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Abstract

Anopheles gambiae s.s mosquitoes are important vectors of lymphatic filariasis (LF) and malaria in Ghana. To better understand
their ecological aspects and influence on disease transmission, we examined the spatial distribution of the An. gambiae (M and
S) molecular forms and associated environmental factors, and determined their relationship with disease prevalence.
Published and current data available on the An. gambiae species in Ghana were collected in a database for analysis, and the
study sites were georeferenced and mapped. Using the An. gambiae s.s sites, environmental data were derived from climate,
vegetation and remote-sensed satellite sources, and disease prevalence data from existing LF and malaria maps in the
literature. The data showed that An. gambiae M and S forms were sympatric in most locations. However, the S form
predominated in the central region, while the M form predominated in the northern and coastal savanna regions. Bivariate and
multiple regression analyses identified temperature as a key factor distinguishing their distributions. An. gambiae M was
significantly correlated with LF, and 2.5 to 3 times more prevalent in the high LF zone than low to medium zones. There were
no significant associations between high prevalence An. gambiae s.s locations and malaria. The distribution of the An. gambiae
M and S forms and the diseases they transmit in Ghana appear to be distinct, driven by different environmental factors. This
study provides useful baseline information for disease control, and future work on the An. gambiae s.s in Ghana.
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Introduction

The mosquito Anopheles gambiae sensu lato (s.l.) contains seven

species, of which An. gambiae sensu stricto (s.s), An. arabiensis and An.

melas are three of the major vectors of lymphatic filariasis (LF) and

malaria caused by Wuchereria bancrofti, and Plasmodium falciparum

respectively in West Africa [1,2]. In Ghana, previous studies have

found the An. gambiae s.l and the An. funestus to be the major vectors

of LF in the southern coastal zone and in the northern region of

the country [3–7].

Vector control is considered an important tool for diseases

transmitted by mosquitoes and other insect vectors [8]. The

current Ghana policy on vector control against Anopheles vectors

prioritizes the use of insecticide treated materials and indoor

residual spraying. However, the efficiency of these interventions

will depend on information on the distribution and abundance of

the main vectors, the specific molecular forms of An. gambiae s.s and

the levels of insecticide resistance within them [9,10].

Studies on the distribution of the An. gambiae complex in Africa

[9,11], highlighted gaps in our knowledge, and Coetzee and

colleagues [9] further recommended an urgent need for baseline

surveys on the distribution of these malaria vectors in areas where

no reliable information exists. Ghana is one of these countries. The

largest and most recent study published on the abundance,

distribution and levels of insecticide resistance in An. gambiae s.s

covered 11 sites across different ecological zones of the country [12].

This study found that the An. gambiae S form predominated across

the country, except in the arid north where only the M form was

found. While this was the first major attempt at presenting the

geographical distribution and ecological variations in An. gambiae s.s

in Ghana, it is not known how these data compare with other An.

gambiae s.s data, whether there are specific environmental factors

driving the distributions of the M and S molecular forms, and if

there are any associations with LF and malaria distributions [13,14].

In order to better understand the ecological aspects of this

important vector, their influence on the epidemiology of LF and

malaria, this study collated data on An. gambiae s.s in Ghana, and

aimed to i) examine the spatial distribution of the An. gambiae M

and S forms across the country, ii) identify key environmental

factors associated with their distribution, and iii) determine their

relationship with LF and malaria prevalence distributions. It is

envisaged that this information will help develop a comprehensive

profile on the ecology of An. gambiae s.s in Ghana, which will assist

researchers and the diseases control programs in the country.

Methods

Study site
The Republic of Ghana is a developing West African country

bordered to the north by Burkina Faso, to the east by Togo, to the
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West by Cote d’Ivoire and to the south by the Gulf of Guinea [15].

It has a total surface area of 239, 460 sq km with a coastline of

539 km, and approximately a population of 23 million inhabitants.

The climate is warm and comparatively dry along the southeast

coast, hot and humid in the southwest, and hot and dry in north.

The ecology can be divided into six zones; the mangrove zones at

the coastline, the coastal savanna, the evergreen forest in the

south-west, the moist semi-deciduous forest in the central area, the

guinea savanna in the north and the sudan savanna in the north-

east. The terrain is mostly low plain, with dissected plateau in the

south-central area. The elevation ranges from 0 to 880 m above

sea level. There are two main seasons; a rainy season from April to

October and dry season from November to March.

Entomological data and mapping
Entomological studies on An. gambiae s.l in Ghana were

identified from various sources including published articles in

peer-reviewed journals, unpublished works from MPhil and PhD

theses held at the Noguchi Memorial Institute for Medical

Research (NMIMR), Accra-Ghana, as well as on-going studies

at NMIMR. The collated data spanned from 2001 to 2008.

Information on the location, study period, sample size, collection

method, mosquito species and molecular forms, from each study

were collated into a database. Various collection methods

including; human landing catches, pyrethroid spray catches, larval

collections and aspirators were used, depending on the location of

the study sites and the objectives of the various studies. However,

irrespective of the collection method, data collected from the same

location in different years were considered separately. With the

exception of few sites, most locations (i.e collection site) in the

database were geo-referenced using the latitude and longitude

coordinates obtained by cross-checking the names with data from

the GEOnet Names Server [16], and Directory of Cities and

Towns in the World [17] databases.

All data were imported into the geographical information

systems software ArcGIS 9.2 (ESRI, Redlands, CA) for mapping

and spatial analyses. First, the overall distribution of the An. gambiae

s.l, and the different prevalence distributions of An. gambiae M and

S across the country were mapped. Mosquito collection methods

were also compared, to highlight differences in sampling. Second,

spatial analysis of the An. gambiae M and S prevalences were

examined using ArcGIS Spatial Analyst and Statistics tools (ESRI,

Redland, CA). The Moran’s I statistic was used to determine

spatial autocorrelation patterns i.e. clustered, dispersed, random,

and the Getis-Ord Gi* statistic was used to identify the specific

locations where high and low prevalences were clustered (Z scores,

95% confidence levels (CI) +1.96 and 21.96 standard deviations).

In addition, the kernel density estimation (KDE) method, non-

parametric way of estimating the probability density function, was

used to create a continuous surface representing the high to low

density distributions of each molecular form.

Environmental data and analysis
To examine environmental factors associated with the preva-

lence distributions of An. gambiae M and S in Ghana, specific data

on elevation, vegetation, precipitation, temperature and humidity

were obtained for each location (i.e. collection site), and compiled

into a database, for descriptive and statistical analyses in SPSS

16.0 (SPSS, Inc, Chicago, IL).

Elevation data were derived from the U.S Geological Survey’s

ETOPO2 Digital Elevation Model available from ESRI (Red-

lands, CA). The elevation at each collection site was determined

by importing the digital elevation map into ArcGIS 9.2 and

extracting the underlying value (metres). Vegetation and climate

data were based on the mean annual values for the specific year of

study, obtained from the best available sources via the Climate

Data Library of the International Research Institute for Climate

and Society [18]. Vegetation cover was based on Normalized

Difference Vegetation Index (NDVI) satellite data extracted

from the LandDAAC MODIS version 005 West Africa from

USGS [19,20]. Precipitation (mm), temperature (Cu) and specific

humidity (qa) measures were obtained from satellite data from the

National Oceanic and Atmospheric Administration (NOAA) and

based on daily mean readings taken 2 meters above the ground

[21–25].

First, the relationship between An. gambiae M and S, and each

environmental variable was examined using bivariate correlations,

Pearson’s correlation coefficient (2 tailed P values#0.05 signifi-

cance). Stepwise multiple linear regression analysis was then used

to identify the environmental factor that would best predict the

distribution of each molecular form. To account for environmental

variables that may be highly correlated with each other, the level

of colinearity tolerance in the stepwise regression procedure was

set at $0.8 and only variables above this threshold were accepted

in the models. Second, to better understand the environmental

parameters associated with the An. gambiae M and S forms, mean

environmental measures between high and low prevalence sites

were compared using the Mann-Whitney U test with Bonferroni

correction for multiple comparisons.

Relationship with disease prevalence distributions
To examine the relationship between the An. gambiae M and S

prevalence and the distribution of disease, maps on the LF

prevalence [13] and P. falciparum prevalence [14] for West Africa

were imported into ArcGIS 9.2 and geo-referenced. The LF map

was modeled from the W. bancrofti seroprevalence data collected in

2000 from 401 villages throughout Benin, Burkina Faso, Ghana

and Togo [13]. The P. falciparum malaria prevalence map was

modelled on extensive data obtained from children aged 2–10

years in non-epidemic periods, using a generalized linear mixed

model [14].

The An. gambiae s.s collection sites were used as focal points,

whereby the underlying disease prevalence data could be

compared with the entomological data. The LF and malaria

prevalence data, corresponding to the latitude and longitude of

each mosquito collection site, were extracted and exported for

descriptive and statistical analyses, which included bivariate

correlations, and comparison of means between high and low

prevalence sites of the An. gambiae M and S forms.

Further, it was of particular interest to explore the entomolog-

ical and environmental characteristics in different LF transmission

zones based on the prevalence data map in Gyapong et al. 2002

[13]. The prevalence distributions ranged from 0 to 30%, and

were classified into distinct transmission zones, which were

digitized in ArcGIS 9.2. The entomological and environmental

data from each of collection sites within each zone were

summarized, and significant differences identified by comparing

the standard errors (+2SE) of the means.

Results

Entomological mapping
The collated An. gambiae species complex database contained

143 records with a total of 12,607 mosquitoes, reflecting both

larval and adult catches. From this, the distribution of An. gambiae

s.l was mapped (Figure 1). The most dominant species was An.

gambiae s.s, which was found at 114 sites (total n = 10,028), followed

by An. melas (6 sites, total n = 469) and An. arabiensis (8 sites, total

Anopheles gambiae s.s in Ghana
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n = 240). The map indicates that the distribution of An. gambiae s.s

was widespread, while An. melas was primarily found along the

coastal Savanna zones, a predominantly marshy environment, and

An. arabiensis mainly in the northern savanna zone. Anopheles

funestus, the second most important vector of malaria and

lymphatic filariasis in Ghana, was also recorded in 9 sites with a

total of 1,825 mosquitoes. Refer to supplementary data File S1

‘‘Anopheles distribution records in Ghana’’ for further information

on An. funestus and other Anopheles mosquito species, collection sites

and coordinates, year and month of collection (where available),

collection methods, numbers collected and identified, and the data

sources.

Of the An. gambiae s.s data, a total of 70 collection sites had

information on the M form (n = 2,826) and S form (n = 4,098).

The collection sites were located predominately in three

geographical regions i.e. the south eastern, central western and

north central. The distribution of An. gambiae M and S forms varied

across the country in different proportions (Figure 2). Figure 2

indicates the distribution of each species according to the various

collection methods. Overall, An. gambiae M and S were sympatric

in most locations. However, An. gambiae M form was more

prevalent in the northern savanna, and coastal savanna areas of

the country, and in four sites it was the only species observed. In

contrast, An. gambiae S form was more prevalent in the middle

region of the country, and in seven locations it was the only species

collected. Interestingly, bivariate correlation analysis between each

species indicated that their prevalences were negatively correlated

(20.763).

While, it is possible that the geographical grouping of collection

sites may influence trends, the spatial analyses carried out in this

study indicated a positive spatial autocorrelation or clustering for

both the An. gambiae M (MI = 0.19, Z score = 4.2, P#0.01) and An.

gambiae S (MI = 0.19, Z score = 4.2, P#0.01) forms. The resultant

Z scores of the Getis-Ord Gi* hot spot analyses (using inverse-

distance weighting), indicated similar trends with significantly

different clustering of high and low prevalences of the An. gambiae

M and S forms. These spatial trends were overlaid a density

Figure 1. Distribution of An. gambiae s.l mosquitoes.
doi:10.1371/journal.pone.0009927.g001

Figure 2. Distribution of An. gambiae s.s molecular form by collection methods.
doi:10.1371/journal.pone.0009927.g002

Anopheles gambiae s.s in Ghana
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distribution surface map shown in Figure 3, further highlighting

the high to low patterns of each species.

Environmental analysis
The relationship between the prevalence of An. gambiae M and S

forms, and the environmental variables are shown in Table 1.

Overall, bivariate correlation analysis indicated that the An.

gambiae M form was significantly positively associated with

temperature (r = 0.51), and negatively with elevation (r = 20.28),

precipitation (r = 20.33), and humidity (r = 20.26). This contrasts

to the An. gambiae S form, which was found to be significantly

negatively associated with temperature (r = 20.58), and positively

with elevation (r = 0.30) and rainfall (r = 0.41). Interestingly,

elevation, precipitation and temperature correlations increased

when data were stratified by the two main collection methods,

HLC and larval collections (Table 1). Multiple regression analyses

of all data (n = 70), indicated that temperature was an important

variable for both molecular forms, explaining for An. gambiae M,

28% (R2 = 0.28, F = 25.8, P#0.001) and for An. gambiae S, 36%

(R2 = 0.36, F = 37.9, P#0.001) of the variance in the model

(Table 2).

For each molecular form, comparisons of environmental

measures between locations with significantly high and low

prevalences, defined by positive Z scores ($+1.96) and negative

Figure 3. Spatial clustering trends and density distributions of An. gambiae s.s molecular forms.
doi:10.1371/journal.pone.0009927.g003

Table 1. Bivariate correlations between An. gambiae s.s. molecular forms and environmental and epidemiological variables.

All Methods n = 70 Human Landing Catch n = 26 Larval Collection n = 28

M form S form M form S form M form S form

Elevation 20.28* 0.30* 20.54** 0.58** 20.42* 0.51**

NDVI 20.14 0.22 20.18 0.19 20.18 0.25

Rainfall 20.33** 0.41** 20.63** 0.75** 20.39* 0.60**

Temperature 0.51** 20.58** 0.61** 20.72** 0.16 20.42**

Humidity 20.26* 0.08 20.07 20.10 0.19 20.43

LF 0.46** 20.48** - - - -

Malaria 20.14 0.26* - - - -

*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).
doi:10.1371/journal.pone.0009927.t001

Anopheles gambiae s.s in Ghana
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Z scores (#21.96) respectively, are shown in Table 3. Overall,

locations with high An. gambiae M prevalences had higher NDVI

and temperatures, but lower elevation, precipitation and humidity

measures than those locations with lower prevalences by these

species and/or where the prevalence of An. gambiae S form was

higher. Statistical comparisons indicated significant differences

(P value,0.004 Bonferroni corrected) between elevation, precip-

itation and temperature for both An. gambiae M and S forms

between the high and low prevalence areas.

To further explore the differences in elevation, precipitation and

temperature, the mean prevalence of An. gambiae M and S forms

was plotted across a range of environmental groupings (Figure 4).

An. gambiae M prevalences were found to be higher at elevations of

0–200 m, and where mean daily precipitation ranged between

1.0–2.5 mm, and mean daily temperatures ranged between

26.1–27.6uC. In contrast, An. gambiae S prevalences were found

to be higher at elevations .200 m, and where mean daily

precipitation ranged between 2.6–3.8 mm, and mean daily

temperatures ranged between 24.5–26.0uC.

Disease association
The relationship between the An. gambiae M and S, and LF and

malaria prevalences were first examined using bivariate correla-

tion analysis. Results shown in Table 1, indicate that An. gambiae M

was significantly positively associated with LF (r = 0.46), while An.

gambiae S form was significantly negatively associated with LF

(r = 20.48), but positively with malaria (r = 0.26). Interestingly,

correlation analysis between each mosquito species, and each

disease indicated significant negative associations between An.

gambiae M and An. gambiae S (r = 20.76), and between LF and

malaria prevalence (r = 20.41).

Second, we compared disease prevalences between high and

low An. gambiae M and S sites (as described above). Overall,

locations with high An. gambiae M prevalences (Z scores$+1.96),

were found to have significantly higher LF prevalences (20%) than

those locations with low prevalences (Z scores#21.96), by these

species (2.4%) and/or where the prevalence of An. gambiae S form

was significantly high (2.2%). No significant differences were found

between malaria prevalence and each mosquito species (Table 3).

Finally, we examined the LF data in Gyapong et al. 2002 [13],

and identified three main transmission zones i.e. zero/low (,1%,

n = 19), medium (1–10%, n = 32) and medium/high (10–30%,

n = 19). Graphical presentation of these three zones is included in

Figure 5, which summarizes mean entomological and environ-

mental measures for the sites within each zone. In the medium/

high LF transmission zone, the mean An. gambiae M prevalence

(53.2%,) and temperatures (26.8uC) were found to be significantly

higher (62SE), and An. gambiae S prevalence (25.6%) significantly

lower, than those found in medium transmission (21.1%; 25.5uC;

64.7%) and low transmission (21.4; 25.3uC; 64.4%) zones. In the

zero/low transmission zone, precipitation measures (2.83 mm)

were found to be significantly higher (+2SE), than those in the

medium transmission (2.34 mm) to high transmission (1.99 mm)

zones (Figure 5). Refer to the supplementary File S2 for further

details on Figure 5.

Discussion

Most entomological studies on An. gambiae s.l in Ghana [3,4]

have focused on small area/district based collections except the

study by Yawson and colleagues [12]. Although the study by

Yawson et al. attempted a broader coverage, this study represents

the first nationwide review aimed at identifying the distribution of

the various member species of the An. gambiae s.l, the molecular

forms of the An. gambiae s.s, together with key environmental

drivers and how they may relate to diseases. This study confirms

previous observations that An. gambiae s.l is the major human biting

mosquito species in Ghana [3,4,12,26] and within the An. gambiae

s.l, An. gambiae s.s is the predominant species [3,4]. Other members

of the An. gambiae s.l found in Ghana are An. arabiensis and An. melas.

The distribution of the An. gambiae M and S forms varied

significantly across the country. The two molecular forms were

found sympatrically in most locations, except in some areas in the

middle region of the country where only the An. gambiae S form was

observed, and in certain areas in the northern savanna and coastal

savanna areas where only the An. gambiae M form was observed.

This is confirmed by the spatial analysis and high Z score values in

An. gambiae M/S form dominant areas. Also, the clustering

remained relatively consistent irrespective of the different

collection methods. Along the coast and in the northern savanna,

the An. gambiae M form was predominant and clustered, while the

S molecular form was most common and clustered in the middle

belt. This positive spatial autocorrelation indicates that An. gambiae

M/S distributions are geographically defined, and nearby areas

are likely to comprise the same or similar species compositions,

than those further away. The distribution of each species is also

influenced by distinct and geographical related environmental

factors and habitat characteristics. For example, the dominance of

the An. gambiae M form in the northern and coastal savanna areas

may be due to the wide presence of permanent breeding

conditions provided by irrigation facilities [27] and ponds of

water resulting from rivers run-offs since the M form is known to

Table 2. Multiple regression model for environmental
variable predicting the presence of the An. gambiae M and S
forms.

Species/predictor
variable

Standardized
Coefficient beta

T
statistic

P
value

An. gambiae M (Constant) 24.76 ,0.0001

Temperature 0.527 5.08 ,0.0001

An. gambiae S (Constant) 6.67 ,0.0001

Temperature 20.601 26.16 ,0.0001

doi:10.1371/journal.pone.0009927.t002

Table 3. Comparison of mean environmental and
epidemiological measures between high and low prevalence
areas of An. gambiae s.s molecular forms.

Variable An. gambiae s.s

M Form High Low S Form High Low

Elevation 147 276** 272 107**

NDVI 0.42 0.50 0.49 0.44

Precipitation 2.1 3.1** 3.1 2.0**

Temperature 27.0 24.9** 24.9 26.8**

Humidity 0.0161 0.0181 0.0181 0.0174

LF 20.0 2.4** 2.2 17.1**

Malaria 55.9 47.0 55.8 33.9

Note. High = Z score$+ 1.96, Low = Z score#2.1.96.
**Significant at the 0.004 level after Bonferroni Correction.
doi:10.1371/journal.pone.0009927.t003
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be associated with flooded areas, while the S form is heavily

dependent on rainfall [12,28]. The dominance of the An. gambiae S

form in the middle region of the country may be explained by the

fact that this region is mountainous, forested, with lower mean

temperatures and the highest recorded rainfall in Ghana, which

supports the findings of our study. In sub-Saharan Africa the

abundance and distribution of Anopheles mosquito species is

dependent on environmental factors and ecological zones [29–

32] as well as on human population changes and anthropological

effects, which may lead to land-use changes ultimately affecting

vector distribution and abundance [33,34] and as shown in a

recent paper by Costantini and colleagues [35]. This current study

did not focus on human factors but was able to show the wide

variability in abundance and distribution of the An. gambiae M and

S forms, which appear to be driven by a range of environmental

factors. The relation between human population density and

vector distribution is an indirect one and difficult to measure.

However, it may be inferred that the NDVI, which is a measure of

vegetation greenness and density, is somehow affected by the

degree of land occupancy and exploitation by humans through the

action of occupation and clearance for agricultural and develop-

mental purposes.

Variations in the vector population densities of these two

molecular forms have been observed in populations in Mali and

Cameroon as well as between the various chromosomal forms in

Mali [32,35,36]. Observations on the distributions and the

predominance of the An. gambiae S form in a larger part of the

country from this study confirm suggestions that the An. gambiae S

Figure 4. Mean prevalence of An. gambiae M and S forms plotted against elevation, precipitation, and temperature groupings.
doi:10.1371/journal.pone.0009927.g004

Anopheles gambiae s.s in Ghana
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form, has broader environmental ranges, and therefore is found in

more locations than the M form [37]. Our environmental analyses

suggest that elevation, precipitation and temperature are impor-

tant variables driving the spatial distribution of each mosquito

species, and the differences between them. In particular,

temperature appears to be a key factor distinguishing the two

species; probably due to influences on their production as reported

for An. arabiensis and An. gambiae s.s [38]. The An. gambiae M form

was more prevalent and seemingly better adapted to higher

temperatures, than the S form. This is in agreement with the

suggestion that the An. gambiae M form shows a more latitudinal

range in West Africa than the S form [39], being the most

dominant form encountered in hot, arid regions of the Sudan-

savanna or Sahelian zones [27,35,40–42].

The mosquito vectors’ association with each disease might

explain the negative association between LF and malaria described

Figure 5. Summary of entomological and environmental variables in different LF transmission zones. Note: The maps represent the LF
transmission zones in Ghana. The graphs below summarize the mean entomological and environmental measures for the sites within each zone.
NDVI stands for Normalized Difference Vegetation Index.
doi:10.1371/journal.pone.0009927.g005

Anopheles gambiae s.s in Ghana
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by Kelly-Hope and colleagues [43]. In this current study, malaria

prevalence was positively associated with the An. gambiae S form,

whilst high LF prevalence and high transmission zones were

associated with high temperatures and significantly high An.

gambiae M prevalences. This relationship between An. gambiae M

and S forms with LF and malaria supports previous studies that

suggest the Mopti form of An. gambiae s.s is more associated with W.

bancrofti than malaria transmission [44,45] and also that it is a

relatively poor vector of malaria compared with other species such

as the Savanna form of An. gambiae [46,47]. The LF distribution

map by Gyapong and colleagues [13], indicates that the disease

distribution in West Africa has the highest prevalence in the hotter

Sudan/Sahel savanna areas, which are also An. gambiae Mopti

chromosomal form dominant areas [41,43].

The results from this study provide useful information on the

distribution of the An. gambiae M and S forms in Ghana,

highlighting the environmental factors that may play a role in

determining their distributions. The information provided also

marks a beginning in understanding the LF disease distribution

pattern in Ghana relative to the forms of the An. gambiae s.s.

Despite the limitations of this study in using previously modeled

LF and malaria data, these results are very useful for disease

control and allocation of resources, especially for LF, which

together with its vectors appear to be restricted to hotter, less

elevated regions of the country. Another limitation to this study is

the small number of sites involved in the analysis of the An. gambiae

M and S distribution. This coupled with their uneven distribution

between the southern half and the northern half of the country

could introduce potential bias in the analyses. Undertaking spatial

statistical analysis with a larger dataset in the future, and further

modeling their distributions through ecologic niche modeling

[11,35,48], could further enhance our understanding of the

distribution of the disease and its vectors, as well as defining the

spatial limits of the vectors’ distribution which is crucial for disease

control. This would, however, require a constant update of the

vector database generated in this study as well as collection of data

from remote areas of the country where no available data exists.

Supporting Information

File S1 Data file for Anopheles mosquito species, collection sites

and coordinates, year and month of collection (where available),

collection methods, numbers collected and identified, and the data

sources.

Found at: doi:10.1371/journal.pone.0009927.s001 (0.04 MB

XLS)

File S2 Summary of entomological and environmental variables

in different LF transmission zones.

Found at: doi:10.1371/journal.pone.0009927.s002 (0.08 MB
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