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Abstract

The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality
control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate
specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the
budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of
protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show
that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase
transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the
Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed
balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore
protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical
interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or
localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex
controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.
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Introduction

The evolutionarily conserved and highly abundant eukaryotic

AAA (ATPase associated with various cellular activities) ATPase

Cdc48 (also known as TER94 in Drosophila and as p97 and VCP in

mammals) has emerged as an important motor and regulator for

the turnover of ubiquitylated proteins [1–4]. It converts chemical

energy released by ATP hydrolysis into mechanical force in order

to drive the segregation of ubiquitylated substrate proteins from

stable protein complexes, membranes, and chromatin [1,3–5].

Cdc48 plays central roles in the proteasomal degradation of

protein quality control targets, cell cycle regulators, and transcrip-

tion factors [3,4,6]. Recently, Cdc48 has also been implicated in

the lysosomal degradation of proteins delivered via autophagic and

endosomal pathways [3,4,7]. Thus, Cdc48 is involved in the three

major routes of regulated intracellular proteolysis in eukaryotes. In

addition, Cdc48 has been shown to function in non-proteolytic

processes in the fusion of homotypic membrane vesicles of the

Endoplasmic Reticulum, Golgi apparatus, and the nuclear

envelope [8,9].

The involvement of Cdc48 in such diverse cellular processes

requires tight control of its activity. Indeed, a large number of

cofactor proteins regulate central aspects of Cdc48 function,

including its subcellular localization and substrate specificity

[2,3,10]. The mutual exclusive binding of two major cofactors,

the heterodimer Ufd1-Npl4 and Shp1 (also known as p47 in

vertebrates), defines two distinct Cdc48 complexes, Cdc48Ufd1-Npl4

and Cdc48Shp1, which are specialized in proteasomal and non-

proteasomal pathways, respectively [10–12]. Cofactor binding to

Cdc48 appears to be hierarchical, as additional cofactors bind to

the Cdc48Ufd1-Npl4 and Cdc48Shp1 complexes in order to further

fine-tune their cellular function [10,13]. Cofactors interact with

Cdc48 by virtue of one or more Cdc48 binding modules, among

them the ubiquitin-like UBX domain [10,14–16] and the linear

binding site 1 (BS1) motif (also known as SHP box) [17–19]. UBX

domain containing proteins constitute the largest family of Cdc48

cofactors [10]. In the budding yeast Saccharomyces cerevisiae, seven

UBX proteins were identified and shown to bind Cdc48 [20,21]:

Shp1 itself (also known as Ubx1) and Ubx2 through Ubx7. In

addition to their carboxyl-terminal UBX domain, Shp1, Ubx2 and

Ubx5 possess an amino-terminal UBA domain mediating the

binding of ubiquitin and ubiquitylated substrates [20,22–24], and

thus exhibit the prototypical architecture of substrate-recruiting

adaptors for Cdc48 [20,25,26]. So far, cellular functions were

identified for only few of the yeast UBX proteins and include roles

in ER-associated protein degradation [22,27,28], lipid droplet

homeostasis [29], and UV-induced turnover of RNA polymerase
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II [24]. By contrast, the role of Shp1 is still poorly understood.

Shp1 has been implicated in the proteasomal degradation of a

Cdc48 model substrate [20], but the physiological relevance of this

finding remains unclear. More recently, Shp1 has been shown to

bind the autophagy factor Atg8 and to be involved in autophago-

some biogenesis [30]. However, the severe phenotypes of shp1

mutants suggest that Shp1 has additional, more critical cellular

functions [20,31].

The SHP1 gene was first identified in a genetic screen for

suppressors of the otherwise lethal over-expression of GLC7, the

sole catalytic subunit of protein phosphatase 1 (PP1) in yeast [32].

Two shp1 (suppressor of high-copy PP1) alleles tolerated the

overexpression of GLC7 and, in turn, exhibited phenotypes

reminiscent of glc7 loss-of-function mutants. shp1 null mutants

are inviable in the W303 strain background [31] and have reduced

PP1 activity in other backgrounds [32,33], consistent with the

model that Shp1 is a positive regulator required for normal Glc7

activity [32–34]. However, the mechanism by which Shp1

influences Glc7 activity is unknown. It has been proposed that

Shp1 positively affects Glc7 activity by a yet undefined indirect

mechanism [32–34] or by controlling the nuclear localization of

Glc7 [31].

Glc7 regulates numerous cellular processes including glycogen

metabolism, glucose repression, RNA processing, meiosis and

sporulation, DNA damage recovery, actin organization, cell wall

morphogenesis, and mitosis (reviewed in [34,35]). A mitotic

function of PP1 was first discovered in the fission yeast S. pombe

[36,37] and subsequently also shown to exist in higher eukaryotes

such as Drosophila and mammals [38,39]. In S. cerevisiae, PP1 is

crucial for proper chromosome segregation and, consequently,

several different glc7 mutants have been shown to arrest at or

before anaphase onset [40–42].

Accurate distribution of the replicated genome during cell

division is essential for viability and depends on proper chromo-

some segregation. During mitosis, two physically connected sister

chromatids must be faithfully segregated to mother and daughter

cell, an event controlled by the spindle assembly checkpoint (SAC)

[43,44]. In order for the yeast metaphase to anaphase transition to

occur, each kinetochore must attach to a single microtubule of the

mitotic spindle [43–45]. The SAC prevents anaphase onset by

keeping the APC/CCdc20 ubiquitin ligase complex inactive. Once

proper bi-polar attachment is achieved, active APC/CCdc20

ubiquitylates the mitotic substrate Pds1 (securin), which in turn

is rapidly degraded by the 26S proteasome resulting in cleavage of

cohesin and sister-chromatid separation [43,44,46–48].

The mitotic delay of glc7-129 and glc7-10 mutants depends on

the SAC [49,50]. During mitosis, Glc7 has been described to

oppose the kinase activity of Ipl1 (Aurora B) [51] by dephosphor-

ylating the kinetochore proteins Ndc10 and Dam1, as well as

histone H3 [50,52–56]. The correct balance of the Glc7

phosphatase and Ipl1 kinase activities ensures proper chromosome

bi-orientation. According to the prevalent model, Ipl1 senses

incorrect attachments lacking tension during metaphase and

phosphorylates a critical kinetochore component, Dam1. Glc7

then reverses this modification and thereby allows microtubule (re-

)attachment. This eventually leads to correct bi-polar attachment

and cell cycle progression [34,57,58]. Consequently, certain glc7

partial-loss-of-function alleles suppress the temperature sensitivity

of hypomorphic ipl1 mutants by restoring the phosphatase to

kinase balance [53,58,59].

Shp1 has previously been implicated in the regulation of several

cytosolic functions of Glc7 [32,33,60–62]. In this study, we identify

the Cdc48Shp1 complex as a critical positive regulator of Glc7

activity towards mitotic Ipl1 substrates including Dam1. We show

that shp1 mutants exhibit a SAC-mediated cell cycle delay

resulting from reduced Glc7 activity, which in turn is caused by

the lack of a specific Cdc48Shp1 function. Moreover, we provide

evidence that Cdc48Shp1 regulates Glc7 activity by controlling its

interaction with regulatory subunits rather than affecting Glc7

protein levels or localization.

Results

shp1 mutants are impaired in growth and mitotic
progression

In order to study cellular functions of Shp1, we generated shp1

null mutants completely lacking Shp1 in the DF5 strain

background by mutating the start codon (shp1-7) or by deleting

the entire coding region (Dshp1). In contrast to the W303

background, where SHP1 is essential (data not shown; [31]),

DF5 shp1 null mutants are viable but grow slowly and are

hypersensitive against multiple stress conditions, including high

and low temperature and various cell-damaging agents (Fig. 1a)

[20]. In addition to these growth phenotypes, shp1 null cells also

exhibit an altered cell cycle distribution (Fig. 1b). Analysis of the

DNA content of asynchronous cultures by flow cytometry showed

a significant accumulation of cells with 2n DNA content in Dshp1

compared to the wild-type. At 25uC, the proportion of wild-type

cells in the G1/S and G2/M cell cycle phases was nearly equal

(4363% and 5663%, respectively), whereas Dshp1 cultures

contained only 2766% cells in G1/S, but 7366% in G2/M. At

the non-permissive temperature of 14uC, Dshp1 cultures contained

a majority of cells in G2/M, hardly any cells in G1/S, and a

significant amount of sub-G1 material potentially indicating the

presence of inviable cell remnants (Fig. 1b).

The cell cycle delay was further analyzed by releasing wild-type

and Dshp1 cultures at 25uC from a G1 cell cycle arrest induced by

the mating pheromone a-factor (Fig. 1cd). The FACS profiles of

samples taken at various time points after release show that wild-

type and Dshp1 cells both entered G2/M approximately 60–

80 min after release (Fig. 1c). However, whereas wild-type cells

initiated G1 of the following cell cycle after about 120 min, the

number of Dshp1 cells in G1 started to increase only after 160 to

180 min. This G2/M delay of Dshp1 was confirmed by the analysis

of cyclin levels by Western blot (Fig. 1d). As judged by the

degradation of the G1/S cyclin Cln2 and the onset of expression

of the mitotic cyclin Clb2, wild-type and Dshp1 strains both

entered G2/M 60–80 min after release. Wild-type cells initiated

the next cell cycle at about 120 min, as indicated by the decrease

in Clb2 and increase in Cln2 levels. By contrast, the majority of

Dshp1 cells remained in G2/M with high Clb2 levels and

undetectable Cln2 levels until 160 min after release. Note that

the increased Clb2 levels observed in a-factor arrested Dshp1 cells

are not caused by defective mitotic exit resulting in G1 entry with

high Clb2 levels (data not shown), but are due to a less efficient G1

arrest observed in shp1 mutants (see Fig. 1c). In summary, our data

show that Shp1 is required for normal mitotic progression.

Shp1 functions in growth and mitotic progression
require Cdc48 binding

All known cellular functions of Shp1 and its mammalian

homologue p47 are believed to be based on its role as an adaptor

of Cdc48/p97 [8,10,20,30,31], suggesting that the mitotic

phenotype of shp1 null mutants described above may involve

Cdc48 as well. However, Cdc48 is essential, and conditional cdc48

mutants exhibit pleiotropic phenotypes including defects at several

stages of the cell cycle [63–67], thus complicating a meaningful

interpretation with respect to Shp1-dependent mitotic defects.

Regulation of Glc7 by Cdc48Shp1
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To overcome the limitations of conditional cdc48 alleles, we

engineered shp1 alleles encoding Shp1 variants specifically

impaired in Cdc48 binding. To this end, sets of amino acid

residues in the UBX domain and the binding site 1 (BS1) motif of

Shp1 critical for Cdc48 binding were mutated separately and in

combinations (Fig. 2a). In addition, key residues in a potential

second BS1 motif preceding the SEP domain (Kay Hofmann and

A.B., unpublished) were also mutated. Finally, deletion variants

lacking the entire UBX and UBA domain, respectively, were

constructed. All shp1 alleles were introduced into DF5 by

chromosomal integration in single copy under control of the

SHP1 promoter. As expected from previous reports [18,68],

deletion of the UBA domain did not interfere with Cdc48 binding

at all, and deletion of the entire UBX domain or separate mutation

of UBX domain or BS1 residues resulted only in partial loss of

Cdc48 binding in immunoprecipitation experiments (Fig. 2b). In

contrast, the simultaneous mutation of key residues in the UBX

domain and in one or both BS1 motifs in the shp1-a1 and shp1-b1

alleles led to a complete loss of Cdc48 binding. Phenotypic analysis

showed that both alleles confer temperature sensitivity, indicating

that this shp1 phenotype involves Cdc48 binding (Fig. 2c). Next, we

analyzed the shp1-a1 and shp1-b1 mutants for potential mitotic

defects. Intriguingly, like the shp1 null mutants, the FACS profiles

of the Cdc48 binding-deficient mutants revealed an accumulation

of cells in G2/M (Fig. 2d), and a delayed mitotic progression was

observed with elevated Clb2 levels until 180–200 min after release

from G1 arrest (Fig. 2e). These results demonstrate for the first

time that the mitotic defects of shp1 mutants are due to the lack of

a specific, Shp1-mediated function(s) of Cdc48 during cell cycle

progression.

The mitotic delay of shp1 mutants involves SAC
activation

The metaphase to anaphase transition is controlled by the

spindle assembly checkpoint (SAC) through inhibition of the

APC/CCdc20 ubiquitin ligase complex until chromosome bi-

orientation is achieved [43,44,69]. In order to test if the early

mitotic delay of shp1 mutants is the result of SAC activation, we

analyzed the stability of Pds1 (budding yeast securin) in wild-type

and shp1-7 cultures released from G1 arrest (Fig. 3a). Pds1 was

expressed approximately 40 min after the release both in wild-type

and shp1-7. However, whereas Pds1 was completely degraded

100 min after release in wild-type, it was significantly stabilized

and detectable until the end of the time course in shp1-7. These

results indicate a prolonged SAC activation in shp1 and pinpoint

the mitotic delay of shp1 to the metaphase to anaphase transition.

Mutants with spindle or kinetochore defects are hypersensitive

to microtubule depolymerizing agents [69–72] and often depend

on the presence of an intact SAC for viability [73–75]. Consistent

with the observed SAC activation, shp1-7 was indeed found to be

hypersensitive towards benomyl (Fig. 3b). Furthermore, we

detected a strong negative genetic interaction approaching

synthetic lethality between shp1-7 and a deletion mutant of a

central SAC component, Dmad2 (Fig. 3c). Of note, surviving shp1-7

Dmad2 cells displayed a more even G1/S versus G2/M distribution

than the shp1-7 single mutant (Fig. 3d), further supporting the

notion that the mitotic delay of shp1-7 is caused by SAC activation.

The mitotic phenotype of shp1 mutants is caused by
reduced Glc7 activity

shp1 mutants were originally identified based on their ability to

tolerate elevated Glc7 levels [32], and Shp1 has been proposed to

be a positive regulator of Glc7 [32–35]. To test if the mitotic

phenotype of shp1 mutants is related to Glc7 function(s), we

Figure 1. shp1 null mutants exhibit growth defects and mitotic delay. (a) shp1 null mutants are cold- and temperature-sensitive. 5-fold serial
dilutions of wild-type (WT), shp1-7 and Dshp1 cultures were spotted on YPD plates and incubated at the indicated temperatures for 3 days. (b) shp1
null cells accumulate and terminally arrest in G2/M at 25uC and 14uC, respectively. Asynchronously growing WT and Dshp1 cultures at 25uC were split
and incubated for 14 h at 25uC or 14uC as indicated. Cells were fixed and analyzed for DNA content by staining with propidium iodide and flow
cytometry. The peaks for single (1n) and double (2n) DNA content are labeled. (c, d) shp1 null cells are delayed in mitotic progression. Exponentially
growing WT and Dshp1 strains expressing CLN23HA were arrested in G1 with a-factor and released. Samples were taken every 20 min. (c) FACS analysis
was performed as in (b). (d) Clb2 and Cln23HA levels were analyzed by Western blot.
doi:10.1371/journal.pone.0056486.g001

Regulation of Glc7 by Cdc48Shp1
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Figure 2. Shp1 functions in growth and mitotic progression require Cdc48 binding. (a) Schematic of shp1 mutations in Cdc48 binding
motifs engineered for this study. Wild-type Shp1 is shown at the top, with defined domains and motifs labeled. UBA, ubiquitin-associated domain;
SEP, Shp1, eyc, and p47 domain; UBX, ubiquitin regulatory X domain; BS1, binding site 1. Key BS1 and UBX residues mutated in Cdc48 binding-
deficient shp1 alleles are indicated in bold in the sequence and by asterisks in the outlines of the Shp1 variant proteins shown below. (b)
Simultaneous mutation of the R-FPR motif in the UBX domain and of binding site(s) 1 abolishes Cdc48 binding in vivo. Lysates of cells expressing the
indicated shp1 alleles were subjected to immunoprecipitation with a Shp1 antibody and analyzed for Cdc48 co-immunoprecipitation by Western
blot. (c) shp1 mutants defective in Cdc48 binding are temperature sensitive. Wild-type (WT) and shp1-7 mutant cells carrying the indicated
centromeric plasmids were analyzed for growth at the indicated temperatures as described for Fig. 1a. (d, e) shp1 mutants defective in Cdc48 binding
are delayed in mitotic progression. Asynchronous WT and shp1-a1 cultures were analyzed by FACS (d) as described in the legend to Fig. 1b, and WT

Regulation of Glc7 by Cdc48Shp1
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analyzed genetic interactions between shp1 and the conditional glc7

allele, glc7-129, which at the non-permissive temperature confers a

cell cycle arrest at the metaphase-anaphase transition [76].

Furthermore, the mitotic arrest of glc7-129 was reported to

depend on the SAC [49]. Intriguingly, the shp1-7 glc7-129 double

mutant was inviable at all temperatures tested (Fig. S1a and data

not shown), indicating overlapping cellular functions of Shp1 and

Glc7. As expected, the synthetic lethality of shp1-7 glc7-129 could

be suppressed by a centromeric plasmid encoding wild-type SHP1

(Fig. 4a). Importantly, when we tested the Cdc48 binding-deficient

alleles shp1DUBX, shp1-a1, and shp1-b1, their ability to suppress the

lethality of shp1-7 glc7-129 correlated with the ability of the

respective gene products to bind Cdc48, demonstrating that an

intact Cdc48Shp1 complex is required for the viability of glc7-129.

To confirm that Shp1 is involved in mitotic functions of Glc7,

we next tested genetic interactions between SHP1 and the major

nuclear Glc7 regulatory subunit, SDS22 (Fig. 4b). Indeed, we

observed synthetic lethality of the shp1-7 sds22-6 double mutant as

well, strongly suggesting that Shp1 is critical for a mitotic

function(s) of Glc7. Finally, we analyzed genetic interactions

between SHP1 and IPL1, the gene encoding the yeast Aurora B

kinase homologue. Ipl1 has been described to antagonize mitotic

functions of Glc7 at the kinetochore, and the correct balance of

Ipl1 kinase and Glc7 phosphatase activities is crucial for

unperturbed mitotic progression [50,52,55,59,77]. Importantly,

we observed a clear mutual suppression of the shp1-7 and ipl1-321

temperature sensitivities. The shp1-7 ipl1-321 double mutant grew

better at 33uC and 37uC than either single mutant (Fig. S1b),

suggesting that reduced Ipl1 activity partially alleviates the defects

caused by reduced Glc7 activity in shp1-7. However, this positive

genetic interaction between shp1 and ipl1-321 was not observed for

Shp1 variants proficient in Cdc48 binding (Fig. 4c), again

confirming that Shp1 regulates mitotic Glc7 activity in its capacity

as a Cdc48 cofactor. Together, our genetic analysis strongly

suggests that shp1 mutants possess limiting mitotic Glc7 activity

leading to unbalanced Ipl1 activity.

To directly address if nuclear substrates of Glc7 are hyper-

phosphorylated in shp1, the phosphorylation state of histone H3 in

wild-type and shp1, glc7, and ipl1 mutants was analyzed at the non-

permissive temperature of 35uC (Fig. 4d). Residue S10 of histone

H3 is phosphorylated by Ipl1 during mitosis, and the phosphor-

ylation level is governed by the balance of Ipl1 kinase and Glc7

phosphatase activities [53]. As expected, the glc7-129 and ipl1-321

mutants exhibited increased and decreased phosphorylation of

histone H3, respectively. In shp1-7 cells, the phosphorylated form

was strikingly increased, directly demonstrating that Glc7 phos-

phatase activity is impaired in shp1-7. Importantly, the accumu-

lation of phosphorylated histone H3 in shp1-7 was efficiently

suppressed in the ipl1-321 shp1-7 double mutant, resulting in a

normal ratio of phosphorylated and total histone H3. Thus, Shp1

indeed controls the balance of Ipl1 and Glc7 activities towards

their nuclear target, histone H3.

We next tested if the supposed limiting Glc7 activity in shp1

mutants can be overcome by raising cellular Glc7 levels. To this

end, wild-type GLC7 was expressed under the control of the strong,

inducible MET25 promoter (Fig. 5a). As expected [32], induction

of GLC7 over-expression on methionine-free medium was toxic for

wild-type, but not shp1-7. Importantly, the Cdc48 binding-

deficient allele shp1-a1 also tolerated GLC7 over-expression

(Fig. 5a), again indicating that regulation of Glc7 activity by

Shp1 is Cdc48-dependent. FACS analysis of wild-type cells

confirmed that GLC7 over-expression was highly toxic (Fig. 5b,

top row). Remarkably, however, GLC7 over-expression was not

only tolerated by the shp1-7 and shp1-a1 mutants, but in fact

and shp1-a1 cultures synchronized by a-factor arrest/release were analyzed by Western blot against the mitotic cyclin Clb2 (e) as described in the
legend to Fig. 1d.
doi:10.1371/journal.pone.0056486.g002

Figure 3. The cell cycle delay of shp1 mutants is caused by SAC
activation. (a) Delayed degradation of Pds1 (securin). Wild-type (WT)
and shp1-7 null mutant cultures were synchronized by a-factor arrest/
release and analyzed by Western blot against Pds118myc as described in
the legend to Fig. 1d. (b) shp1-7 is hypersensitive towards the spindle
poison benomyl. Growth of WT, shp1-7 and Dmad2 cells at 25uC in the
absence (DMSO) and presence of benomyl was analyzed as described
for Fig. 1a. (c) Synthetic growth defect of shp1-7 Dmad2. Haploid
progeny of one tetrad from the cross of shp1-7 with Dmad2 was
analyzed for growth at 25uC as described for Fig. 1a. (d) The mitotic
delay of shp1-7 is alleviated by checkpoint inactivation. The cell cycle
distribution of the indicated strains at 25uC was analyzed by FACS as
described in the legend to Fig. 1b.
doi:10.1371/journal.pone.0056486.g003
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suppressed the G2/M accumulation of the mutant cells (Fig. 5b,

middle and bottom rows). Upon GLC7 over-expression, the cell

cycle distribution of shp1-7 (46% G1/S, 53% G2/M) and shp1-a1

cells (42% G1/S, 57% G2/M) approached that of wild-type cells

without GLC7 over-expression (43% G1/S, 54% G2/M).

Unbalanced Ipl1 and Glc7 activities give rise to chromosome

segregation defects [50,53,59], suggesting that shp1 mutants may

be impaired in chromosome segregation as well. Indeed, yeast cells

depleted of Shp1 were recently shown to exhibit defective

chromosome bi-orientation [31]. Using strains containing a lacO

array integrated at the LEU2 locus of chromosome III and

expressing GFPLacI and the spindle pole body marker Spc42Mars,

we analyzed chromosome segregation in wild-type and shp1

mutants by live-cell fluorescence microscopy (Fig. 5cd). Compared

to wild-type, cultures of shp1-7 and shp1-a1 contained significantly

more large budded cells with a short spindle and unseparated

chromosomes III, and significantly less cells with a long spindle

and two separated chromosomes III (Fig. 5c). This finding is fully

consistent with the metaphase to anaphase delay described above.

Of note, shp1-7 and shp1-a1 also showed a significant increase in

cells with chromosome segregation defects (15–20% of large-

budded cells in comparison to 3% in the wild-type), as well as

some aberrant spindles, confirming that Shp1 is required for

faithful chromosome segregation. Importantly, and in line with the

FACS data shown in Fig. 5b, over-expression of GLC7 in the shp1

mutants suppressed both the metaphase to anaphase delay and the

chromosome segregation defects.

Taken together, these results demonstrate for the first time that

nuclear Glc7 activity is reduced in shp1 and that the mitotic

phenotype of shp1 results from limiting Glc7 activity.

Dam1 hyper-phosphorylation causes growth defects of
shp1 mutants

The phosphorylation state of the kinetochore protein Dam1 is

critical for proper microtubule attachments during mitosis [55,78–

80]. Since Dam1 has been identified as a common substrate of

Ipl1 kinase and Glc7 phosphatase activities [54–56,81,82], we next

analyzed the phosphorylation state of Dam1 in shp1 mutants. To

this end, shp1, glc7 and ipl1 mutants were shifted to 35uC, and

phosphorylation of Dam1 was analyzed by Western blot (Fig. 6a).

Compared to wild-type cells, Dam1 was indeed hyper-phosphor-

ylated in shp1-7, as judged by the reduction of the faster migrating

non-phosphorylated form and the relative increase of the slower

migrating phosphorylated form of Dam1. Of note, the increase of

Dam1 phosphorylation in shp1 was comparable to that observed in

glc7-129 cells. As expected, ipl1-321 cells exhibited strongly

reduced Dam1 phosphorylation under these conditions. It has

previously been shown that the hypo-phosphorylation of Dam1 in

ipl1 mutants can be partially suppressed by a reduction of Glc7

phosphatase activity in glc7 mutants [56]. In line with the reduced

mitotic Glc7 activity in shp1, the shp1-7 ipl1-321 double mutant

indeed exhibited a roughly equal distribution of phosphorylated

and non-phosphorylated Dam1 (Fig. 6a).

To elucidate if the hyper-phosphorylation of Dam1 in shp1

mutants was responsible for the observed growth defects, we made

use of previously described phosphorylation site mutants of Dam1

[55]. To this end, we transformed shp1-7 with high copy number

plasmids carrying wild-type DAM1 or dam1 mutated in residues

S20 and S292, major target sites for Ipl1 [55,82]. Whereas neither

the empty vector control nor wild-type DAM1 had an influence on

the growth of shp1-7, over-expression of the dam1SA phospho-

Figure 4. shp1 mutants exhibit reduced Glc7 activity. (a) Synthetic lethality of glc7-129 with shp1 mutants defective in Cdc48 binding. glc7-129
shp1-7 double mutant cells carrying the URA3-based SHP1 expression plasmid YC33-SHP1 and a LEU2-based centromeric plasmid for the expression of
the indicated wild-type and mutant SHP1 alleles were spotted in serial dilutions onto control plates (SC-Leu) or plates containing 5-fluoro orotic acid
(59FOA) to counterselect against YC33-SHP1. The ability of the shp1 mutant gene products to bind Cdc48 as shown in Fig. 2b is indicated at the right.
(b) Synthetic lethality of shp1-7 and sds22-6. Growth of haploid progeny of one tetrad from the cross of shp1-7 with sds22-6 carrying YC-SHP1 was
analyzed on control (YPD) and 59FOA plates as described above. (c) Positive genetic interaction between ipl1-321 and shp1 mutants defective in
Cdc48 binding. Growth of haploid progeny of one tetrad from the cross of shp1-7 with ipl1-321 carrying a centromeric plasmid for the expression of
the indicated wild-type and mutant SHP1 alleles was analyzed at the indicated temperatures. The ability of the shp1 mutant gene products to bind
Cdc48 is indicated at the right. (d) Hyper-phosphorylation of histone H3 in shp1-7. The phosphorylation state of histone H3 in the indicated WT and
mutant strains at 35uC was analyzed by Western blot using an antibody recognizing phosphorylated residue Ser10 (pH3) and total H3, respectively.
The ratio of the signal intensities (pH3/total H3) is given at the bottom.
doi:10.1371/journal.pone.0056486.g004
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Figure 5. The mitotic phenotype of shp1 mutants is caused by reduced Glc7 activity. (a) shp1 mutants tolerate over-expression of GLC7.
Wild-type (WT) and shp1-7 and shp1-a1 mutant cells expressing GLC7 from an integrative plasmid under the control of the inducible PMET25 promoter
(PMET-GLC7) were analyzed for growth at 25uC in the presence (+Met (off)) and absence (2Met (on)) of methionine in the growth medium. The
respective strains carrying an empty integrative plasmid (PMET) served as control. (b) Over-expression of GLC7 suppresses the mitotic delay of shp1
mutants. The strains described in panel (a) were analyzed for cell cycle distribution by FACS in the absence and presence of methionine as indicated.
(c) Over-expression of GLC7 suppresses the chromosome segregation defect of shp1 mutants. Sister chromatid separation of wild-type, shp1-7 and
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mutant incapable of being phosphorylated on residues 20 and 292

enabled shp1-7 cells to grow robustly at 30 and 35uC (Fig. 6b) and,

albeit very weakly, at 37uC (data not shown). Conversely, over-

expression of the dam1SD mutant mimicking constitutive phos-

phorylation of residues 20 and 292 was detrimental for the growth

of shp1-7 at all temperatures (Fig. 6b). These data show for the first

time that Dam1 is a critical target of unbalanced Ipl1 and Glc7

activities in shp1 mutants.

We next tested if reduced Dam1 phosphorylation could also

ameliorate the more severe growth defect of shp1 in the absence of

an intact SAC, i.e. in the shp1-7 Dmad2 double mutant (Fig. 6c).

Indeed, over-expression of the dam1SA phospho-mutant was able

to partially suppress the growth defect of shp1-7 Dmad2 both at

ambient temperature and at the non-permissive temperature of

37uC. These results suggest that a reduction of phosphorylated

Ipl1 target sites on Dam1 is sufficient to partially restore

productive kinetochore-microtubule attachments and to limit

chromosome mis-segregation in shp1-7 to an extent that signifi-

cantly improves viability.

The nuclear localization of Glc7 is intact in shp1 mutants
In order to investigate potential reasons for the reduced Glc7

activity in shp1 mutants, we analyzed Glc7 protein levels and

subcellular localization using epitope-tagged Glc7 variants.

Because both over-expression and epitope-tagging of Glc7 can

affect viability [32,83,84], we generated strains expressing

carboxyl-terminally tagged Glc7 from its authentic chromosomal

locus as the sole source of Glc7 activity. Based on their normal

growth at 30uC and 37uC, we concluded that cells expressing

Glc7GFP and Glc73myc are not defective in critical aspects of Glc7

function in the DF5 strain background (Fig. 7a). In contrast,

expression of Glc73HA causes a partial-loss-of-function phenotype

reflected in temperature-sensitive growth. The functionality of the

Glc7GFP fusion protein was further confirmed by flow cytometry

revealing a wild-type cell cycle distribution (Fig. 7b).

Using the functional, epitope-tagged Glc73myc protein we were

able to show a physical interaction between Glc7 and Shp1 at

endogenous expression levels by immunoprecipitation for the first

time (Fig. 7c). The interaction was confirmed in a reciprocal

experiment, where Glc73myc was co-immunoprecipitated with

Shp13HA (Fig. 7d). This physical interaction between Shp1 and

Glc7 could suggest that Shp1 directly controls the half-life or

cellular localization of Glc7. Because we could not detect

differences between wild-type and shp1 cells in the protein levels

of endogenous, untagged or epitope-tagged Glc7 (data not shown;

see e.g. input lanes in Fig. 7g), we performed a thorough analysis of

Glc7 subcellular localization by confocal spinning disk live-cell

microscopy of cells expressing Glc7GFP (Fig. 7e). Consistent with

previous reports [84–89], the majority of Glc7GFP was detected in

the nucleus of wild-type cells, with additional diffuse cytosolic

staining and a distinct localization at the septum of medium and

large budded cells. shp1-7 and shp1-b1 cells showed a very similar

distribution of Glc7GFP with respect to nuclear, cytosolic, and

septum localization, and no aberrant localization or aggregation of

Glc7GFP was observed (Fig. 7e; Figs. S2, S3). Quantification of the

intensity of the nuclear versus cytosolic GFP signal revealed a slight

decrease of nuclear Glc7 in the shp1 mutants to approximately

80% of the wild-type signal (Fig. 7f). Interestingly, in the course of

these experiments, it became evident that the nuclear localization

of Glc7GFP is influenced by the presence of untagged Glc7 in shp1

mutants, but not wild-type cells. The additional expression of

GLC7 from a plasmid resulted in a notable reduction of the nuclear

Glc7GFP signal in shp1-7 GLC7GFP (Fig. S3). This effect appears to

correlate with the expression level of untagged Glc7, as a high-

copy plasmid encoding GLC7 under control of the strong ADH1

promoter reduced the nuclear Glc7GFP signal even further (Fig.

S3). It should be stressed, however, that lack of Shp1 clearly did

not abolish nuclear localization of Glc7GFP if this is the sole source

of Glc7 (Fig. 7ef).

The nuclear localization of Glc7 was further assessed by

analyzing the interaction of endogenous, untagged Glc7 with its

nuclear targeting factor Sds22 [84,86,90]. Co-immunoprecipita-

tion of Glc7 with Sds22 from lysates of wild-type and shp1-7 strains

demonstrated that the interaction between Glc7 and Sds22 was

not reduced in shp1-7 (Fig. 7g). Because the majority of Sds22

interacts with Glc7 in the nucleus [90], these data strongly suggest

a normal nuclear localization of the Sds22-Glc7 complex in shp1-7.

Taken together, our results make the possibility that the nuclear

localization of Glc7 is grossly affected in shp1 null mutants highly

unlikely.

The interaction between Glc7 and Glc8 is impaired in
shp1 mutants

As neither protein levels nor cellular localization of Glc7 were

severely affected in shp1 mutants, we considered the possibility that

Shp1 may influence the interaction of Glc7 with one or more of its

numerous regulatory subunits. Because the physical interaction of

Glc7 with its mitotic regulator Sds22 was unaltered in shp1

(Fig. 7g), and no genetic interaction between SHP1 and the

putative Glc7 kinetochore recruitment factor FIN1 [91] could be

detected (data not shown), we next analyzed genetic interactions

between shp1 and glc8 mutants (Fig. 8a). Glc8 is a positive regulator

of Glc7, whose Glc7 activating function depends on phosphory-

lation of residue T118 by the cyclin-dependent kinase Pho85

[34,92,93]. Deletion of GLC8 has been shown to cause a reduction

of Glc7 phosphatase activity and cellular glycogen levels [94], but

does not result in significant growth or cell cycle defects (Fig. 8a

and data not shown). Some glc7 alleles are synthetic lethal with

Dglc8 and glc8 mutants that cannot be phosphorylated on residue

T118 [93], indicating that activation by Glc8 becomes essential

under conditions of reduced Glc7 activity. Interestingly, the shp1-7

Dglc8 double mutant was found to be inviable as well (Fig. 8a),

demonstrating that either Glc8 or Shp1 is required for viability of

the DF5 strain background, presumably to ensure sufficient Glc7

activity. Consistent with this hypothesis, expression of GLC8

restored growth of shp1-7 Dglc8, whereas the glc8-T118A allele was

shp1-a1 mutant cells expressing GLC7 under the control of the inducible PMET25 promoter was analyzed at 25uC in the presence (PMET-GLC7 off) and
absence (PMET-GLC7 on) of methionine in the growth medium. Large-budded cells (n.300 for each condition) were sorted into four classes based on
the relative orientation of the GFPLacI-marked chromosomes III and the spindle pole body (SPB) marker Spc42Mars: I, normal metaphase spindle; II,
normal anaphase spindle; III, meta-/anaphase spindle with segregation defect; IV, aberrant number of SPBs. Error bars indicate binomial standard
errors. The distribution of the five cell types over the four classes is non-random with high statistic significance according to a Pearson’s chi-squared
test of independence (X2

(12) = 123.931; p.0.001). All pairwise differences within classes I–III between (i) wild-type and shp1 mutants without over-
expression of GLC7, and (ii) shp1 mutants with and without GLC7 over-expression are statistically significant with p,0.01 according to Fisher’s exact
test. (d) Representative examples of large-budded cells falling into the four classes analyzed in panel (c). Upper row, fluorescence microscopy of
GFPLacI-marked chromosomes III (chr. III) and Spc42Mars-marked SPBs; lower row, differential interference contrast (DIC) microscopy. The asterisks
mark an additional unbudded cell in class I that was not included in the analysis.
doi:10.1371/journal.pone.0056486.g005
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unable to rescue the synthetic lethality (Fig. 8b), proving that

growth of shp1-7 indeed requires the activation of Glc7 by Glc8.

Similar to the genetic interaction between shp1 and glc7 (Fig. 4a),

the ability of Shp1 to bind Cdc48 is required for viability of strains

lacking GLC8 (Fig. 8b), again demonstrating that the Cdc48Shp1

complex is necessary for normal regulation of Glc7 activity.

Glc8 has been demonstrated to physically interact with Glc7 in

vivo and in vitro [92]. We therefore analyzed the effect of a shp1 null

mutation on the Glc7-Glc8 interaction by co-immunoprecipita-

tion, using lysates from asynchronous and a-factor-arrested

cultures of wild-type and shp1-7 GLC83HA strains. The shp1-7

GLC83HA strain was viable and did not exhibit any additional

growth defect compared to shp1-7 (data not shown), indicating that

Glc83HA is functional. Intriguingly, the interaction of endogenous

Glc7 with Glc83HA was significantly reduced in asynchronously

growing as well as in G1-arrested shp1-7 cultures (Fig. 8cd).

Quantification of the Glc7 co-immunoprecipitation with Glc8 in

asynchronous cultures of wild-type and shp1-7 revealed that the

Glc7-Glc8 interaction in shp1-7 was reduced by approximately

50% (Fig. 8e). These data show that Shp1 is required for a normal

physical interaction between Glc7 and its activator Glc8.

We next tested if the reduced interaction between Glc7 and

Glc8 in shp1-7 is responsible for shp1 phenotypes. To this end, we

over-expressed GLC83HA under the control of the MET25

promoter (Fig. 8f). Importantly, the over-expression of GLC83HA

partially suppressed the growth defects of shp1-7, as improved

growth at 35uC and weak, but detectable growth at the non-

permissive temperature of 37uC was observed (Fig. 8f). In contrast,

over-expression of glc8-T118A3HA was toxic in shp1-7 cells (Fig. 8f),

presumably because excess non-activating Glc8-T118 protein

competed with endogenous Glc8 for Glc7 binding. In summary,

our data show that the Cdc48Shp1 complex is important for the

activation of Glc7 by Glc8, and that lack of Glc8-mediated

activation contributes critically to the phenotype of shp1 mutants.

Discussion

This study addresses the relationship of Shp1, a major Cdc48

cofactor, and Glc7, the catalytic subunit of budding yeast PP1. We

found that shp1 mutants exhibit a variety of severe phenotypes,

including a significant mitotic delay during progression from

metaphase to anaphase. We were able to show that the mitotic

phenotype of shp1 mutants is caused by limiting nuclear Glc7

activity towards mitotic substrates, resulting in their hyper-

phosphorylation due to unbalanced Ipl1 kinase activity. By

engineering shp1 alleles specifically defective in Cdc48 binding,

we established that Shp1 regulates Glc7 in its capacity as a Cdc48

cofactor. Importantly, we could demonstrate that Shp1 and Glc7

interact physically, and that the Cdc48Shp1 complex is required for

normal interaction of Glc7 with Glc8.

shp1 mutants were originally found to exhibit reduced Glc7

activity towards glycogen phosphorylase, decreased glycogen

accumulation, and defective sporulation [32]. Other shp1 pheno-

types attributed to reduced Glc7 activity include defective vacuolar

degradation of fructose-1,6-bisphosphatase through the vacuole

import and degradation (Vid) pathway [60], impaired V-ATPase

activity [61], and impaired glucose repression [62]. Here, we

provide several lines of evidence that shp1 mutants also possesses a

significant defect in mitotic Glc7 activity. First, the genetic

interactions between shp1 and glc7, sds22, mad2, and ipl1 all point

towards impaired nuclear function(s) of Glc7 in shp1. Second, over-

expression of GLC7 in shp1 restored a normal cell cycle distribution

and suppressed chromosome segregation defects. Third, the

nuclear Glc7 substrates histone H3 and Dam1 are hyper-

phosphorylated in shp1 in an Ipl1-dependent manner. Together

with the previously described cytosolic and vacuolar processes, the

elucidation of its involvement in mitotic Glc7 functions under-

Figure 6. Dam1 hyper-phosphorylation is critical for the
impaired growth of shp1. (a) Hyper-phosphorylation of Dam1 in
shp1-7. The phosphorylation state of Dam19myc in the indicated wild-type
(WT) and mutant strains at 35uC was analyzed by Western blot against
the myc epitope tag. The position of Dam1 and phosphorylated Dam1
(Dam1-P) is indicated. (b) Phosphorylation-deficient and phosphoryla-
tion-mimicking dam1 mutants suppress and exacerbate, respectively, the
growth phenotype of shp1-7. Growth of WT and shp1-7 cells carrying a
TRP1-based high copy number plasmid (YE112) for the over-expression of
the indicated wild-type and mutant DAM1 alleles was analyzed on SC-Trp
plates. (c) Expression of phosphorylation-deficient Dam1 suppresses the
synthetic growth defect of shp1-7 Dmad2. shp1-7 Dmad2 double mutant
cells carrying YC33-SHP1 and the indicated YE112 plasmids were spotted
in serial dilutions onto control plates (SC-Trp) or plates containing 5-
fluoro orotic acid (59FOA) to counterselect against YC33-SHP1.
doi:10.1371/journal.pone.0056486.g006
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scores the importance of Shp1 as a positive regulator of many, if

not most, Glc7 functions.

Dephosphorylation of Ipl1/Aurora B substrates at kinetochores

is a well-established and evolutionarily conserved mitotic function

of Glc7/PP1 [95–97]. Recently, however, Glc7 has also been

implicated in silencing of the SAC [98–101], raising the possibility

that impaired SAC silencing rather than chromosome attachment

defects causes the mitotic delay of shp1. The observed stabilization

of Pds1 in shp1 (Fig. 3a) as well as the suppression of the mitotic

delay by over-expression of GLC7 (Fig. 5b) would in fact be

consistent with both scenarios. However, the suppression of the

chromosome segregation defects indicating defective chromosome

bi-orientation by over-expression of GLC7 (Fig. 5c) provides

evidence that disturbed kinetochore-microtubule attachments are

the primary cause for the mitotic delay in shp1. Furthermore, while

glc7 mutants defective in SAC silencing are rescued by deletion of

MAD2 [99], the pronounced negative genetic interaction observed

for the shp1-7 Dmad2 double mutant also strongly argues against a

causative role of impaired SAC silencing for the mitotic phenotype

of shp1 (Fig. 3c). It rather shows that SAC inactivation/deletion in

the continued presence of mitotic defects is highly detrimental to

shp1. According to our data, the key mitotic defect of shp1 mutants

is the unbalanced Ipl1 activity at the kinetochore. This conclusion

is not only supported by the positive genetic interaction between

shp1-7 and ipl1-321, but also underlined by the observed hyper-

phosphorylation of the Ipl1 targets H3 and Dam1, which is

suppressed in the shp1-7 ipl1-321 double mutant.

At the kinetochore, the delicate balance between Ipl1 and Glc7

activities is believed to control cycles of association and

dissociation of spindle microtubules that ultimately lead to proper

bi-polar attachment and thus satisfaction of the SAC and mitotic

progression [57,58,91]. The essential microtubule-binding protein

Dam1 has been shown to be a critical target of Ipl1 [54,55,82] and

Glc7 [56] during this process. Dam1 is the central component of

the heterooligomeric Dam1/DASH complex located at the plus

ends of spindle microtubules. There, the Dam1/DASH complex

recruits the Ndc80 complex and thereby ensures dynamic coupling

of microtubule plus ends with kinetochores [79,80]. Of note,

Ndc80 recruitment is abolished by Ipl1-mediated phosphorylation

of Dam1 or by phospho-mimicking mutations in Ipl1 target sites of

Dam1 [79,80]. Importantly, our results show for the first time that

Dam1 is hyper-phosphorylated in shp1, and that this altered

modification significantly contributes to the severe phenotype of

shp1 mutants. Using the dam1SA and damSD alleles, we set out to

mimic the effects of ipl1 and glc7 loss-of-function mutations,

respectively, on this specific target. Intriguingly, altering the

relative abundance of Dam1 phospho-sites in shp1 almost perfectly

phenocopied the genetic interactions of shp1 with ipl1 and glc7.

Over-expression of dam1SA allowed robust growth up to 35uC
similar to the shp1-7 ipl1-321 double mutant, whereas over-

expression of dam1SD was toxic, albeit this effect was less severe

than that observed for the shp1-7 glc7-129 double mutant. These

results clearly show that Dam1 hyper-phosphorylation is a major

cause of shp1 phenotypes related to mitotic functions of Glc7 and

Ipl1.

Our analysis of the mitotic phenotype of viable, logarithmically

growing shp1 mutant cells in the DF5 strain background is largely

consistent with the results of a recent study using the temperature-

sensitive cdc48-3 allele and a PGAL-3HA-SHP1 allele for the

conditional depletion of Shp1 in the W303 strain background

[31]. The authors of that study concluded that Cdc48 and Shp1

are important for the kinase to phosphatase balance at the

kinetochore and proposed that Cdc48Shp1 regulates the nuclear

localization of Glc7. Our study goes beyond their analysis and

Figure 7. Glc7 nuclear localization is not severely affected in shp1 mutants. (a, b) Functionality of epitope-tagged Glc7 variants. Growth of
wild-type (WT) and strains expressing the indicated carboxyl-terminally epitope-tagged Glc7 fusion proteins from the chromosomal GLC7 locus as the
sole source of Glc7 was analyzed by (a) plate assay and (b) FACS. (c, d) Physical interaction between Glc7 and Shp1. (c) Lysates of strains expressing
Shp13HA and Glc73myc as indicated were subjected to immunoprecipitation (IP) with anti-myc antibody and analyzed for co-precipitation of Shp13HA.
The asterisk marks a cross-reactive band of the Glc7 antibody. (d) Lysates of strains expressing Glc73myc and Shp13HA as indicated were subjected to
immunoprecipitation with anti-HA antibody and analyzed for co-precipitation of Glc73myc. The asterisk marks the immunoglobulin heavy chain of the
HA antibody. Quantification of the Glc7 signal in the IP lanes relative to the heavy chain signal revealed a more than eight-fold difference between
the Shp13HA lane and the negative control. (e, f) Nuclear localization of Glc7GFP in shp1 mutants. WT, shp1-7 and shp1-b1 cells expressing Glc7GFP as
sole source of Glc7 were analyzed by confocal spinning disk microscopy. (e) Representative z-stack projections generated with ImageJ. Scale bars:
5 mm. (f) Quantification of the GFP signal in equal areas of nucleus versus cytosol in single z-slices of confocal images. (g) Normal binding of Glc7 to
Sds22 in shp1-7. Lysates of WT and shp1-7 cells expressing Sds223myc as indicated were subjected to immunoprecipitation with anti-myc antibody and
analyzed for co-precipitation of untagged Glc7. The asterisk marks the immunoglobulin light chain of the myc antibody.
doi:10.1371/journal.pone.0056486.g007
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differs in certain central aspects. We were able to demonstrate

strong positive and negative genetic interactions, respectively, of

shp1 null and Cdc48 binding-deficient alleles with ipl1-321 and

glc7-129. Importantly, we proved that the cell cycle and

chromosome segregation defects of shp1 null and Cdc48 binding-

deficient mutants are efficiently suppressed by increased Glc7

levels. Finally, we established an increased Dam1 phosphorylation

in shp1 mutants, which can be suppressed by a reduction of Ipl1

activity.

One likely explanation for the differences between the two

studies relates to the strains used by Cheng and Chen. In

particular, the use of the cdc48-3 strain poses problems due to its

pleiotropic phenotypes. Besides defects in the kinetochore-micro-

tubule attachment reported by Cheng and Chen, cdc48-3 has been

shown to be impaired in G1 progression [64,66], spindle

disassembly at the end of mitosis [65], transcription factor

remodeling [102], UV-induced turnover of RNAPolII [24],

ERAD [103,104], and autophagy [30]. As long as specific targets

of Cdc48 at the kinetochore remain unknown, it is therefore

almost impossible to differentiate between direct and secondary

effects of the cdc48-3 allele on cell cycle progression. Furthermore,

Cheng and Chen state that the observed mitotic phenotypes of

cdc48-3 were generally more severe than those of Shp1-depleted

cells. This finding is likely to reflect the involvement of alternative

Cdc48 cofactors, in particular Ufd1-Npl4, in Shp1-independent

functions of Cdc48 during the cell cycle. Taken together, the

uncertainties in the interpretation of cdc48-3 phenotypes under-

score the importance of designing specific Cdc48 binding-deficient

shp1 alleles. The shp1 alleles presented in this study enabled us to

study genetic interactions and the effect of GLC7 over-expression

in the absence of unrelated pleiotropic defects and thus allowed us

to formally conclude for the first time that the regulation of Glc7

activity indeed requires the Cdc48Shp1 complex.

The major discrepancy between this study and the study by

Cheng and Chen relates to the cellular localization of Glc7 in the

absence of Shp1. While these authors found that depletion of Shp1

leads to the loss of Glc7 accumulation in the nucleus, our

microscopy data of strains expressing a fully functional Glc7GFP

fusion protein as the sole source of Glc7 indicated only a moderate

reduction of nuclear Glc7 in shp1 (Fig. 7ef). These data are

Figure 8. Impaired interaction between Glc7 and Glc8 in shp1. (a) Synthetic lethality of shp1-7 Dglc8. Growth of haploid progeny of one tetrad
from the cross of shp1-7 with Dglc8 carrying YC33-SHP1 was analyzed on control (YPD) and 59FOA plates as described in the legend to Fig. 4b. (b)
Synthetic lethality of Dglc8 with shp1 mutants defective in Cdc48 binding. Dglc8 shp1-7 double mutant cells carrying YC33-SHP1 and a LEU2-based
centromeric plasmid for the expression of the indicated wild-type and mutant SHP1 and GLC8 alleles were analyzed as described in the legend to
Fig. 4a. (c, d, e) Reduced physical interaction between Glc7 and Glc8 in shp1-7. Lysates of asynchronous (c) or a-factor-arrested (d) wild-type and shp1-
7 cells expressing Glc83HA were subjected to immunoprecipitation with anti-HA antibody and analyzed for co-precipitation of endogenous, untagged
Glc7. The asterisks mark a cross-reactive band of the Glc7 antibody (Glc7 blots) and the immunoglobulin light chain of the HA antibody (Glc8 blots),
respectively. In panel (c), irrelevant lanes were removed from the figure. However, all lanes shown were on the same Western blot and exposed and
processed identically. (e) Quantification of three independent experiments as in panel (c), showing the ratio of the Glc7 and Glc8 signal intensities. (f)
Overexpression of GLC8 partially suppresses the temperature sensitivity of shp1-7. Wild-type (WT) and shp1-7 cells expressing the indicated GLC83HA

alleles from an integrative plasmid under the control of the inducible PMET25 promoter were analyzed for growth at the indicated temperatures in the
presence (+Met (off)) and absence (2Met (on)) of methionine in the growth medium.
doi:10.1371/journal.pone.0056486.g008
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supported by a normal co-immunoprecipitation of Glc7 with its

nuclear targeting subunit Sds22 in shp1 (Fig. 7g), and they are in

agreement with data from biochemical fractionation experiments

[32]. There are two potential explanations for the discrepancy of

our data with those by Cheng and Chen. First, we found that the

nuclear localization of Glc7GFP in shp1 is reduced in the presence

of additional, untagged Glc7 (Fig. S3) for unknown reasons. Cheng

and Chen used a strain expressing GFPGlc7 in addition to

endogenous Glc7, raising the possibility that these conditions

prevented a nuclear localization of the tagged Glc7 variant.

Second, Cheng and Chen performed microscopy 12 hours after

promoter shut-off under conditions of ongoing cell death, whereas

our analysis was performed with logarithmically growing shp1 cells.

Altogether, considering the available experimental evidence, a

gross reduction of nuclear Glc7 levels in shp1 null mutants appears

unlikely. In line with this conclusion, cytoplasmic Glc7 functions in

glycogen metabolism and in the Vid pathway are affected in shp1

mutants as well [32,60], also arguing against impaired nuclear

localization of Glc7 as the critical defect in shp1.

Besides the genetic interactions between glc7 and shp1 mutants,

the present study showed for the first time that Shp1 and Glc7 also

interact physically (Fig. 7cd). We currently do not know if this

interaction is direct or indirect, for instance bridged by regulatory

subunits of Glc7. While Shp1 lacks a classical RVxF motif (data

not shown), which mediates the binding of many PP1 regulatory

subunits [34,105,106], a number of Glc7 subunits interact through

other motifs (reviewed in [34,106]). Alternatively, Cdc48Shp1 could

interact with ubiquitylated Glc7 or an ubiquitylated Glc7

interactor. Consistent with this possibility, we found that Glc7 is

ubiquitylated in vivo (data not shown), in agreement with

proteomics studies [107–109]. Clearly, the molecular basis for

Shp1 binding to Glc7 remains to be elucidated in future studies.

The identification of a physical interaction between Shp1 and

Glc7 raises the intriguing possibility that Cdc48Shp1 controls Glc7

cellular functions by modulating binding of regulatory subunits.

While we failed to detect Shp1-dependent differences in the

interactions of Glc7 with Sds22 (Fig. 7g) and Reg1 (data not

shown; see [60]), we found a strikingly reduced binding between

Glc7 and Glc8 in shp1 (Fig. 8cde). Because Glc8 is considered a

substrate-independent, major activator of Glc7, the reduced

interaction could at least partially explain the broad spectrum of

Glc7 functions affected in shp1 mutants. This interpretation is

strengthened by the finding that GLC8 over-expression partially

suppressed the temperature-sensitivity of shp1 (Fig. 8f). However,

the reduced binding of Glc8 to Glc7 cannot be the sole cause of

the pleiotropic Glc7-related phenotypes of shp1. The much less

severe phenotypes of Dglc8 clearly show that GLC8 is not strictly

required for viability in an otherwise unperturbed cell, suggesting

that more complex mechanisms for the positive regulation of Glc7

activity must exist. Furthermore, the synthetic lethality of shp1 and

Dglc8 (Fig. 8a) cannot be explained on basis of the reduced

interaction between Glc7 and Glc8 observed in the shp1-7 single

mutant. We therefore favor the hypothesis that the Cdc48Shp1

complex controls the balance of Glc7 interactions with additional

regulatory subunits, perhaps by mediating the dissociation of

certain regulatory subunits from Glc7 by virtue of the segregase

mechanism underlying other cellular functions of Cdc48 [3–5].

Interestingly, regulatory subunits appear to exist in excess over

Glc7 in vivo [110], suggesting that they compete for binding to

Glc7 [34]. In support of a competitive model for Glc7 binding,

over-expression of several regulatory subunits has been shown to

re-direct cellular Glc7 activity [56,111]. We speculate that in such

a scenario of competitive subunit interactions, loss of Cdc48Shp1

segregase activity would stabilize the interaction of certain

regulatory subunits with Glc7, resulting in reduced binding of

Glc8 and additional, yet unknown, subunits required for mitotic

progression. The future identification of additional Cdc48Shp1

targets involved in Glc7 regulation will be critical for the

experimental evaluation of this hypothesis.

Materials and Methods

Plasmids
Plasmids used in this study are listed in Table 1. Unless specified

otherwise below, genomic fragments of wild-type and mutant

alleles were PCR-amplified from genomic yeast DNA or plasmids

and cloned into yeast shuttle vectors [112] using standard

techniques; details are available upon request from the authors.

For the construction of YEplac195-PADH-GLC7, the GLC7 coding

region was PCR-amplified from cDNA and cloned via BamHI/

PstI into YEplac195 [112] modified to carry the ADH1 promoter

and terminator in its EcoRI/BamHI and PstI/SphI sites,

respectively (pAB1376). For the construction of YIplac128-

PMET25-GLC7, the PMET25 promoter was subcloned from pUG36

[113] into the SacI and XbaI sites of YIplac128 [112] modified to

carry the coding sequence for a carboxyl-terminal 3HA epitope

tag and the ADH1 terminator (PstI/NlaIII fragment of pYM1

[114] subcloned into YIplac128 via PstI/SphI) (pAB1165). The

GLC7 coding sequence including the stop codon was cloned into

pAB1165 via SpeI/PstI (pAB1280). The coding sequences

(excluding the stop codon) of GLC8 or glc8-T118A were cloned

into pAB1165 via XbaI/PstI. YIplac211-GFP-LacI was constructed

by subcloning the PHIS3-GFP-LacI-NLS fragment from pAFS135

[115] into YIplac211 [112] via KpnI/XbaI (pAB2040). shp1

mutant alleles including shp1-7 (first codon mutated from ATG to

ACC) and alleles carrying combinations of mutations in Cdc48

binding sites as depicted in Fig. 2a (F396/P397/I398RG;

R360RA; F306/Q309/Q311/R312/L313RAAAAA; F201/

R204/F206/R207/L208RAAAAA; details available from the

authors upon request) were generated from pAB1847 by site-

specific mutagenesis using the QuikChange II XL kit (Stratagene)

and verified by sequencing.

Yeast strains and media
All strains used in this study are derivatives of DF5 [116] and

listed in Table 2. Chromosomal deletions and fusions with epitope

tags or fluorescent proteins were generated using standard

methods [114,117,118]. For the characterization of Cdc48

binding-deficient shp1 alleles (Fig. 2a–c), the respective YIplac211-

shp1 plasmids were linearized in URA3 with StuI and transformed

into Dshp1::kanMX6. Transformants were selected on SC-Ura

media for correct integration into the ura3-52 locus, and

expression of Shp1 was confirmed by Western blot. For the

construction of the shp1-7, shp1-a1 and shp1-b1 mutant strains by a

pop-in pop-out strategy, the respective YIplac211-shp1 plasmids

were linearized within the SHP1 open reading frame by restriction

digest with BamHI and transformed into DF5a. Transformants

were selected for Ura prototrophy, and correct integration was

verified by colony PCR. Positive clones were streaked out twice on

59FOA, and single colonies were picked. These clones were then

analyzed by colony PCR for the presence of the full-length shp1

allele to exclude aberrant pop-out events, by Western blot for

Shp1 levels, and for temperature sensitivity. Similar approaches

were used to transfer the conditional alleles glc7-129, ipl1-321, and

sds22-6 into the DF5 strain background. All mutant alleles were

finally sequenced, either by cloning the open reading frame

together with 1 kb of upstream and downstream flanking

sequences, or by directly sequencing a PCR product of the
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mutated region. Double mutants were constructed by crossing the

respective conditional allele with the shp1-7 mutant carrying

YCplac33-SHP1.

Yeast was cultured in standard YPD and SC media [119]. For

the induction of the PMET25 promoter, cells were first grown in SC

media supplemented with 2 mM methionine, washed twice with

H2O, and then transferred to SC medium lacking methionine.

a-factor arrest/release
Overnight cultures of wild-type and mutant strains were diluted

to an OD600 nm of 0.1 (0.15 for shp1 mutants) in 50 ml YPD. The

cultures were then grown at 25uC for approximately four hours

until reaching an OD600 nm of 0.3–0.35. 10 mM a-factor (central

core facility, Max Planck Institute of Biochemistry, Martinsried,

Germany) in DMSO were added, and the cells were allowed to

arrest for three hours at 25uC. Directly before addition of a-factor,

a control sample from the asynchronous culture was collected, and

the pellet was frozen in liquid nitrogen. The efficiency of the arrest

was determined by FACS analysis and/or Western blot for Clb2

levels after three hours of arrest. The cultures were then washed

two times with equal volumes of YPD and resuspended to a final

OD600 nm of approximately 0.5 in YPD. The released cultures

were incubated at 25uC, and at various time-points an amount of

cells corresponding to 1 ml of OD600 nm = 0.6 was removed from

the culture, quickly pelleted and frozen in liquid nitrogen.

Subsequently, the cell pellets were lysed by TCA precipitation

and resuspended in 50 ml HU/DTT buffer (8 M urea, 5% SDS,

0.2 M Tris pH 6.8, bromophenol blue, 0.1 M DTT). Fluctuations

in the levels of Clb2 and other cell cycle marker proteins were

analyzed by Western blot.

Antibodies
Affinity-purified rabbit polyclonal antibodies against Shp1 [20],

Cdc48 [120] and Glc7 [121] were described previously. The

following commercially available antibodies were used: myc (9E10;

M5546, Sigma), HA (F7, Santa Cruz), GFP (JL-8, Clontech), Clb2

(y-180, Santa Cruz), mammalian histone H3 ChIP grade (ab1791,

Abcam), phospho-H3 (06-570, Upstate).

FACS analysis
Analysis of DNA content by FACS was performed exactly as

described [120] using a BD FACS Calibur and CellQuest Pro

software or a BD FACS Canto and FACS Diva software.

Microscopy
Yeast strains were grown in appropriate, sterile-filtered SC

media to avoid high background fluorescence. Cells were

immobilized by incubation on cover slips coated with 1 mg/ml

concanavalin A (Type 5, Sigma Aldrich) for at least 30 min. Cells

from logarithmically growing cultures were directly spotted on the

cover slip, shortly incubated and sealed with Vaseline. Spinning

disk confocal microscopy of Glc7GFP localization (Fig. 7e) was

performed using a microscope setup described previously [122]. In

brief, cells expressing Glc7GFP were analyzed using a laser-based

spinning disk confocal microscope (Andor Technology). Filtered

images (Semrock emission filters in a Sutter filter wheel) were

captured with a D-977 iXon EMCCD+ camera (Andor Technol-

ogy) after twofold magnification (Andor Technology) by using a

1006TIRFM/1.45 objective (Olympus). Z-Stacks were recorded

with a spacing of 0.2 mm over the entire cell (10–25 planes).

Images were processed with ImageJ software (http://rsbweb.nih.

gov/ij/) and the MBF ImageJ for Microscopy collection of plug-

ins (http://www.macbiophotonics.ca/imagej/). For quantification

of the Glc7GFP signal, single Z-slices of confocal images that had

been recorded under identical conditions were used. The average

GFP fluorescence intensity was measured in an area of equal size

in the nucleus and cytoplasm using ImageJ software, and the ratio

was calculated. Fluorescence microscopy of Glc7GFP localization

upon additional expression of untagged GLC7 (Fig. S3) was carried

out using a Zeiss Axiovert 200 M microscope equipped with an

Axio Apochrom (Zeiss) 1006/1.4 oil objective and the filter set

#10 (FITC). Images were captured using an AxioCam MRm

TV2/30 0.636 (Zeiss) camera and AxioVision LE software.

For the analysis of sister chromatid separation (Fig. 5cd),

cultures were grown to log-phase in SC medium+/22 mM

methionine, harvested, and resuspended in sterile filtered medium.

1.4% low-melting agarose was added in equal volume to mount

the samples on cover slips. Microscopy was carried out on a Nikon

TiE inverted live cell system with a motorized Prior Z-stage and

Perfect Focus System using a 1006 1.45 NA objective (Nikon).

Eleven Z-Stacks (spacing 0.3 mm) were recorded with a Photo-

metrics HQ2 camera and analyzed using Nikon NIS Elements

software. For differential interference contrast (DIC) microscopy, a

single snap-shot was taken. All images were recorded using

identical exposure times. Medium- to large-budded cells in each

Table 1. Plasmids used in this study.

Plasmid Description Source

pAB827 YCplac33-SHP1 [20]

pAB1808 YCplac22-SHP1 this work

pAB855 YCplac111-SHP1 [123]

pAB1845 YCplac111-shp1-a1 this work

pAB1795 YCplac111-shp1-b1 this work

pAB856 YCplac111-shp1DUBA [123]

pAB857 YCplac111-shp1DUBX [123]

pAB1785 YCplac111-GLC7 this work

pAB1756 YCplac111-GLC8 this work

pAB1757 YCplac111-glc8T118A this work

pAB1376 YEplac195-PADH-GLC7 this work

pAB1740 YEplac195-SDS22 [41]

pAB1887 YEplac112-DAM1 this work

pAB1888 YEplac112-dam1SA (S20A, S292A) this work

pAB1889 YEplac112-dam1SD (S20D, S292D) this work

pAB1165 YIplac128-PMET25 this work

pAB1280 YIplac128-PMET25-GLC7 this work

pAB1745 YIplac128-PMET25-GLC83HA this work

pAB1746 YIplac128-PMET25-glc8T-118A3HA this work

pAB1847 YIplac211-SHP1 this work

pAB1784 YIplac211-shp1-7 this work

pAB1796 YIplac211-shp1-b1 this work

pAB1805 YIplac211-shp1-a1 this work

pAB1945 YIplac211-shp1-a3 this work

pAB1946 YIplac211-shp1-a4 this work

pAB1947 YIplac211-shp1-a5 this work

pAB1818 YIplac211-shp1DUBA this work

pAB1819 YIplac211-shp1DUBX this work

pAFS59 YIplac128-256xlacO [115]

pAB2040 YIplac211-GFPLacI this work

doi:10.1371/journal.pone.0056486.t001
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Table 2. Yeast strains used in this study.

Strain Genotype Source

DF5a MATa ura3-52, leu2-3,-112 lys2-801, trp1-1, his3D200 [116]

YAB589 DF5a Dshp1::kanMX6 [5]

YAB1729 DF5a shp1-7 this work

YAB1568 DF5a shp1-b1 this work

YAB1564 DF5a shp1-a1 this work

YAB1288 DF5a Dshp1::kanMX6 YIplac211-shp1-a1::URA3 this work

YAB1712 DF5a Dshp1::kanMX6 YIplac211-shp1-a3::URA3 this work

YAB1713 DF5a Dshp1::kanMX6 YIplac211-shp1-a4::URA3 this work

YAB1714 DF5a Dshp1::kanMX6 YIplac211-shp1-a5::URA3 this work

YAB1276 DF5a Dshp1::kanMX6 YIplac211-shp1DUBA::URA3 this work

YAB1275 DF5a Dshp1::kanMX6 YIplac211-shp1DUBX::URA3 this work

YAB1422 DF5a CLN23HA::klTRP1 this work

YAB1423 DF5a Dshp1::kanMX6 CLN23HA::klTRP1 this work

YAB1378 DF5alpha SPC42Mars:: nat-NT2 this work

YAB1383 DF5a Dshp1::kanMX6 SPC42Mars::nat-NT2 this work

YAB1642 DF5a PDS118myc::klTRP1 this work

YAB1643 DF5a shp1-7 PDS118myc::klTRP1 this work

YAB1585 DF5a Dmad2::HIS3MX6 this work

YAB1582 DF5a shp1-7 Dmad2::HIS3MX6 this work

YAB1469 DF5a GLC73myc::HIS3MX6 SHP13HA::klTRP1 this work

YAB1464 DF5a GLC73myc::HIS3MX6 this work

YAB1466 DF5a Dshp1::kanMX6 GLC73myc::HIS3MX6 this work

YAB1470 DF5a SHP13HA:: klTRP1 this work

YAB1447 DF5a GLC73HA::klTRP1 this work

YAB1587 DF5a glc7-129 this work

YAB1607 DF5a shp1-7 glc7-129 YC33-SHP1 this work

YAB1611 DF5a ipl1-321 this work

YAB1736 DF5 shp1-7 ipl1-321 this work

YAB1451 DF5a DAM19myc::HIS3MX6 this work

YAB1656 DF5a ipl1-321 DAM19myc::klTRP1 this work

YAB1655 DF5a glc7-129 DAM19myc::klTRP1 this work

YAB1657 DF5 shp1-7 ipl1-321 DAM19myc::klTRP1 this work

YAB1496 DF5a YIplac128-PMET25::LEU2 this work

YAB1738 DF5a shp1-7 YIplac128-PMET25::LEU2 this work

YAB1473 DF5a YIplac128-PMET25-GLC7::LEU2 this work

YAB1731 DF5a shp1-7 YIplac128-PMET25-GLC7::LEU2 this work

YAB1660 DF5a shp1-a1 YIplac128-PMET25::LEU2 this work

YAB1661 DF5a shp1-a1 YIplac128-PMET25-GLC7::LEU2 this work

YAB1445 DF5a GLC7GFP::klTRP1 this work

YAB1538 DF5a shp1-7 GLC7GFP::klTRP1 this work

YAB1603 DF5a shp1-b1 GLC7GFP::klTRP1 this work

YAB1494 DF5a Dglc8::hph-NT1 this work

YAB1647 DF5 shp1-7 Dglc8::hph-NT1 YCplac33-SHP1 this work

YAB1499 DF5a SDS223myc::klTRP1 this work

YAB1555 DF5a shp1-7 SDS223myc::klTRP1 this work

YAB1553 DF5a GLC83HA::klTRP1 this work

YAB1554 DF5a shp1-7 GLC83HA::klTRP1 this work

YAB1430 DF5a Dbar1::hph-NT1 this work

YAB1596 DF5a shp1-7 Dbar1::hph-NT1 this work

YAB1598 DF5a GLC83HA::klTRP1 Dbar1::hph-NT1 this work
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class were counted using NIS Elements software by assessing the

position of the GFPLacI-marked chromosome III relative to the

SPBs (Spc42Mars).

Immunoprecipitation
Yeast cultures were grown in YPD to an OD600 of 0.7,

harvested and washed once with cold ddH2O/1 mM PMSF. Cells

were then lysed in IP buffer (50 mM Tris/HCl pH 7.5, 100 mM

KCl, 5 mM MgCl2, 0.1% NP-40, 10% glycerol, 10 mM NaF,

2 mM PMSF, complete protease inhibitor cocktail (Roche)) by

addition of zirconia beads (Biospec) and vortexing. After lysis, the

NP-40 concentration was raised to 1%, and the extracts were

centrifuged at 2,600 g for 5 min, followed by centrifugation at

20,000 g for 25 min. An input sample (10 ml) was taken prior to

antibody addition and denatured by addition of an equal amount

of HU/DTT buffer and incubation at 65uC for 10 min. The

supernatants were incubated with 20 ml pre-coupled HA antibody,

4.5 ml myc antibody, or 2 ml Shp1 antibody and rotated at 4uC
overnight. Immunocomplexes were then either bound to 20 ml

protein A sepharose beads (GE Healthcare) for three hours (4uC),

or directly washed (pre-coupled HA antibody) four times (600 ml

IP buffer/1% NP-40 for 10 min, 800 ml IP buffer/1% NP-40

8 min, 800 ml IP-buffer 5 min, 1 ml IP buffer). Bound proteins

were eluted by incubation with 25 ml HU/DTT buffer for 10 min

at 65uC and analyzed by Western blot.

Supporting Information

Figure S1 Genetic interactions of shp1 with glc7 and ipl1. (a)

Synthetic lethality of shp1-7 glc7-129. Growth of haploid progeny

of one tetrad from the crossing of shp1-7 with glc7-129 carrying

YC33-SHP1 was analyzed on control (YPD) and 59FOA plates as

described in the legend to Fig. 4b. (b) Positive genetic interaction

between shp1-7 and ipl1-321. Growth of haploid progeny of one

tetrad from the crossing of shp1-7 with ipl1-321 was analyzed at the

indicated temperatures.

(TIF)

Figure S2 Nuclear localization of Glc7 in shp1 mutants.

Asynchronous logarithmic cultures of wild-type or the indicated

shp1 mutants expressing Glc7GFP as the only source of Glc7 and

the nuclear envelope marker Pom34Mars were grown at RT and

analyzed by live-cell fluorescence microscopy. Scale bar 5 mm.

Fluorescent images are z-stack projections, DIC a single image of

the focus plane.

(TIF)

Figure S3 GLC7 expression levels influence the nuclear

localization of the Glc7GFP fusion protein in shp1-7. (a) Wild-type

(WT) or shp1-7 strains expressing Glc7GFP as the only source of

Glc7 were transformed with either empty YC plasmids or plasmids

encoding the GLC7 gene under control of its own promoter (YC-

GLC7) or the ADH promoter (YEpADH-GLC7). Asynchronous

logarithmic cultures of the indicated strains were analyzed by live-

cell fluorescence microscopy. GFP (Glc7) fluorescence, DIC

images, and the overlay are depicted. (b) Lysates of the cultures

used in (a) were analyzed by Western blot against Glc7 and Cdc48

(loading control). For comparison, WT and shp1-7 expressing

endogenous untagged Glc7 are also shown. The asterisk marks a

cross-reactive band of the Glc7 antibody.

(TIF)
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