
RESEARCH ARTICLE

A computational model of shared fine-scale

structure in the human connectome

J. Swaroop Guntupalli1,2,3, Ma Feilong1,2, James V. Haxby1,2*

1 Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of

America, 2 Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States of America,

3 Vicarious AI, Union City, CA, United States of America

* james.v.haxby@dartmouth.edu

Abstract

Variation in cortical connectivity profiles is typically modeled as having a coarse spatial

scale parcellated into interconnected brain areas. We created a high-dimensional common

model of the human connectome to search for fine-scale structure that is shared across

brains. Projecting individual connectivity data into this new common model connectome

accounts for substantially more variance in the human connectome than do previous mod-

els. This newly discovered shared structure is closely related to fine-scale distinctions in rep-

resentations of information. These results reveal a shared fine-scale structure that is a

major component of the human connectome that coexists with coarse-scale, areal structure.

This shared fine-scale structure was not captured in previous models and was, therefore,

inaccessible to analysis and study.

Author summary

Resting state fMRI has become a ubiquitous tool for measuring connectivity in normal

and diseased brains. Current dominant models of connectivity are based on coarse-scale

connectivity among brain regions, ignoring fine-scale structure within those regions. We

developed a high-dimensional common model of the human connectome that captures

both coarse and fine-scale structure of connectivity shared across brains. We showed that

this shared fine-scale structure is related to fine-scale distinctions in representation of

information, and our model accounts for substantially more shared variance of connectiv-

ity compared to previous models. Our model opens new territory—shared fine-scale

structure, a dominant but mostly unexplored component of the human connectome—for

analysis and study.

Introduction

Resting state functional magnetic resonance imaging (rsfMRI) reveals patterns of functional

connectivity that are used to investigate the human connectome [1–3] and parcellate the brain

into interconnected areas that form brain systems and can be modeled as networks [4–11].
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The connectivity of a single area is considered to be relatively homogeneous and typically is

modeled as a mean connectivity profile. Cortical topography, however, has both a coarse scale

of cortical areas and a finer scale of multiplexed topographies within areas [12–16]. Fine-scale

within-area topographies are reflected in patterns of activity that can be measured with fMRI

and decoded using multivariate pattern analysis (MVPA)[12,13,17]. Fine-scale variation in

connectivity, however, has been overlooked due to poor anatomical alignment of this variation

across individual brains. We ask here whether local variation in functional connectivity also

has a fine-scale structure, similar to fine-scale response tuning topographies, and whether such

variation can be captured in a common model with basis functions that are shared across

brains.

We developed a new algorithm, connectivity hyperalignment (CHA), to model local varia-

tion in connectivity profiles with shared basis functions for connectivity profiles across indi-

viduals and individual-specific local topographies of those connectivity basis functions (Fig 1).

The resultant common model connectome consists of transformation matrices for each indi-

vidual brain, which contain individual-specific topographic basis functions, and a common

model connectome space, which contains shared connectivity profiles (Fig 2). Individual

transformation matrices transform an individual brain’s connectome, in its native anatomical

coordinate space, into the common model space [13,16]. The individual transformation matri-

ces and common model connectivity matrix are derived iteratively from training data. Validity

testing is done on connectivity profiles and other functional parameters from independent test

data that are hyperaligned into the common model connectome space. The results show that

CHA can derive these shared basis functions from functional connectivity derived from neural

activity while watching an audiovisual movie and from neural activity in the resting state.

The resultant common model connectome accounts for substantially more shared variance

in functional connectivity derived from both movie fMRI data and resting state fMRI data

than was accounted for by previous models. This shared variance resides in fine-scale local var-

iations in connectivity. We show further that this local variability in functional connectivity

profiles is meaningful in that it is closely related to local patterns of response that encode fine

distinctions among representations. Our results indicate that shared fine-scale local variation,

which was not evident in previous models, is a major component of the human connectome

that coexists with shared coarse-scale areal structure. Our common model connectome makes

this fine-scale local variation accessible for group-level study of its network properties.

Results

We derived a common model of the human connectome by applying CHA to fMRI data col-

lected while 11 subjects viewed a full-length movie [13,16] and to rsfMRI data for 20 subjects

in the Human Connectome Project (HCP) database [18–20]. The common model connectome

is high-dimensional with connectivity profiles for model dimensions that serve as basis func-

tions for modeling the connectivity profiles of cortical loci in individual brains. We validated

the common model in terms of 1) increased intersubject correlations (ISCs) of connectivity

profiles, and 2) increased spatial specificity of shared connectivity profiles. To test whether this

fine-scale structure is meaningful for the representation of information, we tested the effect of

CHA on 3) ISCs of representational geometry for the movie, 4) between-subject multivariate

pattern classification (bsMVPC) of responses to the movie and 5) ISCs of task activation and

contrast maps from the HCP database. The first two validation experiments are designed to

test whether connectivity hyperalignment improves alignment of functional connectivity

across brains in a way that preserves the fine-grain spatial granularity of variation in connec-

tivity profiles. These validations were tested on functional connectivity derived from both the

Common model of the human connectome
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movie and rsfMRI data. The third, fourth, and fifth validation experiments are designed to test

whether the transformation of individual brain spaces into the common model space better

aligns topographies associated with representation of information and cognitive processes.

The third and fourth validations were tested on the movie data. The fifth validation test used

rsfMRI and task fMRI data from the HCP database.

Intersubject correlation of connectivity profiles

CHA afforded large increases in ISCs of connectivity profile vectors in both the movie fMRI

data and the rsfMRI data (Fig 3 and Fig 4).

Increases in ISCs of functional connectivity derived from movie data were distributed

across all of cortex (Fig 3). ISC at a cortical node is the correlation of the one subject’s connec-

tivity profile with the mean of other subjects’ profiles, indexing how well other subjects’ con-

nectivity profiles can predict an individual’s connectivity profiles. Fig 3A shows a cortical map

of mean ISCs of connectivity profiles in the common model connectome space as compared to

ISCs in anatomically-aligned data. Fig 3B is a scatterplot of mean ISCs for individuals after

anatomical alignment and CHA, which shows that CHA increased ISC for each individual and

preserved individual similarity or deviance from the group. We quantify the increases in 24

Fig 1. Schematic of connectivity hyperalignment (CHA). (A) Connectivity can be defined as any measure of similarity between a cortical locus (e.g., surface

node/voxel) and a target region. Connectivities to a target region (Ti, Tj, Tk, . . .) of loci in a searchlight yield a connectivity pattern for that target in that

searchlight. These patterns can be analyzed as connectivity pattern vectors (vi, vj, vk,, . . .) in a space in which each cortical locus in that region is a dimension.

(B) Connectivity pattern vectors (v1, v2, . . . vn) in a region of interest or a searchlight to be hyperaligned are calculated for target regions (T1, T2 . . ., Tn,)

distributed uniformly across the whole cortex. At this stage connectivity hyperalignment derives transformation matrices for each brain (R1, R2, . . .) in each

searchlight that align these vectors across subjects into a common high-dimensional connectivity space. (C) For each subject, i, searchlight transformation

matrices, e.g. Rij, Rik, Ril, are aggregated into a whole cortex transformation matrix, RiA, as in [16], affording projection of connectivity data into a whole

cortex common model connectome space. Conversely, the transpose of a whole cortex transformation matrix can project connectivity data from the whole

cortex common connectome space back into that subject’s cortical anatomy.

https://doi.org/10.1371/journal.pcbi.1006120.g001

Fig 2. Schematic of data and transformation matrices for the common connectome. The connectivity data for an

individual subject, i, in that subject’s native brain space, Bi, is projected into the common model connectome space, Mi,

by multiplying it with the transformation matrix, Ri. Vectors in data matrix rows are connectivity pattern vectors—

patterns of connectivity with a single connectivity target time-series across cortical nodes/voxels in the individual’s

native brain space or across model dimensions in the common model connectome. Vectors in data matrix columns are

connectivity profile vectors—connectivities of a single node/voxel or model dimension across connectivity targets. The

transformation matrix contains weights for the linear transformation of connectivity vectors in an individual’s brain

data space into the common model connectome space. Vectors in transformation matrix columns for model

dimensions are patterns of weights for a local field of voxels/nodes and serve as topographic basis functions. Individual

variation in the fine-scale topographic pattern of connectivity to a target is modeled as a weighted mixture of

multiplexed or overlaid topographies for model dimensions.

https://doi.org/10.1371/journal.pcbi.1006120.g002
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functional ROIs, identified using a meta-analytic database, NeuroSynth [21](Fig 3C; S1 Table).

Mean ISC of connectivity profiles across these ROIs was markedly higher in the common

model connectome than in the anatomically-aligned data (0.67 versus 0.15; difference = 0.52,

95% confidence interval, CI = [0.46, 0.56]).

Increases in ISCs of resting state connectivity profiles were similarly distributed across all of

cortex and replicated the findings based on ISCs of movie viewing connectivity profiles (Fig

4). Fig 4A shows a cortical map of mean ISCs of resting state connectivity profiles in the com-

mon model connectome space and in data aligned with the HCP’s MSM-All method

Fig 3. ISC of connectivity profiles calculated from movie data. (A) Average ISCs of connectivity profiles in each surface node after

CHA and anatomical alignment. (B) Scatter plot of individual whole cortex mean ISCs of connectivity profiles before and after CHA

with linear fit. Each subject’s similarity of connectome with the group is improved by CHA while preserving similarity or deviance

from others. Shaded region is the 95% CI. (C) Mean ISCs of connectivity profiles in functional ROIs covering visual, auditory,

cognitive, and social systems comparing the common model connectome space and anatomical alignment. Bootstrapped testing

showed significantly higher ISCs after CHA than after anatomical alignment in all ROIs.

https://doi.org/10.1371/journal.pcbi.1006120.g003
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Fig 4. ISC of connectivity profiles calculated from HCP rsfMRI data. (A) Average ISC of connectivity profiles in each surface node in the

common model connectome space and after surface alignment (MSM-All). (B) Scatter plot of individual whole cortex mean ISCs of connectivity

profiles before and after CHA with linear fit. Each subject’s similarity of connectome with the group is improved by CHA while preserving similarity

or deviance from others. Shaded region is the 95% CI. (C) Average within-subject between-session correlations in the common space. (D) Mean

ISCs and WSCs of connectivity profiles in functional ROIs covering visual, auditory, cognitive, and social systems comparing the common model

connectome space, within-subject between-session correlation in common space, and surface alignment.

https://doi.org/10.1371/journal.pcbi.1006120.g004
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(multimodal surface matching [22]). Fig 4B is a scatterplot of mean ISCs for individuals after

MSM-All alignment and CHA, which shows that CHA of resting state data increased ISC for

each individual and preserved individual similarity or deviance from the group. Fig 4C shows

a cortical map of within-subject correlations between connectivity profiles from different rest-

ing state sessions. We quantify the increases in 26 functional ROIs, identified using a meta-

analytic database, NeuroSynth [21](Fig 4D; S6 Table). Mean ISC of connectivity profiles across

these ROIs was markedly higher in the common model connectome than in the MSM-All-

aligned data (0.66 versus 0.35; difference = 0.31 [0.30, 0.33]). ISCs of resting state connectivity

profiles in the common model connectome space are slightly higher than within-subject corre-

lations of resting state connectivity profiles (mean correlation = 0.64; CI for difference = [0.00,

0.05]) (Fig 4D). This latter result indicates that an individual’s connectome based on resting

state functional connectivity is better predicted by the common model connectome, based on

other subjects’ data, than by estimates based on a typical sample of that subject’s own rsfMRI

data, due to the benefit of estimating connectivity profiles based on a large number of brains

and the precision of CHA.

The substantial increase in ISCs with hyperalignment is due in part to discovery of shared

variance that was obscured by misalignment but also to suppression of unshared variance and

amplification of shared variance mediated by filtering the data in the transformation step with

smaller weights for nodes with unshared or noisy variance and larger weights for nodes with

shared variance. To gauge the size of the effect of filtering independent of better information

alignment, we calculated ISCs in data that are filtered by our algorithm but aligned based on

anatomy or MSM-All (see methods). ROI mean ISCs of connectivity profiles in movie data fil-

tered with CHA but aligned based on anatomy was 0.22 (CHA versus filter-control differ-

ence = 0.45 [0.39 0.49]) and for HCP resting state data filtered with CHA but aligned based on

MSM-All was 0.41 (CHA versus filter-control difference = 0.25 [0.23, 0.27]). These ISCs are

larger than ISCs of unfiltered, anatomically and MSM-All-aligned data but, nonetheless, still

markedly lower than ISCs of connectivity profiles in the common model connectome space,

which is both filtered and re-aligned by CHA.

Spatial granularity of connectivity profile variation

We investigated the spatial specificity of the common model connectome by computing the

intersubject spatial point spread functions (PSF) of ISCs of connectivity profiles [16]. The PSF

of connectivity profiles was computed as the correlation of the connectivity profile in a cortical

surface node for a given subject with the average connectivity profiles of other subjects in the

same node and nodes at cortical distances ranging from 3 to 12 mm. We similarly calculated

within-subject PSFs based on within-subject correlations (WSC) of connectivity profiles

between two resting state sessions. Fig 5A shows the slopes of connectivity profile PSFs for

movie data in 24 functionally-defined ROIs, and Fig 5B shows the mean PSF across these ROIs

as a function of cortical distance in the common model connectome space and in anatomi-

cally-aligned data. CHA increased the average slope of PSF across these ROIs, relative to ana-

tomical alignment, from 0.013 to 0.105 (difference = 0.092 [0.080, 0.099]). Fig 5C shows the

slopes of connectivity profile PSFs for resting state connectivity profiles in the 26 functionally-

defined ROIs, and Fig 5D shows the mean PSF across these ROIs (ISC or WSC as a function of

cortical distance) in the common model connectome space, in MSM-All-aligned data, and

within-subject. CHA increased the average slope of PSF across these ROIs, relative to MSM-All

alignment, from 0.012 to 0.065 (difference = 0.053 [0.047, 0.055]). The intersubject PSF slopes

in the common model connectome space and the PSF within-subject (slope = 0.067) were not

significantly different (difference = 0.002 [-0.002, 0.007]). This fine spatial granularity was

Common model of the human connectome
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ubiquitous in cortex, with steep PSFs in sensory-perceptual areas in occipital and temporal

cortices as well as in higher-order cognitive areas in lateral and medial parietal and prefrontal

cortices.

The mean PSFs across ROIs (Fig 5B and 5D) clearly show that CHA captures fine-scale var-

iations in connectivity profiles for neighboring cortical nodes across subjects that are not

Fig 5. Spatial granularity of shared connectivity profiles. The intersubject point spread function (PSF) of connectivity

profile correlations are computed as the correlation between the connectivity profile for a cortical locus in one subject and

the profiles of the same locus and its spatial neighbors in other subjects at increasing distances from that locus. For the HCP

rsfMRI data, within-subject PSFs are computed as the correlation between the connectivity profile for a cortical locus from

one rsfMRI session and the profiles of the same locus and its spatial neighbors from a different rsfMRI session. Slope is

estimated in each functional ROI as the linear fit of intersubject or within subject correlations as a function of distance. (A)

Slope of PSFs for movie viewing connectivity profiles in 24 functional ROIs. (B) Average movie viewing connectivity PSF

across all ROIs is plotted as ISC as a function of cortical distance. (C) Slope of PSFs for resting state connectivity profiles in 26

functional ROIs. (D) Average resting state connectivity PSF across all ROIs is plotted as ISC or WSC as a function of cortical

distance.

https://doi.org/10.1371/journal.pcbi.1006120.g005
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captured by anatomical alignment or MSM-All alignment. The ISCs of connectivity profiles for

neighboring nodes in the common model connectome are substantially lower than ISCs for the

same node (differences = 0.21 [0.18, 0.23] for movie data and 0.09 [0.08,0.09] for resting state

data). Similar fine spatial granularity is seen in the within-subject between-session PSFs for rest-

ing state connectivity profiles (0.10 [0.09, 0.10]). By contrast, ISCs for connectivity profiles in

the anatomically-aligned and MSM-All aligned data barely differ for nodes spaced 0 versus 1

voxel/3 mm (differences = 0.005, [0.005, 0.005] and 0.004, [0.004,0.015], respectively) and 2 vox-

els/6 mm (0.01 [0.01, 0.02] and 0.02 [0.01, 0.02], respectively) apart. Decrements for larger dis-

tances (ISCs of nodes spaced 3 voxels/9 mm: 0.03 [0.03, 0.03] and 0.03 [0.03,0.03], respectively;

and 4 voxels/12 mm: (0.05 [0.05, 0.06] and 0.05 [0.04,0.05], respectively) were similarly small.

Generalization to fine-scale patterns in response tuning

Next we asked if this shared variance in fine-scale local variation in connectivity profiles car-

ries meaning by testing whether it reflects fine-scale variations in response tuning topogra-

phies that carry fine-grained distinctions in representation. We tested whether projecting

movie response data into the CHA-derived common connectome space afforded better align-

ment of representational geometry for movie time-points and better bsMVPC of movie time

segments.

Results show that shared fine-scale structure in the common model connectome is closely

related to fine distinctions in representations. Fig 6A shows a cortical map of mean ISCs of

local representational geometry after anatomical alignment and in the common model con-

nectome. Representational geometry is the matrix of all pairwise similarities between patterns

of response to different time-points in the movie, resulting in a matrix of more than 800,000

pairwise similarities (see methods). Fig 6B shows a cortical map of mean bsMVPC accuracies

for 15 s movie time-segments in searchlights after anatomical alignment and CHA. CHA

greatly increased both ISCs of representational geometry and bsMVPC accuracies. CHA

Fig 6. Effect of CHA on ISC of representational geometries and bsMVPC of movie data. (A) ISC of representational geometry in each voxel mapped onto the

cortical surface. (B) Accuracies for bsMVPC of 15 s movie segments. Classification was performed within each movie half separately, and the accuracies are then

averaged across the two halves. Parameters for hyperalignment are derived from the half that was not used for classification.

https://doi.org/10.1371/journal.pcbi.1006120.g006
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significantly increased ISCs of representational geometry in all ROIs (ROI mean ISCs = 0.308

and 0.210 after CHA and anatomical alignment, respectively, difference = 0.097 [0.080,

0.110]). CHA also dramatically increased bsMVPC accuracies in all ROIs (ROI mean bsMVPC

accuracies = 10.37% and 1.04% after CHA and anatomical alignment, respectively, differ-

ence = 9.33% [7.71%, 10.54%]).

Generalization to task maps from the HCP database

We tested the generalization of the common model connectome derived from resting state

fMRI by applying connectivity hyperalignment parameters derived from one session of resting

state data to task maps provided by the HCP database comprised of 32 task activation maps

and 14 task contrast maps (S2 Table). These task maps reflect simple operations and, thus, do

not have the same fine-grained structure that is associated with activation by dynamic, natural-

istic stimuli such as a movie. We calculated the ISC of these task maps between each subject

and the average of others before and after hyperalignment. Hyperalignment improved correla-

tions on average across all tasks and in all but two (Face-Shapes and Body-Average, labeled ns)

task contrast maps (Fig 7). The average correlation across task maps increased from 0.58 to

0.65 (mean difference = 0.07 [0.06, 0.08]).

Comparison of CHA and Response Hyperalignment (RHA)

Since CHA aligned fine-scale patterns of response tuning functions across subjects better than

anatomy-based alignment, we asked how well it compares to our previously published

response-based hyperalignment (RHA) [16]. Because RHA requires responses that are syn-

chronized across subjects in time, it cannot be applied to resting state data. We compare CHA

and RHA of movie viewing data on 1) ISC of connectivity profiles, 2) ISC of representational

geometry, and 3) bsMVPC of 15 s movie segments.

Results showed that both CHA and RHA increased ISCs and bsMVPC classification accura-

cies significantly over anatomy-based alignment, but each algorithm achieves better alignment

Fig 7. ISCs of HCP task activation and contrast maps after CHA and surface alignment (MSM-All).

https://doi.org/10.1371/journal.pcbi.1006120.g007
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for the information that it uses to derive a common model, namely connectivity profiles and

patterns of response, respectively. ISCs of connectivity profiles are significantly higher in a

common model based on CHA than in a common model based on RHA (ROI mean

ISCs = 0.67 and 0.575, respectively; CHA-RHA difference = 0.095 [0.081, 0.112])(S1 Fig). By

contrast, RHA marginally but significantly outperforms CHA on some validations based on

response tuning functions, namely ISCs of representational geometry (ROI means = 0.322 and

0.308, respectively; RHA-CHA difference = 0.014 [0.007, 0.019])(S2 Fig), and bsMVPC of

movie segments (ROI mean accuracies = 13.65% and 10.37%, respectively; RHA-CHA differ-

ence = 3.28% [2.76%, 3.78%])(S3 Fig).

Discussion

These results show that fine-scale local variation in connectivity profile is a major component

of the human connectome that can be modeled with shared connectivity basis functions. Each

connectivity basis function has a connectivity profile that is shared across subjects and a differ-

ent local connectivity topography in each individual brain. These basis functions are derived

from multiple subject data in local cortical fields. An individual’s connectivity pattern in a cor-

tical field is modeled as multiplexed or overlaid connectivity topographic basis functions, and

the connectivity profile of each cortical node or voxel is modeled as a weighted mixture of

local connectivity profile basis functions. Thus, the connectivity profile for each voxel or node

is modeled as a high-dimensional vector of connectivity profile bases, capturing how it varies

locally from its neighbors, rather than modeling the connectivity of a brain area as a single

connectivity profile that is shared by all voxels or nodes. We show that these shared basis func-

tions can be discovered with connectivity hyperalignment of data collected during viewing

and listening to a rich naturalistic movie and during the resting state. These basis functions

constitute a common model connectome. Shared fine-scale variation is a ubiquitous character-

istic of all of human cortex and is a major component of the human connectome that coexists

with shared coarse-scale areal variation.

We show that patterns of connectivity exhibit fine-scale variation that is captured in the

CHA-derived common model connectome. We define fine-scale structure as voxel-by-voxel

or node-by-node variation in response and connectivity profiles, as compared to the coarse

structure of parcels that consist of sets of voxels or surface nodes and are treated as a functional

unit with a homogeneous functional profile. In Fig 8 we illustrate the fine scale structure that is

captured in the common model connectome for connectivity patterns in a left lateral-occipi-

tal/inferior-temporal cortex cortical field. Quantitatively, we show that shared fine-scale struc-

ture is captured in the common model connectome with a direct measure of the spatial

granularity of local variation in connectivity profiles—the intersubject point-spread function.

The intersubject spatial point-spread function for variation in connectivity profiles is dramati-

cally, six to eight-fold, steeper after data are transformed into the common model connectome

than for data that are anatomically aligned. Next we show that capture of this fine-scale struc-

ture in functional connectivity generalizes to capture of fine-scale structure in neural represen-

tation. Transformation of movie data into the common model space, using matrices derived

from functional connectivity in independent movie data, afford bsMVPC of time segments

that are tenfold higher than for anatomically-aligned data. bsMVPC of movie time segments

relies on fine-scale structure that is not well-aligned based on anatomy, nor on functional

alignment using a “rubber-sheet” warping of cortical topographies, nor on hyperalignment

based on responses to a limited variety of still images of visual categories [13,16, 23–25]. ISCs

of local representational geometries also are dramatically higher after CHA than after anatomi-

cal alignment. These local representational geometries reflect fine-scale structure that reveals

Common model of the human connectome
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how information spaces in different cortical fields vary, offering a window on how these spaces

are transformed along processing pathways and reshaped by task demands [26–28]. Finally,

we also show that transformations derived from rsfMRI improve alignment of topographies in

task activation and task contrast maps in the HCP database.

The existence and importance of fine-scale connectivity is well-recognized [29–31] but pre-

viously was not modeled in a common computational framework and, consequently, was

largely overlooked. Attempts to model within-area topographies of connectivity either were

limited mostly to within-subject analyses or coarser within-area topographies that could be

captured with anatomy-based alignment of group data [31]. Consequently, when not simply

overlooked, within-area variations in connectivity profiles were usually analyzed as gradients

that have a single cycle in a cortical area, such as retinotopy or somatotopy [29–31].

Other models of shared structure in the human connectome have focused on the identifica-

tion of shared functional networks that can be identified with cluster analysis (e.g. [5,32,33])

or independent components analysis (ICA; e.g. [19]). These methods do not attempt to align

the fine-scale structure within areas in these networks. In some approaches, each voxel is

Fig 8. Mean group connectivity patterns in a left lateral-occipital/inferior temporal cortical field. Connectivity

patterns were measured from movie data for functional connectivity with connectivity targets in mid lateral fusiform

gyrus and mid superior temporal sulcus. Mean group connectivity patterns are shown for data in the common model

connectome, derived with CHA based on responses to the other half of the movie, and for anatomically aligned data.

Mean ISCs for patterns after CHA are higher than after anatomical alignment for both the fusiform target (0.835

versus 0.175) and the STS target (0.826 versus 0.306). The occipitotemporal, mid fusiform, and mid STS loci are taken

from the face-responsive fields identified by Visconti di Oleggio Castello, Halchenko, et al. [28]. The locations of the

fusiform and STS targets are indicated with green and blue dots, respectively. The inflated cortical surface is tipped to

provide a clear view of the cortical field. Connectivities are correlations of time-series responses to the movie.

https://doi.org/10.1371/journal.pcbi.1006120.g008
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assigned to one cluster or system and is, thereby, associated with the time-series tuning func-

tion that characterizes that cluster [5,8,32,33]. Approaches that use ICA, or related componen-

tial analyses such as PCA or SVD, have the potential to capture node-by-node variation in

connectivity profiles, but implementations of these approaches have not adapted them to ana-

lyze this fine-scale topographic structure. For example, dual regression could allow using

group ICA as a common space for modeling each voxel in an individual as a weighted sum of

independent components [34,35]. In practice, however, each voxel is characterized in ICA

analyses by the network to which it belongs, not as a mixture of multiplexed functional topog-

raphies. Node-by-node local variation in connectivity topographies is blurred in group analy-

ses because individual variation on independent components is projected into anatomically-

aligned brains rather than into a single reference voxel space to reveal shared fine-scale struc-

ture, as we do here. A novel approach by Langs et al. [32,33] allows nodes to be assigned to dif-

ferent clusters in a common functional connectivity embedding space independently of

anatomical location. The implementations of this method, however, do not attempt to discover

shared fine-scale structure, and the low dimensionality of the embedding space and small

number of clusters are probably insufficient to capture this level of detail.

Cortical functional architecture has multiplexed topographies at multiple spatial scales. In

primary visual cortex, retinotopy is multiplexed with ocular dominance columns, edge orien-

tation, spatial frequency, motion direction, and motion velocity, among other low-level visual

attributes [36,37]. Primary visual cortex sends coherent projections to other visual areas where

these topographies are recapitulated and transformed, affording the emergence of more com-

plex features, such as curvature, texture, shape, color constancy, and biological motion; and,

subsequently, even higher-order attributes such as object categories, view-invariant face iden-

tity, and species-invariant attributes of animals such as action categories and dangerousness

[12,15,26–28,38–40]. Similar transformations of multiplexed topographies characterize other

sensory modalities and, undoubtedly, supramodal cognitive operations. Modeling inter-areal

communication as a single value of connectivity strength sheds no light on how information is

transformed along cortical processing pathways to allow high-order information to be disen-

tangled from confounding attributes [41].

Multiplexed cortical topographies at multiple spatial scales can be modeled with individual-

specific topographic basis functions that have shared tuning profiles [13,16] and shared con-

nectivity profiles (as shown here). No previous model captured multiple spatial scales of con-

nectivity topographies with connectivity profiles that are shared across brains. By capturing

coarse- and fine-scale connectivity topographies with shared basis functions, the common

model connectome casts a bright light on the dominant role of fine-scale connectivity patterns

in the human connectome and opens new territory for investigation of the network properties

of cortical connectivity at finer levels of detail. With this new perspective, inter-areal connec-

tivity can be modeled as more than a simple replication of global activity, as is the assumption

underlying existing approaches to modeling the connectome, but, instead, as information pro-

cessing operations in which functional topographies are transformed by projections between

areas.

Methods

Ethics statement

All fMRI data collection at Dartmouth College was approved by the Dartmouth Committee

for the Protection of Human Subjects. Resting state data from the Human Connectome Project

was approved by the Institutional Review Boards associated with that project.
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Movie data: Raiders of the Lost Ark

We scanned 11 healthy young right-handed participants (4 females; Mean age: 24.6+/-3.7

years) during movie viewing. Participants had no history of neurological or psychiatric illness.

All had normal or corrected-to-normal vision. Informed consent was collected in accordance

with the procedures set by the local Committee for the Protection of Human Subjects. Partici-

pants were paid for their participation. These data also were used in a prior publication on

whole cortex RHA [16].

Stimuli and design. Stimuli consisted of the full-length feature movie—“Raiders of the

Lost Ark”—divided into eight parts of approximately 14 to 15 min duration. Video was pro-

jected onto a rear projection screen with an LCD projector which the subject viewed through a

mirror on the head coil. The video image subtended a visual angle of approximately 22.7˚ hori-

zontally and 17˚ vertically. Audio was presented through MR Confon’s MRI-compatible head-

phones. Participants were instructed to pay attention to the movie and enjoy. See [16] for

details.

fMRI protocol. Participants were scanned in a Philips Intera Achieva 3T scanner with an

8 channel head coil at the Dartmouth Brain Imaging Center. T1-weighted anatomical scans

were acquired at the end of each session (MPRAGE, TR = 9.85 s, TE = 4.53 s, flip angle = 8˚,

256 × 256 matrix, FOV = 240 mm, 160 1 mm thick sagittal slices). The voxel resolution was

0.9375 mm × 0.9375 mm × 1.0 mm. Functional scans of the whole brain were acquired with an

echo planar imaging sequence (TR = 2.5 s, TE = 35 ms, flip angle = 90˚, 80 × 80 matrix,

FOV = 240 mm × 240 mm) every 2.5 s with whole brain coverage (41 3 mm thick interleaved

axial slices, giving isotropic 3 mm × 3 mm × 3 mm voxels). We acquired a total of 2718 func-

tional scans with 1350 TRs in four runs during the first session and 1368 TRs in four runs dur-

ing the second session.

fMRI data preprocessing. fMRI movie data were preprocessed using AFNI software [42]

(http://afni.nimh.nih.gov). Functional data were first corrected for the order of slice acquisi-

tion and head motion by aligning to the last volume of the last functional run. Any spikes in

the data were removed using 3dDespike in AFNI. Data were then filtered using 3dBandpass in

AFNI to remove any temporal signal variation slower than 0.00667 Hz, faster than 0.1 Hz or

that correlated with the whole brain average signal or the head movement parameters. Each

subject’s anatomical volume was first aligned to the motion corrected average EPI volume and

then to the MNI 152 brain template in AFNI. Functional EPI BOLD data were then aligned to

the MNI 152 brain template using nearest neighbor resampling by applying the transformation

derived from the alignment of the anatomical volume to the template. Data acquired during

the overlapping movie segments were discarded resulting in a total of 2662 TRs with 1326 TRs

in the first session and 1336 TRs in the second session.

Definition of masks and searchlights for movie data. We derived a gray matter mask by

segmenting the MNI_avg152T1 brain provided in AFNI and removing any voxel that was out-

side the cortical surface by more than twice the thickness of the gray matter at each surface

node. It included 54,034 3 mm isotropic voxels across both hemispheres. We used this mask

for all subsequent analyses of all subjects.

Hyperalignment of movie data started with hyperalignment of data in 20,484 overlapping

searchlights of 20 mm radius centered on cortical nodes with 2.9 mm average spacing between

the nodes. Cortical nodes were defined in a standard cortical surface from FreeSurfer (fsaver-

age)(https://surfer.nmr.mgh.harvard.edu) and resampled into a regular grid using AFNI’s

MapIcosahedron [42,43] with 10,242 nodes in each hemisphere. We defined the surface

searchlights [44] in PyMVPA [45](http://www.pymvpa.org) as cortical disks. The thickness of

disks was extended beyond the gray matter, as defined in FreeSurfer, 1.5 times inside the
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white-matter gray-matter boundary and 1.0 times outside the gray-matter pial surface bound-

ary to accommodate any misalignment of gray matter as computed from the anatomical scan

and the gray matter voxels in the EPI scan. To reduce the contribution from noisy or non-gray

matter voxels that were included due to this dilation, we used a between-subject correlation

measure on training data [13] to select 70% of the voxels in each searchlight [16]. The mean

number of selected voxels in movie data searchlights was 235.

Searchlights for defining connectivity targets were defined using a coarse surface grid corre-

sponding to the ico8 surface in SUMA [43] with 1284 nodes (10.7 mm spacing between

nodes). We used surface disk searchlights [44] centered on these nodes as the movie data con-

nectivity target searchlights. These searchlights had a radius of 13 mm, as did those used for

the HCP data, producing complete coverage of the cortex with overlapping searchlights. Corti-

cal disks centered on these voxels were dilated using the same procedure as for hyperalignment

of cortical surface searchlights. Movie connectivity target searchlights had a mean of 99 voxels.

Resting state data: Human Connectome Project

In the HCP database [20], we found unrelated subjects of age< = 35 with at least four resting

state scans, yielding a list of 64 subjects. We chose the first 20 of these subjects in the sorted

order of subject IDs for our analysis.

For each subject, we used their cortical surfaces and fMRI data aligned to the group using

MSM-All [22] with 32K nodes in each hemisphere as provided by the HCP. We used data

from one resting state session [19](“rfMRI_REST1_LR”) to derive CHA parameters and vali-

dated it on a different resting state session (“rfMRI_REST2_LR”), and task fMRI sessions [18]

(EMOTION, GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and WM).

Resting state data were acquired for 1200 TRs with a TR of 0.720 s in each session (total

time = 14 min 33 s). The data used to derive the CHA parameters and common model and the

resting state data used for validation tests used the same phase-encoding direction (LR). We

used a single session of rsfMRI for alignment to mimic a typical resting state data acquisition

which usually varies from 10–20 mins of scanning. See [19] for more details about the acquisi-

tion and preprocessing pipelines.

Definition of masks and searchlights for HCP data. We masked the data to include only

the left and right cortices (Cortex_Left and Cortex_Right), removing all the non-zero nodes

that correspond to the medial subcortical regions, resulting in 59,412 nodes across both hemi-

spheres. These nodes also defined the centers of 59,412 surface searchlights [44] with 20 mm

radii that were used for hyperalignment. All nodes in these searchlights were included. The

mean number of surface nodes in the HCP searchlights was 337.

We defined connectivity target searchlights using a coarser surface grid corresponding to

the ico8 surface in SUMA [43] with 1284 nodes (10.7 mm spacing between nodes). We found

the closest matching nodes on the 32K surface to the nodes on the ico8 surface, and used those

as centers for connectivity target searchlights. These searchlights had a radius of 13 mm, pro-

ducing complete coverage of the cortex with overlapping searchlights. HCP connectivity target

searchlights had a mean of 142 loci. See further details below for how time-series were

extracted from these searchlights.

For validation of task fMRI, we used all of the maps provided by the HCP after removing

redundancies (such as FACE-AVG and AVG-FACE), which resulted in 46 maps (S2 Table).

Connectivity hyperalignment

We use CHA to derive a common model of the human connectome and the transformation

matrices that project individual brains’ connectomes into the common model connectome

Common model of the human connectome
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space. The common model connectome is a high-dimensional information space. In the cur-

rent implementation, the model space based on movie fMRI data has 54,034 dimensions, cor-

responding to the number of voxels in the gray matter mask, and the model space based on

HCP resting state fMRI data has 59,412 dimensions, corresponding to the number of cortical

nodes in those data. The derivation of this space starts with hyperalignment in local cortical

fields, searchlights, which yields orthogonal transformation matrices for each subject in each

field. These searchlights are aligned across subjects based on anatomy (movie data) or

MSM-All (HCP resting state data); consequently, each locus within a searchlight is similarly

aligned across subjects before CHA. Local transformation matrices for each searchlight map

anatomically or MSM-All aligned cortical loci in a cortical field to CHA-aligned dimensions in

the common model connectome. These local transformation matrices are then aggregated into

a whole brain transformation matrix, which is not globally orthogonal. The whole brain trans-

formation matrices are derived based on local hyperalignment in searchlights to constrain

resampling of information to cortical neighborhoods defined by those searchlights.

The basic equation for hyperalignment (both CHA and RHA). Bij are the original

matrices of data for cortical fields, j, in individual brains, i, which have mij columns of cortical

loci and n rows of data vectors. Hyperalignment derives a transformation matrix for each cor-

tical field in each individual, Rij, and a matrix for each cortical field, Mj, that is the mean of

transformed individual brain matrices, BijRij, minimizing the Frobenius norm of differences

between transformed individual brain matrices and the model space matrix. For each cortical

field j:

Mj ¼ ð1=NÞ
PN

i¼1
ðBijRijÞ where Rij ¼ argminR

PN
i¼1
jjBijR � MjjjF ð1Þ

For whole cortex hyperalignment we define the cortical fields, j, as searchlights. Thus, we

estimate a transformation matrix, Rij, for each of Nsl searchlights in each subject i. We then

aggregate these searchlight transformation matrices into a whole cortex transformation matrix,

RiA (details below):

RiA ¼ f ðRijÞ ð2Þ

The whole cortex common model data matrix, M, is created by transforming individual

whole cortex data matrices, BiA, into common model space coordinates and calculating the

mean:

M ¼ ð1=NÞ
PN

i¼1
ðBiARiAÞ ð3Þ

Conversely, other subjects’ data in the common model space can be mapped into any sub-

ject’s individual anatomical space using the transpose of that subject’s whole cortex transfor-

mation matrix, RT
iA, producing a data matrix, Mi, in which the columns are that subject’s

cortical loci, making it possible to analyze and visualize transformed group data in any sub-

ject’s anatomical space:

Mi ¼ MRT
iA ð4Þ

In our implementations of hyperalignment, we have used a variant of Generalized Procrus-

tes Analysis [46,47](described in detail below) to derive orthogonal transformation matrices

for the improper rotations of a brain data matrix from a cortical field (region of interest or

searchlight) to the mean of others’ matrices for the same region to minimize interindividual

differences between the transformed individual and mean data matrices. Aggregation of

searchlight transformation matrices, Rij, produces a whole cortex transformation matrix, RiA.

Common model of the human connectome

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006120 April 17, 2018 16 / 26

https://doi.org/10.1371/journal.pcbi.1006120


Because RiA is derived from searchlight transformation matrices, Rij, it imposes a locality con-

straint that limits remapping of brain data to nearby cortical loci (see details below), making

the whole cortex transformation matrix nonorthogonal by design. We also have tested other

hyperalignment algorithms that use alternatives for calculating the transformation matrices,

such as regularized canonical correlation and probabilistic estimation [48,49]. These alterna-

tives are effective but have not yet been extended to aggregate local transformation matrices

for cortical fields into a whole cortex transformation matrix.

The dimensionality of the brain and model data matrices is n × m, in which m equals the

number of cortical nodes or dimensions in brain and model data matrices—Bij, BiA, Mj, and M
—and n equals the number of data vectors across these dimensions. The number of data vec-

tors, n, is set and determined by the number of connectivity targets for defining connectivity

pattern vectors (see details below). For RHA, n is set by the number of response pattern vectors

in an experimental dataset. The number of cortical loci in a cortical field or searchlight, mij,

can vary across subjects. If the number of cortical loci or dimensions differs between subjects

or between an individual subject and the model space, the new subject’s data are transformed

into a space with the same dimensionality as the first subject’s or the model’s space. The num-

ber of cortical loci in the whole cortex model is set at m = 59,412 for HCP data and m = 54,034

for movie data. We also have shown that the dimensionality of a model for region of interest

or searchlight (mj) can be reduced substantially relative to the dimensionality of individual

brain spaces in imaging datasets (mij), mMj << mij [13,16,48]. In the current version of CHA,

as in whole cortex RHA, however, we do not reduce the dimensionality of the model space

because these reduced dimensionality local models are difficult to aggregate into a whole cor-

tex model.

Note that the common model data matrix has two distinct components. The columns

define a common model space, whereas the rows are defined by the experimental data—either

patterns of connectivity to targets elsewhere in the brain for CHA, or patterns of response for

RHA. The space can be illustrated as an anatomical space insofar as it can be rotated into any

individual’s cortical loci (Eq 4), but there is no “canonical” anatomical space, rather the indi-

viduality of each individual brain is preserved. We illustrate results in the anatomical space of

one subject, the “reference subject”, but we also could illustrate the results in other subjects’

anatomical spaces. The special nature of the common space derives from the alignment of

functional indices—connectivities and responses—to minimize interindividual differences

and, thereby, discover shared basis functions for the individually variable functional architec-

ture. These basis functions are the response and connectivity profiles for model dimensions

that model the response and connectivity profiles of cortical loci in individual brains as linear

weighted sums. In other words, Eq 4 models single columns in Bi as weighted sums of columns

in Mi.

Transformation matrices consist only of weights for the projection of individual brain

spaces for cortical fields, Bij, or the whole cortex, BiA, into model spaces (Mj, M) and contain

no connectivity or response data. Thus, a transformation matrix can be applied to any matrix

of data vectors in an individual brain space. Similarly, the transposes of transformation matri-

ces, RT
iA, can be applied to any data vector in the model space to project that vector into the cor-

tical topographies of individual brains. For all applications of the common model, including

the validation tests presented here, the transformation matrices are applied to independent

data that played no role in derivation of the model space and the individual transformation

matrix parameters. This is necessary to avoid overfitting [50]. Transformation matrices

derived from connectivity data also can be applied to response data and vice versa. In other

words, RHA and CHA are complementary methods for deriving a common model of
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information spaces in cortex, and RHA-derived and CHA-derived transformation matrices

are alternative projections for mapping individual brain data into the same common model

space. Note that each column of the transformation matrix RiA contains weights for cortical

loci in subject i’s brain. These columns of weights are basis functions for modeling functional

topographies in individual brains as linear weighted sums of topographies associated with

model dimension functional profiles.

Derivation of transformation matrices for regions of interest and searchlights. The

derivation of individual transformation matrices that map individual brain spaces into the

common model space is a three-level iterative process. We present the iterative algorithm for

deriving transformation matrices and the common model space in greater detail here to help

readers understand better its structure.

In the first step of the first level, the data matrix for a cortical field in one subject, B2j, is

transformed to be in optimal alignment with the same cortical field in another subject’s brain,

B1j, referred to here as the reference subject:

argminjjB2jR2jðlevel1Þ � B1jjjF ð5Þ

We use the Procrustes transformation to find the orthogonal matrix that affords the optimal

improper rotation to achieve this minimization [46]. Note that this “rotation” is a rotation of

data in the high-dimensional feature space, not a rotation in a two or three dimensional ana-

tomical space. Elsewhere we have shown that other algorithms can be used to achieve this min-

imization [48,49].

In the following steps of the first level, the brain data matrices for the third and subsequent

subjects are transformed to be in optimal alignment with the matrix defined by the mean of

the previous subject’s matrix and the previous mean:

argmin jjBijRijðlevel1Þ � Mi� 1jðlevel1ÞjjF ð6Þ

where

Mi� 1;jðlevel1Þ ¼ ðBi� 1;jRi� 1;jðlevel1Þ þMi� 2;jðlevel1ÞÞ=2 ð7Þ

Mi-1,j(level1) is the target data used to hyperalign the current subject’s data, Bij, and Mi-2,j(level1)

is the target data used to hyperalign the previous subject’s data, Bi-1,j. Target data is updated

with previous subjects’ aligned data in this first level. In the subsequent two levels each sub-

ject’s data matrix is hyperaligned to the simple, unweighted mean of all other subjects’

matrices.

At the end of the first level, level one transformation matrices have been derived for all cor-

tical fields in all subjects, Ri,j(level1), which are used to project each subjects’ brain data into the

provisional common spaces that evolved over level one iterations Mi,j(level1). Each subject is

then re-hyperaligned to the mean data matrix for all other subjects’ transformed data from

level one to derive new individual transformation matrices, Rij(level2). Note that the new trans-

formation matrices are derived using each subject’s original brain data, Bij. Note also that the

mean matrices in provisional common spaces, M¬i,j(level1), exclude data from the subject being

hyperaligned:

argmin
PN

i¼1
jjBijRijðlevel2Þ � M:i;jðlevel1ÞjjF ð8Þ

where M¬i,j(level1) is the equally-weighted mean of level one transformed data for all subjects
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but subject i:

M:i;jðlevel1Þ ¼ ð1=ðN � 1ÞÞ
PN

k¼1ð:iÞðBkjRkjðlevel1ÞÞ ð9Þ

After the level two transformation matrices, Rij(level2), are calculated for each subject, the

level one transformation matrices are discarded, and the group mean of transformed individ-

ual brain data matrices is recalculated, using these new transformation matrices, producing

the model matrix, M:

Mj ¼ ð1=NÞ
PN

i¼1
BijRijðlevel2Þ ð10Þ

In level 3, the last level, the final searchlight transformation matrices, Rij, are recalculated

for each subject (see Eq 1 above).

Derivation of whole cortex transformation matrices. Orthogonal transformation matri-

ces for hyperaligning a cortical field can map information from a cortical locus into model

dimensions anywhere else in that cortical field. To constrain the remapping of information to

nearby locations in the reference subject’s cortical anatomy, we developed a searchlight-based

approach [16]. We hyperalign the data in Nsl overlapping searchlights, where Nsl is the number

of searchlights (59,412 for HCP data, 20,484 for movie data). The number of model dimen-

sions in each searchlight transformation matrix is determined in the movie data by cortical

location and the number of selected features in the reference subject (mean = 235) and in HCP

data by the cortical location of the searchlight (mean = 337). The transformation for each

searchlight, Rij, has dimensionality that corresponds to the number of nodes in an individual’s

searchlight (mij rows) and the number model dimensions in that searchlight, derived from the

reference subject’s anatomy (m1j rows). Thus, each transformation matrix has on the order of

28K and 57K free parameters for movie data and HCP data, respectively. Because the search-

lights are overlapping, there are multiple estimates of weights for mapping each cortical locus

to each model dimension. As described in Guntupalli et al. [16] these weights are aggregated

across searchlights by adding all weights for each cortical-locus-to-model-dimension mapping.

In essence, this is equivalent to creating a whole cortex transformation matrix, RiA, of

dimensionality m × m, by padding each searchlight transformation matrix, Rij, with zeroes in

all rows and columns for cortical loci and model dimensions that are not in the individual or

model searchlight cortical field to give them the same dimensionality to produce Rij(padded),

and then summing these padded transformation matrices. Thus, for each subject, i:

RiA ¼
PNsl

j¼1
RijðpaddedÞ ð11Þ

where Nsl is the number of searchlights and Rij(padded) is the padded transformation matrix for

subject i in searchlight j with dimensionality m × m. As noted above, m is the number of corti-

cal loci—59,412 surface nodes for HCP data and 54,034 voxels in the gray matter mask for

movie data—and the number of whole cortex model dimensions. Because the searchlight

approach constrains cortical-locus-to-model-dimension mapping to nearby cortical locations,

the whole cortex transformation matrix, RiA, is sparse with zero weights for all mappings of

cortical loci to model dimensions that are separated by more than 2x the searchlight diameter

(~4 cm in this implementation). The whole cortex transformation matrices, RiA, are large

(m × m) but sparse. 98.7% of the entries are zeros, and roughly 20 million entries have nonzero

values in each of these matrices. The additive aggregation of mapping parameters weights

nearby cortical location pairs, which co-occur in more searchlights than distant pairs, more

strongly than distant pairs, adding a further locality constraint. Note that the searchlight trans-

formation matrices, Rij, are orthogonal but the whole cortex transformation matrices, RiA, are
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not by design, to introduce the locality constraint. The whole cortex transformation matrices,

RiA, are used in all validation tests to hyperalign independent new data matrices after normal-

izing the data in each cortical node or voxel. In other words, all validation tests are performed

on independent data that played no role in deriving the transformation matrix parameters or

the common model connectome, providing cross-validated generalization testing. CHA of

movie data was based on one half of the movie data (~55 min, ~1300 TRs) and the other, inde-

pendent half of the movie data was used for validation tests with two-fold cross-validation.

CHA of HCP data was based on one session of resting state data (~15 min, 1200 TRs) and a

second session of independent resting state data was used for validation tests, as well as inde-

pendent data from task fMRI [18].

Note that transformations map the cortical loci of a subject’s data matrices (columns) into

the reference subject’s cortical loci. Thus, we use the reference subject’s cortex for illustration,

but note that the anatomical coordinates for model dimensions are an abstraction, as even the

reference subject’s data are mapped into model space coordinates with a transformation

matrix that is not the identity matrix. Data matrices in the model space also can be mapped

into any subject’s cortical anatomy by using the transpose of that subject’s transformation

matrix (Eq 4). Thus, the hyperaligned data in the common model space can be illustrated in

any subject’s anatomical space. The anatomical space that we use for illustration, that of the

reference subject, should not be considered a canonical space but, rather, simply as one of

many possible physical instantiations.

Connectivity targets. We define functional connectivities as the correlations of the

response profiles—series of responses across time—of cortical loci or dimensions with the

response profiles of targets (tj) distributed across the cortex. We use two sets of connectivity

targets, one reduced set to derive the transformation matrices and common model connectiv-

ity data matrix, and a more complete set to test the validity of the model. We define a reduced

set of connectivity targets using surface-searchlight target ROIs to make derivation of the

model more computationally tractable, as compared to using all cortical loci as individual con-

nectivity targets. For the reduced set, we use 3852 targets (top 3 components for 1284 search-

lights; note that the searchlights for connectivity targets are different from the searchlights that

are hyperaligned as described above in the Resting State Data and Movie Data sections; see

details for defining searchlight PC connectivity targets in the next section). For validation test-

ing we analyze the full connectome, defining connectivity targets as all cortical loci in the brain

(Ncl = 54,034 gray matter voxels in the movie data and 59,412 cortical nodes in the HCP resting

state data).

Searchlight ROI connectivity targets. Each surface-searchlight connectivity target has a

radius of 13 mm and is centered on a node of a coarse surface with a total of 1284 nodes cover-

ing both hemispheres. Thus, neighboring connectivity targets searchlights are overlapping.

Unlike others (e.g., [5]) we do not assume that a searchlight connectivity target has a single

response profile. We find, rather, a variety of response profiles for individual cortical loci in a

target searchlight that can be captured as principal components. We used the top three princi-

pal components to represent the response profiles in a target searchlight.

To insure that the top components in target searchlights capture the same connectivity pat-

terns across subjects, we performed a singular value decomposition (SVD) on the group mean

connectivity matrix for each target searchlight after a simplified hyperalignment of individual

matrices. Note that using a naive PCA/SVD to derive top components in each subject’s search-

light independently will not guarantee their functional similarity. Target searchlights had a

mean of 142 loci (HCP data) or 99 voxels (movie data). At this stage it was not yet possible to

break the response profiles for searchlight targets into multiple components with shared con-

nectivity profiles. Consequently, connectivity targets for the procedure to derive these
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components were simply the mean time-series responses for target searchlights. For each tar-

get searchlight with Ns features (surface nodes or voxels), we computed a 1284 × Ns correlation

matrix (the correlations between each cortical locus in the target searchlight and the mean

time series for all target searchlights) for each subject. We hyperaligned the features (cortical

loci) in each target searchlight across subjects based on these matrices and calculated the mean

correlation matrix after hyperalignment in each target searchlight. We then performed a sin-

gular value decomposition (SVD) of each searchlight’s group mean matrix to obtain the top

three components that explained the most shared variance. Each of these components is a

weighted sum of cortical loci in a target searchlight for each subject, and these weights afford

calculation of a time-series response whose connectivity profile with other targets is shared

across subjects. Each individual subject’s time-series responses for the top three components

were then used as target response profiles for CHA. This step gave us 1284 × 3 = 3852 target

response profiles in each subject’s cortex.

Validation tests and statistical analyses

Functional ROIs. In addition to analyzing the results of validation tests in each feature or

searchlight across the whole cortex, we also examined the results of validation tests in func-

tional ROIs associated with different sensory, perceptual, and cognitive functions to assess the

general validity of the common model [16]. We searched for terms and cortical areas impli-

cated in visual, auditory, cognitive, and social functions in NeuroSynth [22] and took the coor-

dinates for the peak location associated with each of 24 terms (S1 Table). For validation testing

using the movie dataset, we used volume searchlights centered around those peak loci with a

radius of 3 voxels as our functional ROIs. For validation testing using the HCP dataset, we

found the closest surface node corresponding to each peak locus and used a surface searchlight

with a 10 mm radius around that surface node as the functional ROI. Functional ROIs that

were medial and encompassing both hemispheres in the volume space were split into left and

right ROIs in the surface space resulting in 26 ROIs for tests on the HCP data. For analyses of

ISCs and PSFs of connectivity profiles in functional ROIs, we calculated the mean ISC or PSF

across all cortical loci within the ROI searchlights (Figs 3C, 4D, 5A, and 5C).

Statistics. We used bootstrapping to test for significance of the contrasts between align-

ment methods by sampling subjects 10,000 times to compute 95% CIs using BootES [51]. We

did this for each ROI and for the mean of all ROIs separately. We used the same bootstrapping

procedure for all validation tests unless specified otherwise.

Control for effect of filtering. In addition to the anatomically-aligned movie data and

MSM-All aligned HCP resting state fMRI data, we calculated a third dataset that controls for

the effect of filtering the data through CHA transformations but aligns those filtered data

across subjects based on anatomical or MSM-All alignment. To produce the filter control data,

we created multiple common model connectomes using each subject as the reference. Each

subject’s connectome was transformed into the common connectome whose reference subject

was the next subject in our order of subjects. The last subject’s connectome was transformed

into the common model connectome whose reference brain was that of the first subject. Thus,

each subject’s connectome is filtered by hyperalignment, but since the common model con-

nectome for each subject has a different reference, the correspondence across filtered connec-

tomes is based only on anatomical alignment and preserves the anatomical variability in the

movie data and HCP datasets.

Intersubject correlation (ISC) of connectivity profile vectors. For validity testing we

applied a more detailed definition of the connectome to measure fine-grained structure. The

connectivity profile vector for a feature (or a cortical node or voxel) was defined as the
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correlation of its time-series with of all other cortical nodes or voxels. ISCs of connectivity pro-

files were computed between each subject’s connectivity profiles and the average connectivity

profiles of all other subjects in each cortical locus.

For the movie data ISCs of connectivity profiles were computed within each movie half sep-

arately and before and after CHA based on the other half of the movie. Correlation values were

Fisher transformed before averaging across both halves of the movie in each voxel. These were

then averaged across all subjects and inverse Fisher transformed before mapping onto the cor-

tical surface for visualization. ISCs of resting state connectivity profiles were computed for ses-

sion REST2. Session REST1 was used for deriving the common model connectome and

transformation matrices. ISCs were calculated for data mapped into the common model con-

nectome, for movie data aligned anatomically, for HCP resting state data aligned with

MSM-All, and for filter control movie and HCP data.

We also computed within-subject between-session (REST1 and REST2) correlation of rest-

ing state connectivity profiles. Within-subject between-sessions correlations were calculated

on data that are transformed by CHA as used for our main analyses.

Spatial point spread function. To investigate the spatial granularity of representation, we

computed a spatial point spread function (PSF) of ISCs or WSCs of connectivity profiles. We

computed the correlation of connectivity profiles in each cortical locus (surface node or voxel)

with the average connectivity profiles of cortical loci at varying cortical distances in other sub-

jects’ data. To account for the effect of filtering, we did this analyses with filter control data

that were filtered with CHA but aligned based on anatomy and MSM-All and after CHA with

each subject aligned to the same reference subject [16]. We computed similar PSFs for connec-

tivity profiles within-subject between-sessions (REST1 and REST2). This was also performed

after CHA to account for any filtering effects but to a single common space as used for our

main analyses.

ISC of representational geometry. ISCs of similarity structures were computed within

each movie half separately using a searchlight of 3 voxel radius. The mean number of voxels in

these searchlights was 102. In each searchlight, similarity structure was computed as a matrix

of correlation coefficients between patterns of response for every pair of time-points from that

movie half for each subject. The flattened upper triangle of this matrix excluding the diagonal

was extracted as the profile of representational geometry at each searchlight for each subject.

ISC of representational geometry in each searchlight was computed as the correlation between

each subject’s representational geometry and the average of all other subjects’ representational

geometries for that searchlight. Correlation values were Fisher transformed before averaging

across both movie halves in each voxel. These were then averaged across all subject-average

pairs and inverse Fisher transformed before mapping onto the cortical surface for visualiza-

tion. The same steps were performed to compute inter-subject correlation of representational

similarity before and after hyperalignment.

Between-subject multivariate pattern classification (bsMVPC). bsMVPC of 15 s movie

time segments (6 TRs) was computed within each movie half separately using searchlights of 3

voxel radius, as in the analysis of representational geometry. bsMVPC was performed using a

one-nearest neighbor classifier based on correlation distance [12,16]. Each 15 s (6TR) sequence

of brain data for an individual was compared to other subjects’ mean responses to that

sequence and all other 15 s sequences in the same movie half using a sliding time window,

resulting in over 1300 alternative time segments (chance classification accuracy< 0.1%). Clas-

sification accuracies in each searchlight were averaged across both halves in each subject before

mapping the subject means onto searchlight center voxels on the cortical surface for

visualization.
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We implemented our methods and ran our analyses in PyMVPA [45](http://www.pymvpa.

org) unless otherwise specified. All preprocessing and analyses were carried out on a 64-bit

Debian 7.0 (wheezy) system with additional software from NeuroDebian [52](http://neuro.

debian.net).

Supporting information

S1 Text. Overview of supplemental figures and tables.

(DOCX)

S1 Fig. ISC of connectivity profiles calculated from responses to the movie. ISCs of repre-

sentational geometry in each voxel are mapped onto cortical surfaces after CHA, RHA, and

anatomical alignment, RHA, and CHA. Maps of ISCs after CHA and anatomical alignment

are identical to maps shown in Fig 2 and are reproduced here to facilitate comparison to RHA.

(TIF)

S2 Fig. ISC of representational geometries in the responses to movie time-points. ISCs of

representational geometry in each voxel are mapped onto cortical surfaces after CHA, RHA,

and anatomical alignment, RHA, and CHA. Maps of ISCs after CHA and anatomical align-

ment are identical to maps shown in Fig 5 and are reproduced here to facilitate comparison to

RHA.

(TIF)

S3 Fig. Between-subject classification of movie segments. Classification accuracies in each

searchlight mapped on cortical surfaces after CHA, RHA, and anatomical alignment.

(TIF)

S4 Fig. Individual connectivity patterns in a left lateral-occipital/inferior-temporal cortical

field for connectivities with targets in left mid lateral fusiform gyrus and left mid superior

temporal sulcus. Connectivity patterns are shown for anatomically-aligned data and data

transformed into the common model connectome. Connectivities are correlations between

time series responses to the movie. CHA transformation matrices were derived from indepen-

dent data from the other movie half. Group mean connectivity patterns are shown in the first

row for comparison (also shown in Fig 8).

(TIF)

S1 Table. Selected cortical loci implicated in visual, auditory, cognitive, and social func-

tions from Neurosynth.

(DOCX)

S2 Table. Task maps used from the HCP data.

(DOCX)
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