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Abstract

Background: Systemic telomere length has been associated with measures of

diastolic function, vascular stiffness and left ventricular mass mainly in smaller,

patient-specific settings and not in a general population. In this study we describe

the applicability of these findings in a large, representative population.

Methods and Results: Peripheral blood leukocyte telomere length (PBL TL) was

measured using telomere restriction fragment analysis in the young to middle-aged

(.2500 volunteers, ,35 to 55 years old) Asklepios study population, free from

overt cardiovascular disease. Subjects underwent extensive echocardiographic,

hemodynamic and biochemical phenotyping. After adjusting for relevant

confounders (age, sex, systolic blood pressure, heart rate, body mass index and

use of antihypertensive drugs) we found no associations between PBL TL and left

ventricular mass index (P50.943), ejection fraction (P50.933), peak systolic septal

annular motion (P50.238), pulse wave velocity (P50.971) or pulse pressure

(P50.999). In contrast, our data showed positive associations between PBLTL and

parameters of LV filling: the transmitral flow early (E) to late (A) velocity ratio (E/A-

ratio; P,0.001), the ratio of early (e9) to late (a9) mitral annular velocities (e9/a9-ratio;

P50.012) and isovolumic relaxation time (P50.015). Interestingly, these

OPEN ACCESS

Citation: Denil SLIJ, Rietzschel ER, De Buyzere
ML, Van daele CM, Segers P, et al. (2014) On
Cross-Sectional Associations of Leukocyte
Telomere Length with Cardiac Systolic, Diastolic
and Vascular Function: The Asklepios Study. PLoS
ONE 9(12): e115071. doi:10.1371/journal.pone.
0115071

Editor: Paul Gerard Shiels, University of Glasgow,
United Kingdom

Received: August 20, 2014

Accepted: October 22, 2014

Published: December 15, 2014

Copyright: � 2014 Denil et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that, for
approved reasons, some access restrictions apply
to the data underlying the findings. Data from the
Asklepios study are not publicly available due to
patient privacy concerns. Individuals seeking
access may contact Ernst.Rietzschel@UGent.be.

Funding: The Asklepios Study is supported by
Research Foundation Flanders (FWO, http://www.
fwo.be/en/) research grants G.0427.03 and
G.0838.10N. SD is supported by the agency for
Innovation by Science and Technology (IWT, http://
www.iwt.be/english/welcome) grant SB101371. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0115071 December 15, 2014 1 / 14

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0115071&domain=pdf
http://creativecommons.org/licenses/by/4.0/


associations were stronger in women than in men and were driven by associations

between PBL TL and the late diastolic components (A and a9).

Conclusions: In a generally healthy, young to middle-aged population, PBL TL is

not related to LV mass or systolic function, but might be associated with an altered

LV filling pattern, especially in women.

Introduction

The progression of acquired cardiovascular diseases (CVD) throughout the

human life can typically be tracked by a series of gradual changes in physical,

chemical and biological parameters. Levels of systolic blood pressure (SBP),

cholesterol, C-reactive protein (CRP), smoking status and sex have all been linked

with an increased likelihood of adverse cardiovascular events [1–3]. Telomere

length (TL), although not used in clinical practice, is one such parameter that has

repeatedly been linked with cardiovascular health and disease development [4].

Telomeres are the nucleotide-protein complexes that shield the chromosomal

ends from erosion caused by the end-replication problem during cell division and

distinguishes them from double-stranded breaks to prevent chromosomal fusion

[5]. Throughout the replicative lifespan of cells, their TL will decrease until a

critical threshold is reached. Critically short telomeres will typically lead to a cell

crisis resulting in senescence, apoptosis or immortalization [6]. TL is of particular

interest because it potentially provides a cumulative measurement of stresses

throughout life representing ‘‘biological age’’ [4].

Although there is still uncertainty about the mechanism(s) by which telomere

biology and CVD pathogenesis affect each other, results from both molecular

biology and epidemiology have repeatedly shown significant associations [7–11].

The same is true for cardiovascular risk factors such as insulin resistance,

hypertension [12], smoking status [13], oxidative stress and inflammation [14].

Systemic TL has also been linked to LV structure and function but mostly in

smaller, patient-specific settings and not in a general population [15–22]. Shorter

TL can be found in heart failure (HF) patients [23, 24] and patients suffering from

chronic HF have an increased morbidity if their telomeres are shorter [25].

However, reports on the association between TL and indicators of diastolic

dysfunction show conflicting results [18, 19]. Similarly, a positive correlation has

been described between LVM and PBL TL [20–22], but other studies did not

detect a significant association between TL and LVM index or LV hypertrophy

[18, 26, 27].

The population-based Asklepios Study offers the advantages of a large sample

size and the measurement of numerous potential confounders of TL and CVD.

We therefore investigated the relations between systemic TL and proven

prognostic parameters [28–32] of vascular stiffness, cardiac stiffness, systolic
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function, diastolic function and ventricular mass, to shed light on the baseline

state of these correlations.

Methods

Study Population

All data presented in this paper were collected during the first round of the

Asklepios study on successful (cardiovascular) aging. The study comprises 2524

subjects approximately 35 to 55 years of age, free from overt cardiovascular

disease or other significant pathologies at baseline. The full description of the

study design, inclusion criteria, detailed methodology and population baseline

characteristics have been published previously [33]. The study was conducted in

concordance with the principles of the Declaration of Helsinki. All patients gave

written informed consent and the study was approved by the Ghent University

Ethical Committee. For the analyses reported here, we used the subset of 2509

patients for which reliable TL and all major TL confounder measurements (age,

sex, paternal age at birth) were available (cf. De Meyer et al. [34]).

Biochemical analyses

All subjects were fasting, had refrained from smoking for at least 6 hours and were

screened for active infection/inflammation before blood sampling. Conventional

serum parameters were measured using commercial reagents according to the

manufacturers’ recommendations on a Modular P automated system (Roche

Diagnostics, Mannheim, Germany), in an ISO 9002 certified reference laboratory

[33]. Coefficient of variation of all tests was ,3.0%. These parameters included

Interleukin-6 (IL-6), C-reactive protein (CRP), oxidized low-density lipoprotein

(ox-LDL), serum uric acid concentrations and brain natriuretic peptide precursor

[33].

Telomere Length

For TL-analyses, whole blood was collected in EDTA tubes cooled to 4 C̊. DNA

isolation was performed within 3 days of collection using the Puregene Genomic

Purification Kit (Gentra Systems, Minnesota, USA). The DNA was long term

stored at 280 C̊ before TL measurement in duplicate. 5 mg was digested with 5U

RsaI and 10U HinfI followed by gel electrophoresis, Southern blotting, radioactive

hybridization of the telomeric fragments and weight markers, phospho-imaging

and quantification (expressed as kbp: kilo base pairs) [14].

Echocardiographic and vascular examination

Blood pressure was recorded using bilateral triplicate measurements (1 min

intervals) on a rested, sitting subject using a validated oscillometric Omron HEM

device (Omron Healthcare Co. Ltd., Kyoto, Japan). Blood pressure values of these
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six readings were averaged and the mean value of systolic blood pressure (SBP) is

used throughout this study. The subjects underwent a resting echocardiographic

examination and a scan of the left and right carotid and femoral arteries (VIVID

7, GE Vingmed Ultrasound, Horten, Norway). Left ventricular (LV) internal

dimensions were measured at end-diastole (LVEDD) with the area-length

method. Sphericity was defined as LV width divided by LV length and is expressed

as a percentage. Standard 2-D volumetric methods were used to calculate ejection

fraction (EF) from end-diastolic and end-systolic LV volumes and to calculate LV

mass (LVM). The LVM was scaled allometrically following the recommendations

of Chirinos et al. [35] as LVM/(Height)1.7 to account for the effects of both

obesity and blood pressure on LVM. We also scaled LVM to the body surface area

(g/m2) [36].

Other cardiac and arterial measurements included the following: systolic (s9),

and early (e9) and late (a9) diastolic septal mitral annulus pulsed wave tissue

Doppler (TDI) velocities, pulsed wave Doppler early (E) and late (A) diastolic

transmitral flow velocities, E-wave propagation velocity (Vpe) and carotid-

femoral pulse wave velocity (PWV). PWV was calculated as follows:

PWV~
DLS{F{DLS{C

DTQ{F{DTQ{C

m
s

h i
ð1Þ

In formula (1) DLS-F and DLS-C are the distances measured from sternal notch to

femoral and carotid measuring sites respectively, DTQ-F and DTQ-C are the time

delays between the start of the QRS complex and the onset of systolic flow in the

femoral and carotid artery measured by pulse wave Doppler imaging (full

methodology described in the online supplements of Rietzschel et al. [33]). CW

Doppler recordings were used to measure isovolumic relaxation time (IVRT) as

the interval from the closure spike of the aortic valve to onset of mitral flow.

Data analysis

Statistical analyses were performed in R 2.15.2. Continuous variables are reported

as the mean value ¡ standard deviation. Means of groups were compared with

Student (homoscedasticity) or Welch t-test (heteroscedasticity) as appropriate. To

evaluate the contribution of the different confounders to the response variables

under study we applied general linear models as implemented in the ‘glm’

function. We report both P-values and the estimated unstandardized effect sizes

(b) for TL in these models.

Results

Baseline characteristics of the population are presented in Table 1.
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Diastolic function

Unadjusted models yielded positive linear associations between TL and E/A, e9/a9

(Fig. 1) and E/e9 (Table 2, Model 1). In successive (general linear) models, known

major confounders of diastolic function were added, i.e. age and sex in Model 2,

additionally heart rate (HR), systolic blood pressure (SBP) including use of

antihypertensive drugs and body mass index (BMI) in Model 3. We did not

remove non-significant independent variables from the proposed models in

Table 2 for the individual response variables as removal of the non-significant

terms did not alter the significance of the TL component. Addition of further

Table 1. Baseline characteristics of the Asklepios study population.

Variable Women (n51291) Men (n51218) P-valuea Population (n52509)

Age (years) 45.9¡6.0 46.1¡5.9 0.316 46.0¡6.0

Weight (kg) 66.7¡12.7 82.0¡12.4 ,2.2E-16 74.1¡14.7

Height (cm) 163¡6 176¡7 ,2.2E-16b 169¡9

Body Mass Index (kg/m2) 25.1¡4.6 26.5¡3.7 ,2.2E-16b 25.8¡4.3

Systolic Blood Pressure (mmHg) 123¡14 131¡13 ,2.2E-16b 127¡14

Pulse Pressure (mmHg) 45.5¡9.1 48.3¡7.4 ,2.2E-16b 46.9¡8.4

Pulse Wave Velocity (m/s) 6.60¡1.45 6.65¡1.46 0.397 6.62¡1.45

Heart Rate (min21) 67.2¡9.5 64.0¡10.7 6.01E-15b 65.6¡10.2

Used Antihypertensive Drugs 145 (11.2%) 118 (9.69%) 0.284c 263 (10.5%)

PBL TL (kbp) 7.96¡0.73 7.78¡0.71 3.26E-09 7.87¡0.73

E (cm/s) 78.9¡14.2 70.6¡13.0 ,2.2E-16b 74.9¡14.2

A (cm/s) 63.5¡11.9 59.6¡10.9 ,2.2E-16b 61.6¡11.6

e9 (cm/s) 9.41¡2.13 8.63¡1.83 ,2.2E-16b 9.03¡2.03

a9 (cm/s) 8.67¡1.55 9.23¡1.46 ,2.2E-16 8.94¡1.53

E/A 1.29¡0.32 1.22¡0.29 2.65E-7b 1.25¡0.31

e9/a9 1.13¡0.36 0.970¡0.29 ,2.2E-16b 1.05¡0.34

E/e9 8.68¡1.99 8.41¡1.78 3.36E-4b 8.55¡1.90

s9 (cm/s) 7.91¡1.13 7.93¡1.20 0.756 7.92¡1.16

Vpe (m/s) 79.4¡22.1 71.9¡19.5 ,2.2E-16d 75.7¡21.2

DT (ms) 167¡29 170¡30 9.29E-4 168¡30

Isovolumic Relaxation Time (ms) 81.8¡13.8 90.2¡12.9 ,2.2E-16 85.9¡14.0

LV Ejection Fraction (%) 64.8¡6.7 62.5¡6.4 ,2.2E-16 63.7¡6.7

LVEDD (mm) 44.9¡3.9 49.4¡4.4 ,2.2E-16b 47.1¡4.7

Sphericity (%) 56.9¡6.4 57.2¡6.5 0.246 57.0¡6.4

Left Ventricular Mass (g) 124¡31 179¡40 ,2.2E-16b 151¡45

LVM index (g/m‘1.7) 54.2¡13 69.0¡15.0 ,2.2E-16b 61.3¡15.9

NTproBNP (pg/ml) 81.3¡64.1 36.4¡39.2 ,2.2E-16bd 59.5¡58.0

a: P-value for comparison between sexes using independent t-test (b:unequal variance) or chi-square test (c).
d: Data was log transformed before statistical testing.
LVM: allometrically scaled Left Ventricular Mass index, PBL TL: Periferal Blood Leukocyte Telomere Length, E & A: peak transmitral flow velocities during
early (E) and late (A) diastolic filling, e9 & a9: peak movement speed of mitral annulus during early (e9) and late (a9) diastolic filling, DT: transmitral
Deceleration Time, NTproBNP: N-terminal prohormone of brain natriuretic peptide, LVEDD: Left Ventricular End-Diastolic Diameter, s9: peak systolic mitral
annulus movement speed, Vpe: pulse propagation velocity in early diastole.

doi:10.1371/journal.pone.0115071.t001
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potential confounders: LV sphericity, oxidative stress (oxidized-LDL cholesterol,

serum uric acid) or inflammatory markers (high-sensitive CRP, IL-6), did not

significantly alter the TL - diastolic dysfunction relationships when added to

Model 3 as an independent variable (data not shown).

In all models the positive association between E/A and TL remained significant

(see Table 2, P#0.002) with Model 3 accounting for approximately 43.2% of E/A

variability (2.64% of the total variability could be attributed to TL). Examining

the data separately by sex, we found that, upon adjustment for confounders

(Model 3), the association between E/A and TL was significant in both women

(b50.030, P50.001) and men (b50.023, P50.014). A similar approach was

adopted for the e9/a9 ratio. Results of the linear models were included in Table 2

and demonstrated significance of the adjusted associations for e9/a9 (Model 3:

b50.018, P50.012). Looking at both sexes separately, TL was a significant

independent variable in women (b50.022, P50.032), but only borderline in men

(b50.016, P50.098).

We further examined the components of these ratios (E/A and e9/a9) separately

to determine whether the associations were attributable to one of both

components or whether the ratios contained additional information beyond the

terms they consist of. Surprisingly, the results indicated that neither E (b50.226,

P50.535) nor e9 (b50.043, P50.341) were correlated with TL (Model 3). There

was however a correlation of TL with A (b520.905, P,0.001) and a9 (b520.079,

P50.040).

Fig. 1. TL , E/A. Scatterplot showing the unadjusted correlation between telomere length (TL) and the ratio of
early (E) over late (A) mitral annulus movement speed (red) and the regression line (black).

doi:10.1371/journal.pone.0115071.g001
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Accordingly, E/e9 was not correlated upon adequate adjustment (Model 3:

b50.014, P50.775), neither were other indices of diastolic function: flow

propagation velocity of the E-wave (Vpe; b50.212, P50.718), mitral inflow

deceleration time (b520.302, P50.712) or duration of the atrial contraction

(b520.028, P50.938). Only IVRT was inversely correlated with PBL TL (Fig. 2,

Model 3: b520.900, P50.011). IVRT was also inversely correlated with PBL TL

after age, sex and paternal-age adjustment (PBL TL as dependent variable;

Table 2. The association of TL (kbp) with different parameters of cardiovascular function using general linear models.

Response variable (RV) Model 1 Model 2 Model 3

E/A b 0.0696 0.0249 0.0264

P 2.83E-16 1.25E-03 8.09E-05

e9/a9 b 0.0764 0.0178 0.0182

P ,2.2e-16 0.0281 0.0120

E (cm/s) b 1.91 0.195 0.226

P 1.09E-06 0.600 0.535

A (cm/s) b 21.60 20.860 20.905

P 5.37E-07 4.62E-03 4.51E-04

e9 (cm/s) b 0.397 0.050 0.043

P 8.93E-13 0.304 0.341

a9 (cm/s) b 20.211 20.068 20.079

P 5.77E-07 0.100 0.0403

E/e9 b 20.158 20.0214 20.0124

P 2.62E-3 0.677 0.794

DT (ms) b 21.86 20.123 20.302

P 2.24E-02 0.881 0.712

IVRT (s) b 22.70 20.941 20.900

P 2.32E-12 9.25E-03 0.0115

log(NTproBNP (pg/ml)) b 0.017 20.004 20.005

P 0.119 0.657 0.617

LVM index (g/m1.7) b 22.37 20.194 0.0228

P 5.41E-08 0.616 0.943

LVEDD (mm) b 20.497 20.164 20.124

P 1.11E-04 0.158 0.261

EF (%) b 0.0216 20,0183 0.0156

P 0.906 0.922 0.933

s9 (cm/s) b 0.018 20.033 20.038

P 0.579 0.315 0.238

Model 1: RV , TL.
Model 2: RV , TL+Age+Sex.
Model 3: Model 2+Systolic BP+Heart Rate+BMI+Used Antihypertensive Drugs.
E & A: peak transmitral flow velocities during early (E) and late (A) diastolic filling, e9 & a9: peak movement speed of mitral annulus during early (e9) and late
(a9) diastolic filling, DT: transmitral Deceleration Time, IVRT: Isovolumic Relaxation Time, NTproBNP: N-terminal prohormone of brain natriuretic peptide,
LVM: allometrically scaled Left Ventricular Mass index, LVEDD: Left Ventricular End-Diastolic Diameter, EF: Ejected Fraction of end-diastolic volume, s9:
peak systolic mitral annulus movement speed, b: effect size (unstandardized), P: P-value of TL component.

doi:10.1371/journal.pone.0115071.t002
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b522.92E-3, P50.010). Additionally, we found no significant association with

brain natriuretic peptide (log(NT-proBNP): b520.005, P50.617) upon adjust-

ment.

Systolic function and LV structure

We could not document significant associations between TL and systolic function

after adequate adjustment (Model 3, EF: b50.016, P50.933 and s9: b520.038,

P50.238). Similarly no associations were found with LV structure assessed by LV

end-diastolic diameter (LVEDD: b520.124, P50.261) and LV mass (b520.214,

P50.801), body surface area adjusted LV mass (b50.010, P50.981) or

allometrically height-adjusted LV mass (b50.023, P50.943).

Arterial stiffness

No significant partial correlation was found between PWV and age-adjusted TL

(cf. supra), a result that remained unchanged after additional adjustments (Model

3, b520.001, P50.971). The same is true for pulse pressure (PP) in the Asklepios

population (Model 3, b5255E-6, P50.999).

Fig. 2. TL , IVRT. Scatterplot showing the unadjusted correlation between telomere length (TL) and
isovolumic relaxation time (IVRT) (red) and the regression line (black).

doi:10.1371/journal.pone.0115071.g002
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Discussion

Our main finding is that we can extend a number of previously described

associations between PBL TL and cardiovascular structure and function –usually

detected in smaller, diseased cohorts - towards a middle-aged, apparently healthy

population. After adjustment for confounders, we could not document an

association with systolic function, cardiac structure or vascular stiffness. We do

however document an intriguing association with certain parameters of LV filling.

LV filling and diastolic function

As mentioned in the introduction, previous reports on the association between TL

and indicators of diastolic dysfunction have led to apparently conflicting results.

Quartiles of telomere length were shown to correlate with diastolic dysfunction in

CAD patients (evaluated by E/A and pulmonary vein flow) [18]. In contrast both

E/A-ratio and diastolic dysfunction were not correlated with PBL TL in a study of

elderly subjects (.85 years) [19]. This can potentially be explained by the very

different nature of the populations under study. Our data showed a significant

association between PBL TL and both the E/A-ratio and the e9/a9-ratio and with

IVRT [37], but not with the E/e9-ratio (see Table 2 for details). E/e9 is mainly used

as an indicator of elevated filling pressures, reflecting more advanced diastolic

dysfunction not likely to be present in healthy subjects [38]. Concurrently, NT-

proBNP, a biochemical marker reflecting elevated filling pressure and diastolic

dysfunction [39], was not associated with PBL TL after correction for confounders

(Model 3).

Analysis of the terms constituting the E/A and e9/a9 ratios in this population

suggests that TL was associated with atrial contraction (A and a9), rather than with

parameters that could reflect myocardial relaxation or filling pressure, such as E

and e9, or reflect myocardial stiffness, such as shortened mitral deceleration time

[40]. As previous publications only described correlations with E/A but not with

the individual components, we cannot tell whether this was the case in other study

populations.

Relaxation and stiffness induce opposite effects on mitral E and A and hence on

E/A [40]. The present data do not provide sufficient evidence for an independent

association between PBL TL and LV relaxation or LV stiffness in the general

middle-aged population. Although there is an association with longer IVRT after

correction for heart rate and blood pressure, it is difficult to attribute this to

myocardial relaxation without a persisting association with the best validated

determinants e9 and Vpe [41]. The persisting associations with atrial contraction

flow velocity (A) and with the simultaneously occurring annular velocity (a9) then

most likely affects compound measures such as E/A and e9/a9. One could speculate

that increased IVRT and enhanced atrial contraction represent an early and subtle

delay of myocardial relaxation, which is not yet apparent in other measurements.

We therefore would describe the findings as correlation between PBL TL and

altered filling pattern without sufficient evidence for diastolic dysfunction. It is

Asklepios Telomere Length and Cardiovascular Stiffness
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noteworthy though that the associations with PBL TL were stronger in women

than in men, an interesting finding in light of the increased occurrence of diastolic

HF in women [42].

LV systolic function, structure and vascular stiffness

In this population without overt cardiac disease, we report that PBL TL was not

associated with minor changes in systolic parameters such as EF and tissue

Doppler movement speed of the septal mitral annulus (s9). Increased LV mass

correlates with increased all-cause and cardiovascular mortality [43] and a

positive correlation has been described between LVM and PBL TL [20–22].

However, our findings do not support an association between PBL TL and LVM,

body surface area scaled LVM or height-scaled LVM in the context of a relatively

young population. Two other studies also failed to detect an association between

TL and LVM index or LV hypertrophy in two older populations (,65 years)

[18, 26]. These findings and the fact that the former studies do not agree on

whether normotensive or hypertensive patients show a TL – LVM correlation,

lead us to the conclusion that there is likely an as of yet unidentified confounder

at work. A third study found no cross-sectional or longitudinal associations

between PBL LTL and cardiac measurements including LVM (adjusted for body

surface area) [27].

With respect to vascular stiffness, no significant associations between PWV (or

PP) and TL were found in either sex. Previous studies have reported this

association to be significant in men [15, 44]. The discordance may be attributable

to age and health characteristics of the respective populations. Indeed these

populations were featured by a higher mean age (,10 years) and a higher mean

PWV (60% higher) compared to the Asklepios study albeit with a different

measurement protocol for PWV.

Limitations

The Asklepios data set does not yet include any longitudinal information thus

limiting it to all the drawbacks associated with cross-sectional study designs.

Particularly claims of causality can not be made with cross-sectional data alone.

Despite the extensive characterization of the Asklepios study, there are some

descriptors of CV function which were not measured (e.g. pulmonary venous

flow). We cannot exclude the involvement of these factors.

Mechanistic insights

There are two general models in which TL is tied to cardiovascular health. The

first states that telomere shortening is a primary driver of (cardiovascular) ageing.

In support of this model our findings indicate that the associations between some

parameters of LV filling and telomere length, are not limited to (chronic) HF

patients, but may already be present in a young to middle-aged, apparently

Asklepios Telomere Length and Cardiovascular Stiffness
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healthy population and are more pronounced in women. It is tempting to

speculate that telomere biology could be mechanistically involved in the early

pathogenesis of diastolic dysfunction and possibly HF by extension. As a matter of

fact, in mice, knock-out of the telomere elongating enzyme telomerase, resulted in

shortened telomere length over several generations which was associated with the

development of overt chronic HF [45]. However, telomere biology in mice cannot

be easily transposed to humans and additional experiments would be absolutely

necessary to pinpoint the exact mechanisms.

In our data, TL was clearly correlated with E/A, e9/a9 and IVRT but not with

other indices of diastolic function. We further explored the relationship between

PBL TL and other cardiac and hemodynamic parameters such as sphericity of the

ventricle, Vpe, duration of the A-wave and deceleration time (data not shown).

No significant associations were found that could help provide clues as to the

mechanism by which PBL TL and diastolic function might be linked.

The second model states that TL is merely an epiphenomenon, an indicator

influenced by conditions in the ageing body. Accelerated telomere attrition in

subjects with mildly impaired diastolic function could also be caused by oxidative

stress and inflammation, two factors that are known to affect diastolic function as

well as telomere length [14, 23, 46–48]. In this case it might be expected that the

addition of oxidative stress and inflammation would cause reduced significance

for TL. However, additional markers (CRP, oxidized LDL, IL-6 and serum uric

acid) did not substantially alter the significance of the PBL TL component relative

to Model 3 in Table 2 (data not shown). It should be noted though that these

markers only reflect point measurements of oxidative stress and inflammation,

which are variable by nature, whereas telomere length has been hypothesized to

reflect their cumulated effects (reviewed in De Meyer et al. [4]).

Our data, at present, is insufficient to determine the more likely model. Some of

the non-replicated associations might still become apparent with ageing, assuming

that a certain threshold of telomere attrition needs to be reached before it has a

measurable effect on cardiovascular stiffness or visa versa.

Conclusions

Our results show that several parameters of cardiovascular structure and function

which have been associated with TL, fail to replicate in a well-phenotyped middle-

aged population sample. However, PBL TL is associated with subtle changes in

certain parameters of LV filling in this population and these associations are more

apparent in women. Further investigation of the underlying biological mechan-

isms is warranted to provide insights into the relationship between PBL TL,

diastolic function and cardiovascular health.
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