrophotome-

ter (UV-2600, Shimadz, Japan) was used to determine the residual concentration of deltamethrin

at a wavelength of 250–385 nm [3, 37] at the start of preparation as well as after 1, 3, 24, and 48

hours. To ensure repeatability, all tests were carried out in triplicate. The amount of deltamethrin

removed is estimated by (Removal percent) Q% = [(C0 - Ct)/ C0] × 100 as C0 is the initial deltame-

thrin concentration and Ct is the deltamethrin concentration at a time (t) [38]. The residual sam-

ples from the adsorption tests were collected and centrifuged to obtain residues containing the
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Zn–Fe LDH/Delta, Zn–Al LDH/GA/Delta, and Fe oxide/Delta nanocomposites, which were then

washed several times with twice distilled water and dried in an oven at 50˚C for 24 hours until

completely dry. Equilibrium conditions were investigated by isotherm models and discussed in

terms of nonlinear equations. We demonstrated the significance of our results using the statistical

parameters R2. Finally, we assessed the acaricidal effectiveness of these deltamethrin nanocompo-

sites against Rhipicephalus annulatus larvae using dried reuses.

Consistency of results and quality assurance

A UV–Vis spectrophotometer was used to measure the residual deltamethrin concentration

in the samples. The study plastic and glassware were cleaned and rinsed in a 5% HCl aqueous

solution before being immersed in bi-distilled water. The accuracy of deltamethrin records was

evaluated by repeatedly introducing a deltamethrin solution standard into the UV–Vis spectro-

photometer to obtain a calibration curve (R2 = 0.999). Three reference deltamethrin solutions

were conducted after every 15 samples to ensure the spectrophotometer data was reliable.

To ensure repeatability, all experiments were repeated three times, and the average concen-

tration was calculated using the mean and standard deviation (SD) (SPSS version 16). A statis-

tically significant p-value was defined as less than 0.05.

Tick collection and preparation of larvae for larval packet test

From June to August 2020, adult female R. annulatus ticks were collected from naturally

infected cattle visiting veterinary facilities and farms in the Fayoum governorate (hot seasons).

The ticks were taken to the Faculty of Veterinary Medicine’s Parasitology Laboratory at Beni-

Suef University in Egypt. Tick samples were cleaned in distilled water and dried on filter paper

before being identified using a stereobinocular microscope, weighted, and split into 10 groups.

Adult female ticks were maintained in a BOD incubator until they produced the enormous

quantity of eggs required for larval bioassays (14–18 days).

Evaluation of NPs efficacy for removal of deltamethrin

Larval bioassay (larval packet test) using freshly absorbed deltamethrin nanocomposites

and after 48 h post adsorption. The produced nanomaterials were administered to tick larvae

via a larval package test after adsorption of deltamethrin in fresh form and after 48 hours post

adsorption of deltamethrin to validate the elimination of deltamethrin from water. In a Petri

plate, filter papers were placed, and one mL of each produced D and/or DNPs solution was placed

on the filter sheets. After allowing the impregnated sheets to dry, they were folded into packages.

A brush was used to put about 100 larvae into each experimental package, which was then sealed

with bulldog clips. For 24 h, the treated packets were maintained in a controlled environment

room at 26–28˚C and 80% relative humidity. Nanomaterial solutions were replaced with distilled

water in the control group. After allowing the impregnated sheets to dry, they were folded to

make packages. Each experimental package was sealed with bulldog clips after the larvae (about

100) were transferred using a brush. For 24 hours, the treated packets were maintained in a con-

trolled environment chamber with a temperature of 26–28˚C and a humidity of 80%. Distilled

water was used instead of nanomaterial solutions in the control group [39].

Comet assay using deltamethrin nanocomposites and deltamethrin alone

on treated tick larvae

Adult ticks that were still alive 24 hours after treatment were used in this test. The prescribed

dosage (X) of D, free nanomaterials, and DNCs were applied to adult R. annulatus female ticks
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using the adult immersion method. Ticks were submerged in 10 mL of the solution for 2 min

(10 ticks per treatment), dried, and incubated in BOD on Petri dishes for 24 hours [40]. The

modified single-cell gel electrophoresis or comet test was used on all tick tissues in the control

and treatment groups [41]. Small portions of the tissues were rinsed in an ice-cold Hank’s bal-

anced salt solution (HBSS) and minced into fine bits, about one mm3 pieces, using stainless

steel scissors to extract the cells. The chopped tissues were then washed several times in cold

phosphate-buffered saline before being pipette distributed into single cells. The comet test was

performed by embedding whole tick cells in agarose and stacking them on microscope slides.

The comet assay protocol’s analysis and follow-up procedures were carried out as previously

described [42]. The proportion of DNA damage in the tail of each tick’s comet was determined

by analyzing 100 cells from each tick. In each trial, non-overlapping cells were chosen at ran-

dom and rated (0–3). Based on perceived comet tail length migration and relative proportion

of DNA in the nucleus, score 0 = no detectable DNA damage and no tail; score 1 = tail with a

length less than the diameter of the nucleus; score 2 = tail with a length between 1× and 2× the

nuclear diameter; and score 3 = tail longer than 2 the diameter of the nucleus [42].

Statistical analysis

To see whether factors varied across nanomaterials, tick biological characteristics were statisti-

cally evaluated using the Statistical Package for Social Science (SPSS for Windows (IBM), ver-

sion 22, Chicago, USA). ANOVA tests were also used to evaluate the differences between the

means. The results are shown as mean ± SE. P-values less than 0.05 (P< 0.05) were deemed

significant.

Results

Characterization of the prepared nanoparticles

FE-SEM and HR-TEM. FE-SEM was used to investigate the morphology of the synthe-

sized materials (Fig 1). Fig 1 depicts layer and sheet nanostructures. Fig 1 shows FE-SEM

images of Zn-Al LDH/GA and Zn-Fe LDH that show a well-defined sheet structure. In the

case of Zn-Fe LDH, it is loose sheets. In the case of the Zn-Al LDH/GA, however, the layers

are compressed. The as-prepared Fe-oxide NPs were analyzed, and they clearly indicate the

production of diverse spherical and compact tiny layer nanoparticles with various other

shaped structures. HRTEM was used to characterize the As-synthesized NPs for microstruc-

tural investigation (Fig 1). Fig 1 depicts a typical HRTEM micrograph of LDH as layers and

sheets or spherical-like Fe oxide nanoparticles (Fig 1) [43, 44].

X-ray diffraction. The XRD patterns of the produced Zn-Fe LDH were comparable to

those of hydrotalcite-like LDH materials. The Zn-Fe LDH was extremely crystalline and had

distinct diffraction peaks. The appearance of major peaks at 31.86˚, 34.6˚, 36.4˚, and 47.62˚

corresponding to the (003) plane proved the layered structure of Zn-Fe LDH. The comparison

of XRD before and after deltamethrin adsorption showed a reduction in the strength of certain

diffraction peaks, such as 34.55˚, 36.47˚, 47.41˚, and 68.04˚, as well as a shift of other peaks,

such as 31.8˚ to 32.0˚, 56.7˚ to 57.06˚, and 62.9˚ to 63.04˚. The diffraction angle in the XRD

pattern after conjugation was 23.7˚ and 59.7˚ and corresponds to deltamethrin. The deltame-

thrin/Zn-Fe LDH had a basal peak (2˚ = 36.4755˚) that corresponded to an interlayer-layer

distance of 2.46337 A, which was 0.00047 A higher than the Zn-Fe LDH. This implies that del-

tamethrin was not intercalated into the Zn-Fe LDH layers, but the high-intensity peaks of 2

values (36.4827˚ and 36.4755˚) for Zn-Fe LDH and deltamethrin/Zn-Fe LDH, respectively,

were caused by deltamethrin’s interaction with metal cations, Zn(II) and Fe(III), of the LDH

(Fig 2). The crystallinity of magnetite or hematite green clove synthetized Fe-oxide became
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apparent after calcination, and the majority of the produced sample changed to magnetite

while the remainder turned to hematite. The calcinated green clove Fe-oxide diffraction peaks

were matched to the hematite and magnetite XRD patterns in card numbers (04-015-9569 and

04-009-8420, respectively). The deltamethrin/Fe-oxide XRD pattern had mean diffraction

peaks of 33.2˚, 35.69˚, 49.58˚, 54.13˚, and 64.08˚, which corresponded well with the hematite

XRD pattern (04-015-9569), which had several low-intensity peaks, such as 35.6˚, 57.66˚, and

62.59˚. This corresponded to the magnetite XRD pattern (04-009-8420). The interaction of

deltamethrin with Fe-oxide resulted in the conversion of the magnetite form of Fe-oxide to the

hematite form of Fe-oxide. As a result, certain peaks had increased intensity (e.g., 33.2˚,

49.58˚, and 54.13˚), while others had reduced intensity (e.g., 35.69˚, 62.59˚). This change from

magnetite to hematite happened because the magnetite form was less stable, causing agglomer-

ation via magnetostatic interaction and oxygen adsorption (Fig 2).

Fig 1. FESEM images of the prepared Zn-Al LDH/GA (a), Zn-Fe LDH (b) and Iron oxide (c) nanoparticles. HRTEM

images for Zn-Al LDH/GA (d), Zn-Fe LDH (e) and Iron oxide (f).

https://doi.org/10.1371/journal.pone.0258749.g001
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Fig 2. XRD pattern of the as-synthesized nanomaterials compared to their pattern after adsorption of delta.

https://doi.org/10.1371/journal.pone.0258749.g002
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Fourier transform infrared (FT-IR). The chemical interaction, as well as the alternation

in chemical bonds, functional groups, and changes in the wave number of the peaks, verified

the conjugation between deltamethrin and nanomaterials (Zn-Fe LDH, Zn-Al-GA LDH, and

Fe-oxide). The bandwidth at 3477.72 cm-1 was caused by the stretching vibrations of the

hydroxyl groups in the layers and the interlayer water molecules. While the band at 1635.15

cm-1 is caused by water’s bending vibration. Additionally, the band at 1377.95 cm-1 was

matched to the nitrate ion’s vibration mode. Bands less than 1000 cm-1 were assigned to the

vibration modes of Zn-O, Fe-O, O-Zn-O, Al-O, and O-Al-O (metal-oxygen bonds). The

stretching vibration of C = C groups was assigned to 1499.77 cm-1, the stretching vibration of

the hydroxyl group was assigned to 3396.04 cm-1, the bending vibration of the C-H was

assigned to 834.89, 943.05, and 2920.81 cm-1, and the stretching vibration of a C-C bond was

assigned to 1062.11 cm-1. The stretching vibration of the N-H bond produced a weak peak at

3731 cm-1. H-bonding formations were promoted by hydrogen donors (OH groups) on the

surface of Zn-Fe LDH and hydrogen acceptors (-OH or -NH) in the deltamethrin structure.

The deltamethrin interaction with Zn-Fe LDH was verified when the OH vibration mode peak

changed from 3477 to 3396 cm-1 (Fig 3). The Zn-Al-GA/LDH spectra revealed bands at

1546.98 cm-1 related to C = C, 1232.31 cm-1 related to COO-, and 1036.59 cm-1 belonging to

phenol groups. On Zn-Al-GA LDH, the characteristic peak of loaded deltamethrin was found

at 2931.79 cm-1, corresponding to aliphatic CH2 and CH, and at 692 cm-1, corresponding to

the in-plane bending vibration of replacement benzene, indicating the existence of C = C. The

creation of hydrogen bonds between H bond donor oxygen atoms and LDH layers was verified

by the rising intensity and shifting of peaks, indicating deltamethrin conjugation with Zn-Al-

GA LDH (Fig 3). Fig 3 shows the FTIR spectra of Fe oxide before and after deltamethrin

adsorption, with magnetite Fe-oxide absorbance bands at 686 and 598 cm-1 and hematite Fe-

oxide absorbance bands at 462 cm-1. The emergence of certain peak vibration modes at 1643

and 1734 cm-1, as well as a reduction in the strength of vibration peaks at 457 and 540 cm-1,

suggested interaction of deltamethrin with Fe-oxide and conversion of magnetite to hematite

Fe-oxide (Fig 3).

Adsorption study

The pH has a great effect on the adsorption process (Fig 4). The isotherm models (Langmuir

and Freundlich) described the adsorption process of deltamethrin (Table 2 and Fig 5 as a

representative).

The kinetics of the adsorption test is crucial for the development of adsorbents because they

introduce essential sources to the pollutants removal rate. Using kinetic models and predicting

rate-controlling mechanisms such as diffusion control, mass transfer, and chemical reaction,

the absorption of pollutants from a liquid phase by an adsorbent may be described. The experi-

mental kinetic data, as well as the curves derived from the kinetic models, are shown in Fig 6.

The equations and fitting parameters for the utilized kinetic models are given in (Tables 3–5).

Evaluation of NPs efficacy for removal of deltamethrin

Larval bioassay results of freshly adsorbed nanocomposites and after 48 h post-adsorp-

tion of deltamethrin. At the indicated dosage, deltamethrin loaded Zn-Fe LDH, Fe-oxide,

and Zn-Al-GA LDH nanoparticles induced larval mortality with no significant differences

(P0.05) between deltamethrin alone and deltamethrin loaded Zn-Fe LDH, Fe-oxide, and Zn-

Al-GA LDH nanoparticles. In addition, there were no significant changes in larval mortality

between the X and D doses of DNPs and D alone, ranging from 79.6 to 85.6 percent (Table 6).

The effectiveness of DNPs was evaluated using a packet test against tick larvae 48 h after
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deltamethrin adsorption by nanomaterials. To ensure deltamethrin removal from water, the

loaded DNPs must be produced and incubated for 48 hours before use. After 48 h of incuba-

tion with NPs, deltamethrin lost its acaricidal action, according to these tests. There is no sig-

nificant difference in mortality between the tested larvae and the untreated control larvae.

Deltamethrin alone, on the other hand, caused 75.66% larval death (Table 6).

Comet assay

The comet test indicated 28.51±1.19% DNA damaged cells in deltamethrin-treated ticks, but

20.76±1.49, 17.79±0.85, and 22.76±1.38% DNA damaged cells in ticks treated with deltame-

thrin/Fe-oxide, deltamethrin/Zn-Fe LDH, and deltamethrin/Zn-Al-GA LDH, respectively

(Table 7). The percentage of DNA damage in the soft tissues of treated ticks was scored from 0

to 3 in the control, deltamethrin alone, free nanomaterials, and deltamethrin-loaded nanoma-

terials, where score 0 represents normal cells and score 3 represents the most severely damaged

cells, as shown in (Figs 7 and 8). Because of the development of an efficient Zn-Fe LDH conju-

gate with the greatest effective result in deltamethrin inactivation in water, the Zn-Fe LDH/del-

tamethrin had the least impact on DNA damage (Table 7). The comet test, UV-Vis analysis,

and larval toxicity bioassay findings were all in good agreement. These findings show that con-

jugating deltamethrin with nanomaterials decreases deltamethrin’s acaricidal action and

allows deltamethrin to be inactivated by residual water.

Discussion

The most widely used technique for pest control is synthetic chemical acaricides. The wide-

spread use of deltamethrin, which was more likely to develop tick deltamethrin resistance,

resulted in higher pollution and posed a greater threat to public health. Nanotechnology has

the potential to address a variety of technical issues in a variety of fields, including agriculture,

antimicrobial agents, medical transporters, and pesticides [45, 46]. The deltamethrin was

absorbed by Zn-Fe LDH, Zn-Al-GA LDH, and Fe-oxide nanocomposites. The use of XRD,

FT-IR, SEM, and TEM to demonstrate deltamethrin absorption and interaction with nanoma-

terials was accomplished. These methods for ensuring effective adsorption and characteriza-

tion are similar to those previously described [34, 38, 44]. The interaction of deltamethrin with

metal cations; Zn (II) and Fe (III) of the LDH, respectively, resulted in high-intensity peaks of

2θ values for Zn-Fe LDH-NPs and deltamethrin/Zn-Fe LDH-NPs. Furthermore, certain peaks

in the deltamethrin/Zn-Al-GA/LDH-NPs XRD pattern grew wide, which may be owing to the

presence of deltamethrin, which could induce exfoliation of LDH layers [47, 48]. The interac-

tion of deltamethrin with Fe-oxide resulted in the conversion of the magnetite form of Fe-

oxide to the hematite form. As a result, the strength of certain peaks rose, while others

dropped. The magnetite state was less stable, thus the change from magnetite to hematite

occurred. Magnetostatic interaction and oxygen adsorption cause agglomeration in this way

[49, 50]. Furthermore, the FT-IR spectra of produced Zn-Fe LDH matched those of previous

studies [34, 51]. The deltamethrin interaction with Zn-Fe LDH was verified when the OH

vibration mode peak changed from 3477 to 3396 cm-1 [44, 52]. The creation of hydrogen

bonds between H bond donor oxygen atoms and LDH layers is verified by the conjugation of

deltamethrin with Zn-Al-GA LDH, as shown by the rise in intensity and shifting of peaks in

the FT-IR spectra of Zn-Al-GA LDH/deltamethrin [35, 53]. The appearance of some peak

Fig 3. FT1R spectra of the as-synthesized nanomaterials compared with their spectra after adsorption of

deltamethrin.

https://doi.org/10.1371/journal.pone.0258749.g003
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Fig 4. Percent removal of different nanomaterials at different pH values.

https://doi.org/10.1371/journal.pone.0258749.g004
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Table 2. Adsorption isotherm constants for the adsorption of deltamethrin in aqueous system systems.

Adsorbent Isotherm models Adjustable model parameters Values R2

Zn-Fe LDH

Langmuir qmax 56.80 0.97

Kad 0.043

Freundlich Kf 5.15 0.97

1/nF 0.53

Zn-Al LDH/GA

Langmuir qmax 47.44 0.99

Kad 0.02

Freundlich Kf 1.80 0.99

1/nF 0.68

Iron Oxide NPs

Langmuir qmax 20.36 0.98

Kad 0.043

Freundlich Kf 2.22 0.917

1/nF 0.476

https://doi.org/10.1371/journal.pone.0258749.t002

Fig 5. Experimental adsorption isotherm data of deltamethrin on the Zn-Fe LDH fitted using the two-parameter

isotherm.

https://doi.org/10.1371/journal.pone.0258749.g005
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vibration modes at 1643 and 1734 cm-1 decreases the intensity of vibration peaks at 457 and

540 cm-1 in the FT-IR spectrum of deltamethrin/Fe-oxide, indicating the interaction of delta-

methrin with Fe-oxide and the conversation of magnetite to hematite Fe-oxide, as well as the

disappearance of a peak at 686 cm-1 [54, 55].

Fig 6. Fitting of the experimental data at Co 40 mg/L of pseudo 1st order, pseudo 2nd order, intraparticle

diffusion, mixed 1st & 2nd orders and Avrami for the experimental data of the deltamethrin adsorption onto

nanoparticles.

https://doi.org/10.1371/journal.pone.0258749.g006

Table 3. The adsorption kinetic models for deltamethrin adsorption using Zn-Al LDH/GA nanoparticles and

their parameters obtained from the fitting results.

Kinetic models R2 Model parameters Zn-Al DH/GA

pseudo-first-order qt ¼ qeð1 � e� k1 tÞ 0.994 k1 (min-1) 1000

q(e,cal) (mg/g) 31.25

q(e, exp) (mg/g) 32.12

pseudo-second-order qt ¼
q2
e k2 t

1þqekt t
0.996 k2 (g/mg/min) 106

q(e,cal) (mg/g) 30.918

q(e, exp) (mg/g) 32.12

Intraparticle diffusion qt ¼ kip
ffiffi
t
p
þ cip 0.01 kip(mg/g�min0.5) 0.46

cip (mg/g) 29.05

Avrami model qt ¼ qeð1 � eð� kavtÞnav Þ 0.999 q(e,cal) mg/g 31.50

kav (min-1) 0.84

nav 0.80

Mixed 1, 2-order

qt ¼ qe
1� expð� ktÞ

1� f2expð� ktÞ

0.999 k (mg�g-1�min-1) 0.0011

q(e,cal) mg/g 32.36

q(e,exp) mg/g 32.12

f2 0.999

https://doi.org/10.1371/journal.pone.0258749.t003
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The pH has a great effect on the adsorption process. The Deltamethrin removal sharply

increased to 68.91%, 68.54% and 35.32% using Zn-Al LDH/GA, Zn-Fe LDH and iron oxide

NPs, respectively, at a pH of 7. At a pH higher beyond pH 9, the adsorption of deltamethrin

likely decreased owing to OH− groups that are repulsed to the negative molecules of deltame-

thrin. Isotherm models explain the behavior of the adsorption of deltamethrin on three nano-

materials well upon comparing the calculated values from adsorption isotherms with

experimental values applied to fit the experimental data using a nonlinear relationship with a

Langmuir adsorption isotherm model [56]. The Langmuir adsorption isotherm is widely used

for the modeling of homogeneous adsorption on the surface of the monolayer and assumes

that the adsorbent surface is uniform and that all sorption sites are identical. The Freundlich

isotherm model is suitable for heterogeneous isotherm model is used for both heterogeneous

and homogeneous distributions at high and low concentrations. The results show the

Table 5. The adsorption kinetic models for deltamethrin adsorption using Fe-oxide nanoparticles and their

parameters obtained from the fitting results.

Kinetic models R2 Model parameters Fe- oxide

pseudo-first-order

qt ¼ qeð1 � e� k1 tÞ

0.833 k1 (min-1) 1000

q(e,cal) (mg/g) 24.36

q(e, exp) (mg/g) 31.35

pseudo-second-order

qt ¼
q2
e k2 t

1þqekt t

0.806 k2 (g/mg/min) 1.03�106

q(e,cal) (mg/g) 24.36

q(e, exp) (mg/g) 31.35

Intraparticle diffusion

qt ¼ kip
ffiffi
t
p
þ cip

0.436 kip(mg/g�min0.5) 1.886

cip (mg/g) 18.103

Avrami model

qt ¼ qeð1 � eð� kavtÞnav Þ
0.983 q(e,cal) mg/g 28.92

kav (min-1) 0.579

nav 0.547

Mixed 1, 2-order

qt ¼ qe
1� expð� ktÞ

1� f2expð� ktÞ

0.995 k (mg�g-1�min-1) 0.0019

q(e,cal) mg/g 32.15

f2 0.999

https://doi.org/10.1371/journal.pone.0258749.t005

Table 4. The adsorption kinetic models for deltamethrin adsorption using Zn-Fe LDH nanoparticles and their

parameters obtained from the fitting results.

Kinetic models R2 Model parameters Zn-Fe/LDH

pseudo-first-order

qt ¼ qeð1 � e� k1 tÞ

0.980 k1 (min-1) 10000

q(e,cal) (mg/g) 26.065

q(e, exp) (mg/g) 29.00

pseudo-second-order

qt ¼
q2
e k2 t

1þqekt t

0.965 k2 (g/mg/min) 1.03�106

q(e,cal) (mg/g) 29

q(e, exp) (mg/g) 29.00

Avrami model

qt ¼ qeð1 � eð� kavtÞnavÞ
0.999 q(e,cal) mg/g 28.64

kav (min-1) 1.004

nav 0.949

q(e, exp) (mg/g) 0.999

Mixed 1, 2-order

qt ¼ qe
1� expð� ktÞ

1� f2expð� ktÞ

0.998 k (mg�g-1�min-1) 0.0019

q(e,cal) mg/g 29.71

f2 0.999

https://doi.org/10.1371/journal.pone.0258749.t004
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adsorption behavior of deltamethrin well based on the statistical analysis of the correlation

coefficient R2; whereas the qe was 56.80, 47.44 and 20.36 mg/g for Zn-Fe LDH, Zn-Al LDH/

GA and Iron oxide NPs. Based upon this result, the Langmuir model was the best model for

explaining the adsorption process, where homogeneous adsorption is on the surface of the

monolayer, and the surface of adsorbent is uniform and without interactions between adsor-

bents. This indicates that the Langmuir model is more suitable for explaining the process of

deltamethrin adsorption and better represents the experimental data.

The experimental kinetic data revealed fast absorption of deltamethrin during the first 1

hour, followed by gradual elimination until equilibrium was reached at 24 hours, and then sta-

bility was achieved for up to 48 hours. The adsorption kinetic data were best matched with the

pseudo-first-order, pseudo-second-order, Avrami model, and the mixed 1, 2-order for the

three adsorption systems, according to the error function correlation coefficient R2 (Tables 3–

5). The predicted qe (q(e,cal)) is extremely similar to the experimentally determined equilib-

rium q(e,exp) (Tables 3–5). As a result, the avrami and mixed 1, 2 order adsorption mecha-

nisms are dominant for the adsorption of deltamethrin onto Zn-Al LDH/GA LDH, Zn-Fe

LDH, and Fe-oxide nanoparticles, implying that physical adsorption and intermolecular inter-

molecular hydrogen bonding and chemical bonds were the rate determining steps through

electrostatic interactions and intermolecular [57].

Table 6. Larval mortality percentage as an indicator of deltamethrin removal by the freshly adsorbed deltamethrin/nanomaterials and after 48 h post-adsorption

with nanomaterials.

Deltamethrin, deltamethrin/nanomaterials

(Deltamethrin (X) = 1 uL/mL)

Larval mortality percentage (%) by application of

freshly adsorbed deltamethrin/nanomaterials

Larval mortality percentage (%) by application of adsorbed

deltamethrin/nanomaterials 48hrs post adsorption

Deltamethrin (1 uL/mL) 79.7 ± 0.8 79.7 ± 0.8

Zn-Fe/LDH 9.83± 0.5 9.83± 0.5

Zn-AL-GA/LDH 11.2 ± 0.8 11.2 ± 0.8

Fe-oxide 10.2 ± 1.1 10.2 ± 1.1

Deltamethrin/Zn-Fe LDH 79.0 ± 0.6 10.0 ± 1.1�

Deltamethrin/Zn-Al-GA LDH 84.0 ± 1.0 9.50 ± 1.0�

Deltamethrin/Fe-oxide 85.7 ± 0.4 10.0 ± 1.4�

Control (distilled water) 7.17± 0.5 7.17± 0.5

(�) Significant P� 0.05.

https://doi.org/10.1371/journal.pone.0258749.t006

Table 7. Comet assay using deltamethrin, nanocomposites and its loading forms on treated tick larvae.

Treatment Number of ticks No. of cells Class¥ of comet DNA damaged cells (%) (Mean ± SEM)

Analyzed (�) Total comets 0 (Normal cells) 1 2 3

Control (70% Ethanol) 4 400 31 369 28 3 0 7.75±0.63

Deltamethrin 4 400 114 286 35 42 37 28.51±1.19

Fe–oxide 4 400 47 353 33 14 0 11.78±1.38

Fe-oxide/ deltamethrin 4 400 83 317 30 32 21 20.76±1.49

Zn-Fe LDH 4 400 42 358 25 13 4 10.52±1.04

Zn-Fe LDH/Deltamethrin 4 400 71 329 31 27 13 17.79±0.85

Zn-Al-GA LDH 4 400 56 344 33 18 5 14.12±0.91

Zn-Al-GA LDH/Deltamethrin 4 400 91 309 37 25 29 22.76±1.38

¥: Class 0 = no tail; 1 = tail length < diameter of nucleus; 2 = tail length between 1X and 2X the diameter of nucleus; and 3 = tail length > 2X the diameter of nucleus.(�):

No of cells analyzed were 100 per a tick.

https://doi.org/10.1371/journal.pone.0258749.t007
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NPs were used to investigate the effective removal of deltamethrin from water. At the con-

centration (X) of deltamethrin and its newly adsorbed DNPs forms, the larval toxicity bioassay

revealed 79.7 ± 0.8% death. The impact of deltamethrin and newly adsorbed DNPs on annula-

tus larvae was not significantly different (p�0.05). This shows that the nanocomposites have

no impact on the effectiveness of deltamethrin in its newly adsorbed state. Using DNPs after

48 h of adsorption; however, resulted in non-significant mortality of larvae as compared to

control untreated larvae. At the concentration (X) of deltamethrin, however, deltamethrin

alone caused 79.7% of larval death. As a result, this discovery proved deltamethrin’s removal

from water and the lack of its acaricidal action. As adsorbent nanoparticles for deltamethrin

contamination on wastewater cleanup, Zn-Fe/LDH, Zn-Al-GA/LDH, and Fe-oxide were uti-

lized. After 48 h of incubation at room temperature, these NPs successfully removed deltame-

thrin from the water. The drug residues were removed from water using these adsorbent

nanoparticles [58]. UV-Vis spectrophotometer, GCMS analysis, and FT-IR analysis were used

Fig 7. Visual score of damaged DNA (class 1, class 2 & class 3) using comet assay in soft tissue samples collected

from the treated ticks.

https://doi.org/10.1371/journal.pone.0258749.g007
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to demonstrate deltamethrin breakdown by the bacterial isolate (IK2a) [3]. The degradation of

deltamethrin differed very slightly amongst the nanoparticles utilized. These results align with

those of [37], who utilized magnetic iron oxide nanoparticles to extract deltamethrin from

water. Furthermore, in the physicochemical treatment by ion exchange and the precipitation

technique, the pesticides were adsorbed in two ways [59, 60]. The present finding is corrobo-

rated by the findings of [44], who discovered that Zn-Fe LDH is capable of effectively remov-

ing oxytetracycline hydrochloride. According to them, this technique is low-cost and creates

bonds between oxytetracycline molecules and Zn, as well as Fe atoms of LDH forming hydro-

gen bonds with the hydroxyl groups of LDH. Furthermore, iron oxide nanoparticles exhibit

unique paramagnetic properties that promote cellular and molecular interactions. Because of

these characteristics, Fe-oxide may be employed as a contrast agent in disease diagnostics and

as a medication carrier [61, 62]. Zn-Fe LDH was used to remove a large amount of cadmium

from waste for environmental cleanup. At the same time, Zn-Fe LDH is an antibacterial agent

Fig 8. Visual score of damaged DNA (class 2 and class 3) using comet assay in soft tissue samples collected from

the treated ticks.

https://doi.org/10.1371/journal.pone.0258749.g008
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that works against both Gram-positive and Gram-negative bacteria. As a result, Zn-Fe LDH

has a lot of potential in the area of water bioremediation [34]. The interchange of phosphorus

and the hydroxyl group on the surface of magnetic LDHs (Mg-Al, Zn-Al, and Mg-Fe LDHs)

makes them good adsorbents for phosphorus [63]. In terms of environmental remediation,

Zn-Fe LDH removed a considerable amount of cadmium from waste. Zn-Fe LDH is also a

potent antibacterial agent against Gram-positive and Gram-negative bacteria. As a result, Zn-

Fe LDH has a lot of potential in the area of water bio-remediation [34]. The interchange of

phosphorus and the hydroxyl group on the surface of magnetic LDHs (Mg-Al, Zn-Al, and

Mg-Fe LDHs) makes them good phosphorus adsorbents [64]. Recent research has looked at

the dual function of LDH nanoparticles. LDH nanoparticles are adsorbent, nontoxic, fast, and

easy to produce, with properties comparable to clay materials, and are effective in removing

drug residues from water. As an adsorbent, Zn-Fe LDH has been shown to effectively remove

a high proportion of diclofenac sodium from an aqueous solution [38]. Sulfamethoxazole drug

removal capability by calcined LDH under optimum circumstances with a 93% elimination

rate was reported by [64]. These findings may be helpful in the battle against antibiotic resis-

tance in bacteria for therapeutic reasons. Copper ions and malachite green dye were also elimi-

nated by Zn-Al-GA LDH/polystyrene nanofibers [53]. Furthermore, Zn-Fe LDH showed the

capacity to adsorb arsenic and antimony from contaminated water [65]. After a 24-hour incu-

bation period on the soft tissues of treated ticks, the comet test was used to determine the in

vitro genotoxic activity of commercial deltamethrin, free nanomaterials, and deltamethrin

nanomaterials complex. The comet test revealed that the treated groups had more DNA dam-

age than the control group. Furthermore, the treated groups exhibited significant drug concen-

trations in their tissues, suggesting a link between DNA damage and drug exposure [66–68].

The comet assay revealed that the rate of DNA damage and apoptosis in soft tissues of ticks

treated with Zn-Fe LDH/deltamethrin, Zn-Al-GA LDH/deltamethrin, and Fe-oxide/deltame-

thrin was lower than the rate of DNA damage in cells treated with deltamethrin alone, which

was in agreement with our findings. When compared to free nanomaterials, the untreated con-

trol group (score 0), and deltamethrin loaded nanomaterials, which produced a low rate of

DNA damage, deltamethrin substantially induced DNA damage with an increased comet tail

length (score 3). Deltamethrin’s genotoxic activity and apoptotic impact on normal soft tissues

may be reduced by using nanomaterials [69]. Furthermore, in DNA damaged cells, Zn-Fe

LDH was the lowest, suggesting that this material absorbed the most deltamethrin from the

water. The applied nanoparticles’ mode of action in the deactivation of deltamethrin in dilute

water may be ascribed to the nanomaterials’ ability to effectively remove deltamethrin from

water. Deltamethrin conjugation with nanomaterials also increased with time. The larval toxic-

ity test showed that deltamethrin-loaded nanocomposites had no acaricidal activity. Further-

more, the comet test revealed that deltamethrin-loaded nanocomposites exhibited lower larval

toxicity on DNA-damaged cells than deltamethrin alone. Finally, the findings of the Kinetic

study of adsorption test, larvae toxicity bioassay, and comet assay were all compatible.

Conclusion

The capacity of nanoparticles, Zn-Fe LDH-, Zn-Al-GA LDH-, and Fe-oxide to decontaminate

deltamethrin was examined in the present research as a recent development in potential envi-

ronmental remediation. After 48 hours of incubation at room temperature, these nanoparticles

(Zn-Fe LDH, Zn-Al-GA LDH, and Fe-oxide) can remove deltamethrin from the water. Kinetic

adsorption studies, larval toxicity bioassays, and comet assays all confirmed this elimination.

As a result, these nanoparticles provide an alternate approach for substantial deltamethrin

decontamination and environmental cleanup.
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