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Abstract

Signal-to-noise ratio (SNR) maps are a good way to visualize electroencephalography

(EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowl-

edge about the modulation of EEG and MEG signals by source locations and orienta-

tions and can therefore help to better understand and interpret measured signals as

well as source reconstruction results thereof. Our work has two main objectives.

First, we investigated the accuracy and reliability of EEG and MEG finite element

method (FEM)-based sensitivity maps for three different head models, namely an iso-

tropic three and four-compartment and an anisotropic six-compartment head model.

As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation

of EEG SNR values. Second, we examined and compared EEG and MEG SNR map-

pings for both cortical and subcortical sources and their modulation by source loca-

tion and orientation. Our results for cortical sources show that EEG sensitivity is

higher for radial and deep sources and MEG for tangential ones, which are the major-

ity of sources. As to the subcortical sources, we found that deep sources with suffi-

cient tangential source orientation are recordable by the MEG. Our work, which

represents the first comprehensive study where cortical and subcortical sources are

considered in highly detailed FEM-based EEG and MEG SNR mappings, sheds a new

light on the sensitivity of EEG and MEG and might influence the decision of brain

researchers or clinicians in their choice of the best modality for their experiment or

diagnostics, respectively.
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1 | INTRODUCTION

Electroencephalography (EEG) and magnetoencephalography (MEG)

are techniques used to investigate brain activity (Brette &

Destexhe, 2012; Hämäläinen, Hari, Ilmoniemi, Knuutila, &

Lounasmaa, 1993). EEG and MEG detect the electric potential distri-

bution and the magnetic field, respectively, generated by current

sources in the brain, with a unique time resolution. Even if generated

by the same sources, MEG and EEG signals differ and carry comple-

mentary information (Dassios, Fokas, & Hadjiloizi, 2007). A simple

example is the spherical approximation of the head volume conductor

model, where (quasi-)analytical solutions exist for the so-called EEG

(de Munck & Peters, 1993) or MEG (Sarvas, 1987) forward problems,

resp., that is, the simulation of the electric potential or the magnetic

field at EEG or MEG sensors for a given dipolar current source in the

brain. The analytical solution for the MEG shows that radial sources

do not produce a magnetic field outside the spherical model, while

this is not the case on the EEG side. As a consequence, for deeper

sources, the magnetic field does not only get weaker due to the

source-to-sensor distance, like the EEG also does, but also due to the

increasing radial source component. While the main features are pre-

served, the situation gets, however, more sophisticated in case a real-

istically shaped head volume conductor model is adopted (Ahlfors,

Han, Belliveau, & Hämäläinen, 2010). Moreover, there are studies

where the sensitivity of both EEG and MEG to even more realistic

head models is shown (Vorwerk et al., 2014).

Signal-to-noise ratio (SNR) maps provide a good estimate of EEG

and MEG sensitivity to source location and orientation (Goldenholz

et al., 2009; Hillebrand & Barnes, 2002). They are informative tools

which allow for a correct interpretation of neuroscientific and

neurodiagnostic applications such as EEG/MEG source reconstruction

or, in a reciprocal sense (Vallaghé, Papadopoulo, & Clerc, 2008; Wag-

ner, Lucka, et al., 2016; Wagner, Burger, & Wolters, 2016), also trans-

cranial electric (TES)/magnetic stimulation (TMS) (Miranda,

Lomarev, & Hallett, 2006; Rampersad et al., 2014; Saturnino,

Thielscher, Madsen, Knösche, & Weise, 2019) and sensor placement

optimization (Guler et al., 2016; Sadleir, Vannorsdall, Schretlen, &

Gordon, 2012; Wagner, Burger, & Wolters, 2016). Moreover, SNR

maps might guide the choice of preprocessing procedures to apply to

record EEG and MEG signals (Bigdely-Shamlo, Mullen, Kothe, Su, &

Robbins, 2015; Goldenholz et al., 2009; Marinkovic, Cox, Reid, &

Halgren, 2004).

Necessary ingredients to compute SNR maps are realistic and

accurate forward problem solutions. There are different ways to solve

the forward problem, for example, analytical formulas (de Munck &

Peters, 1993; Ilmoniemi, 1995; Mosher, Leahy, & Lewis, 1999;

Sarvas, 1987; Zhang, 1995), boundary element methods (BEMs)

(Akalin-Acar & Gençer, 2004; Fuchs, Wagner, & Kastner, 2001; Kybic,

Clerc, Faugeras, Keriven, & Papadopoulo, 2005; Makarov et al., 2020;

Oostenveld & Oostendorp, 2002; Stenroos & Sarvas, 2012), finite dif-

ference methods (Cuartas Morales, Acosta-Medina, Castellanos-

Domıńguez, & Mantini, 2019; Montes-Restrepo et al., 2014; Turovets,

Poolman, Salman, Malony, & Tucker, 2008), and finite element

methods (FEMs) (Bertrand, Thevenet, & Perrin, 1991; Marin, Guerin,

Baillet, Garnero, & Meunier, 1998; Miinalainen et al., 2019; Piastra

et al., 2018; Pursiainen, Vorwerk, & Wolters, 2016; Schimpf, Ramon, &

Haueisen, 2002). In this work, we use FEM because of its ability to

approximate the geometric and conductive properties of the head tis-

sue in more detail.

EEG and MEG sensitivities and expected SNR values have been

already examined in literature (de Jongh, de Munck, Gonçalves, &

Ossenblok, 2005; Fuchs et al., 1998; Goldenholz et al., 2009;

Haueisen, Funke, Güllmar, & Eichardt, 2012; Hillebrand &

Barnes, 2002; Hunold, Funke, Eichardt, Stenroos, & Haueisen, 2016;

Tarkiainen, Liljeström, Seppä, & Salmelin, 2003). In particular, in

Goldenholz et al. (2009), EEG and MEG SNR mappings for cortical

sources extracted from MRI anatomical information have been com-

puted and visualized, applying BEM in a three-compartment isotropic

head model. In our study, we expand and extend the work of

Goldenholz et al. (2009) providing a first comprehensive study where

we computed EEG and MEG SNR maps for both cortical and subcorti-

cal sources in highly detailed FEM head models, where the cerebrospi-

nal fluid (CSF), gray matter, and the white matter anisotropy is

modeled and where the skull compact bone is distinguished from the

skull spongy bone. Our dual goal was to investigate the reliability of

such sensitivity maps and then analyze the sensitivity results given by

such mappings.

In order to assess the level of detail of the head model needed to

achieve reliable SNR maps, we computed and compared EEG and

MEG SNR maps using FEM in three different head models with

increasing level of detail. Starting from an isotropic three-

compartment head model (3CI), where scalp, skull and brain are con-

sidered, we increased the number of tissue compartments with an iso-

tropic four-compartment head model (4CI), where the CSF

compartment is added to the three previous ones, until we used a six-

compartment head model (6CA), where both the skull and the brain

compartments are further segmented into skull compacta and

spongiosa and gray and anisotropic white matter, respectively.

Furthermore, we investigated EEG and MEG sensitivity maps for

both cortical and subcortical sources and their modulation by source

location, orientation, and depth. The difference between EEG and

MEG SNR values are visualized on the cortical surface, and SNR

values for both cortical and subcortical sources are represented and

compared via boxplots.

2 | MATERIALS AND METHODS

The approach adopted in our study is summarized in the flowchart in

Figure 1.

2.1 | MRI data acquisition

A 3 T scanner (MAGNETOM Prisma 3.0 T, Release D13 [Siemens

Medical Solutions, Erlangen, Germany]) was used for the acquisition
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of MRI datasets. We measured a 3D-T1-weighted (T1w) fast

gradient-echo pulse sequence (TFE) using water selective excitation

to avoid fat shift (TR/TE/FA = 2,300/3.51 ms/8�, inversion prepulse

with TI = 1.1 s, cubic voxels of 1 mm edge length); 3D-T2-weighted

(T2w) turbo spin echo pulse sequence (TR/TE/FA = 3,200/408-

ms/90�, cubic voxels, 1 mm edge length) and DTI using an echo pla-

nar imaging sequence (TR/TE/FA = 9,500/79 ms/90�, cubic voxels,

1.89 mm edge length), with one volume with diffusion sensitivity

b = 0 s/mm2 (i.e., flat diffusion gradient) and 20 volumes with

b = 1,000 s/mm2 in different directions, equally distributed on a

sphere. Another volume with flat diffusion gradient, but with reversed

spatial encoding gradients was acquired and used for susceptibility

artifact correction (Holland, Kuperman, & Dale, 2010; Ruthotto

et al., 2012). During T1w-MRI measurement, gadolinium markers

were placed at the nasion, left and right distal outer ear canal posi-

tions for landmark-based registration of MEG/EEG to MRI. All

EEG/MEG and MRI measurements were done in supine position to

reduce head movements, to prevent erroneous CSF effects due to

brain shift when combining EEG/MEG and MRI (Rice, Rorden, Little, &

Parra, 2013) and to stabilize the baseline of the brain activity

(Thibault, Lifshitz, & Raz, 2016).

2.2 | Acquisition of somatosensory-evoked
potential and somatosensory-evoked field data

Somatosensory-evoked potential (SEP) and field (SEF) data were

simultaneously acquired in a magnetically shielded room using 80 AgCl

sintered ring electrodes (EASYCAP GmbH, Herrsching, Germany,

74 EEG channels plus additional six channels to detect eye move-

ments) and a whole-head MEG system with 275 axial gradiometers

and 29 reference sensors (OMEGA2005, VSM MedTech Ltd.,

Canada). For the detection of cardiac activity, electrocardiography

was additionally measured. The MEG reference coils were used to

calculate first-order synthetic gradiometers in order to reduce the

interference of magnetic fields originating from distant locations. Prior

to the measurements, the electrode positions of the EEG cap were

digitized using a Polhemus device (FASTRAK, Polhemus Incorporated,

Colchester, VT). Moreover, during the acquisition, the head position

inside the MEG was tracked via three head localization coils placed on

the nasion, and the left and right distal outer ear canal.

At the time of the recording, only 271 gradiometers were active,

in addition, as shown in Figure 2d, 45 reference coils were used for

noise cancelation. The neurophysiological data are available on the

Zenodo portal (Piastra et al., 2020).

2.3 | Head models

The three images (T1w-, T2w-MRI, and DTI) were co-registered and

resampled so that the voxels of the anatomical data are cubic. This

last step facilitates the segmentation procedure. Furthermore, the

images were cut sufficiently below the skull of the participant, follow-

ing the suggestions in Lanfer et al. (2012). Subsequently, the segmen-

tation of T1w and T2w was performed in order to separate six

volumetric masks representing the six compartments we included in

the most realistic model, that is, (6CA). The anisotropic conductivity

tensors were deduced from the DTI, following the procedure

described in Tuch, Wedeen, Dale, George, and Belliveau (2001) and

Aydin et al. (2017). The brain compartment was segmented via the

FreeSurfer software (http://freesurfer.net/) and the remaining

preprocessing and volumetric masks creation was entirely performed

via routines available in FieldTrip (Oostenveld, Fries, Maris, &

Schoffelen, 2011). In particular, the scalp and skull compartments

were segmented via the spm12 software ((Penny, Friston, Ashburner,

Kiebel, & Nichols, 2011); https://www.fil.ion.ucl.ac.uk/spm/software/

spm12/), embedded in FieldTrip. The Seg3d software (CIBC, 2016)

was utilized for an easier visualization of both sliced volumetric masks

F IGURE 1 Sketch of the flowchart with the main steps for calculating the signal-to-noise ratio (SNR) values in our study. Gray boxes: input
data, that is, MRI, somatosensory evoked potentials (SEP) and fields (SEF) and sensor setup; green boxes: MRI-based models needed as input to
the finite element method (FEM) computation; yellow boxes: electroencephalography (EEG) and magnetoencephalography (MEG) signal

simulation with FEM and noise estimation from real data; blue box: SNR computation following Formula (1); red boxes: visualization of results,
that is, EEG and MEG SNR values for cortical and subcortical sources
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and automatically generated surfaces, and for quickly checking the

output of the segmentation. Once the masks were assembled, a volu-

metric tetrahedral mesh was created using the CGAL software ((The

CGAL Project, 2013); https://www.cgal.org) embedded in iso2mesh

(Fang & Boas, 2009), resulting in 885,214 nodes and 5,335,615 tetra-

hedrons. Three head models were constructed and utilized in this

study: a three-compartment isotropic head model (3CI), where scalp,

skull and brain are included, a four-compartment isotropic head model

(4CI) where the CSF is additionally distinguished, and a more detailed

head volume conductor model with six compartments (6CA), that is,

scalp, skull compacta, skull spongiosa, CSF, gray matter, and aniso-

tropic white matter. Specific features of the three models are gath-

ered in Table 1.

For all three head models, that is, 3CI, 4CI, and 6CA, only the tis-

sue labels were modified accordingly, while the mesh remained the

same, since the geometrical error was not studied in this work. In

Figure 2a–d, the three models and the EEG/MEG sensors are visual-

ized. The three volumetric meshes are available on the Zenodo portal

(Piastra et al., 2020).

2.4 | Source spaces

In this study, two different source spaces were considered: a cortical

surface and a subcortical volume. In both cases, we modeled the

sources as point-like dipolar sources (de Munck, van Dijk, &

Spekreijse, 1988; Murakami & Okada, 2006).

With regard to the former, the surface representation of the

white matter given by Freesurfer was considered. Nodes lying on the

gray/white matter surface were projected into the centroids of

the closest elements belonging to the gray matter (Euclidean distance

was used to compute the closest elements), and considered as dipole

positions. The dipole orientations were chosen as the normals of the

white matter surface (the normals were computed with the MeshLab

toolbox [http://www.meshlab.net/]). This procedure results in several

dipoles having the same location but different orientation.

The volumetric subcortical dipolar space was created by

extracting a subcortical volumetric mask (erosion of 1 voxel) from the

Freesurfer parcellation, which identified nine subcortical regions: cere-

bellum, thalamus, caudate, putamen, pallidum, hippocampus,

F IGURE 2 Setup for forward computations. In (a)–(c), the three head models used in the computation of the forward model solutions are
shown. In the (3CI) head model, in (a), the skin is depicted in blue, the skull in green and the brain in yellow; in the (4CI) head model, in (b), the
additional CSF compartment is colored in red; in the (6CA) head model, in (c), the skull spongiosa is depicted in orange and the white matter in
light blue. In (d), the electroencephalography (EEG) and magnetoencephalography (MEG) sensor configurations are shown, that is, 71 electrodes
(in yellow), 9 electrodes associated to disregarded channels (in green), and 271 gradiometers (in red) with reference coils for noise cancelation. In
particular, we removed the EEG channels labeled as P7, AF8, O9, LO2, SO2, IO2, LO1, SO1, IO1, electrocardiography. In (e), the cortical dipole
positions and orientations used in the simulations are shown. In (f), we visualize the nine subcortical structure masks segmented via Freesurfer
and visualized in Seg3d in sagittal and in transverse view from above and from below. For every subcortical dipole position, we considered the
three Cartesian orientations
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amygdala, accumbens area, and ventral diencephalon. Subsequently, a

tetrahedral volumetric mesh was constructed with iso2mesh for each

of the nine subcortical regions identified by Freesurfer. The nodes of

each mesh were considered as dipole positions. Modeling the orienta-

tion of subcortical dipolar sources is not as trivial as modeling cortical

dipole orientations. The neural generators of deep structures can be

classified in open and closed field cells, according to the resulting elec-

tromagnetic field produced by their dendritic arborization (Attal,

Maess, Friederici, & David, 2012). In the first group, there is a pre-

ferred orientation of the neural architecture, in the second group

there is not. According to this fact, and following (Attal et al., 2012)

and (Krishnaswamy et al., 2017), in this study, we considered the

three Cartesian components for each mesh node as source orienta-

tions. More details on the subcortical areas and number of dipoles

considered for each area can be found in Table 2.

In Figure 2e,f, the cortical dipole positions and orientations used

in the simulations and the volumetric subcortical masks are visualized.

A total of 278,621 cortical dipoles with normal orientations and

111,903 subcortical dipoles with Cartesian orientations were utilized

for this study.

2.4.1 | Depth and orientation estimation of
cortical sources

In order to quantify the influence of dipole depth and orientation on

the cortical SNR measures, we introduced two metrics, similarly to

previous studies, for example, (Haueisen et al., 2012; Hunold

et al., 2016). More precisely, the depth of each cortical source was

determined by the Euclidean distance to the closest node lying on the

surface mesh of the inner skull, that is, the surface mesh separating

the CSF and the skull compartment. Furthermore, the angle between

the cortical dipole orientation and the normal of the closest node

on the inner skull surface was computed. In addition, we clustered

source depths and angles into five bins to enable a quantitative over-

view of the cortical SNR results, in addition to the SNR maps. The

source depths and source angles, with the relative histograms, can be

seen in Figures 3 and 4.

We can interpret the sources in the first and last bin of the source

angle histogram in Figure 4b as radial sources, the sources belonging

to the central bin as tangential sources, and the remaining sources

have mixed orientations, that is, orientations in-between radial and

tangential.

In Figure 4c, a schematic representation of the cortical and inner

skull surfaces, in black, is depicted, together with an example of one

dipole for each bin of the angle histogram (Figure 4b).

2.4.2 | Singular value decomposition of MEG
subcortical results

As discussed above, in most of the subcortical regions there is no pre-

ferred orientation of the sources. Furthermore, it is well-known that

radial sources do not contribute to the magnetic field measured out-

side of a spherical volume conductor model (Sarvas, 1987). When

dealing with realistically shaped head models, this still holds, in an

attenuated form such as the singular values for radial direction

TABLE 1 Conductivity values (in S/m) of the three models created and used for the sensitivity study: 6CA, six-compartment head model with
anisotropic white matter; 4CI, four-compartment isotropic head model and 3CI, three-compartment isotropic head model. The column (:) indicates
when the compartment has been split, for example, skull compartment divided between skull compacta and skull spongiosa; while the dash (−)
indicates that the compartment has been neglected in the head model. Note that the white matter anisotropic value (i.e., 0.14 S/m) refers to the
mean value of the tensor that fits the conductivity value of the isotropic white matter (Vorwerk et al., 2014)

Tissue 6CA (S/m) 4CI (S/m) 3CI (S/m)

White matter 0.14 — — Ramon, Schimpf, Haueisen, Holmes, and Ishimaru (2004)

Gray matter 0.33 — — Ramon et al. (2004)

Brain : 0.33 0.33 Ramon et al. (2004)

CSF 1.79 1.79 — Baumann, Wozny, Kelly, and Meno (1997)

Skull compacta 0.008 — — Dannhauer, Lanfer, Wolters, and Knösche (2011)

Skull spongiosa 0.025 — — Dannhauer et al. (2011)

Skull : 0.01 0.01 Dannhauer et al. (2011)

Scalp 0.43 0.43 0.43 Dannhauer et al. (2011), Ramon et al. (2004)

Abbreviation: CSF, cerebrospinal fluid.

TABLE 2 Subcortical areas included in the study with respective
number of dipoles employed as subcortical source space

Name #Dipoles

Cerebellum 73,509

Thalamus 10,815

Caudate 3,846

Putamen 5,592

Pallidum 3,042

Hippocampus 5,805

Amygdala 2,451

Accumbens area 1,065

Ventral diencephalon 5,778
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sources are remarkably smaller than the ones for the two tangential

directions in MEG leadfields. For this reason, following (Huang

et al., 2007), a singular value decomposition (SVD) of MEG forward

solutions was performed to identify radial and tangential components

of MEG and EEG solutions. More precisely, for each subcortical

source space node i, the corresponding MEG leadfield L has the

dimension n × 3, with n the number of MEG channels and the three

Cartesian source directions. When applying a SVD, L = USVt, the third

column of V is the eigenvector corresponding to the smallest singular

value (third diagonal entry in S). The latter represents well the weak

contribution of a radially oriented source at source space node i to

the MEG field, whereas the first two singular values in S indicate the

much larger contribution of two dipoles in the tangential plane to

the MEG.

The MEG and, consequently, the EEG leadfield are then projected

accordingly and the radial and two tangential components of the solu-

tions are assigned.

Note that for sources belonging to a subcortical volume, the defi-

nition of orientation and depth used for cortical sources is more

ambiguous. In particular, the projection of deep sources onto a refer-

ence surface mesh is difficult to justify (Attal et al., 2012). We there-

fore opted here for the SVD analysis.

2.5 | EEG and MEG forward solutions

The EEG and MEG forward problems, derived from the quasi-static

approximation of Maxwell's equations (Brette & Destexhe, 2012;

Hämäläinen et al., 1993), were solved applying an FEM with Lagrang-

ian basis functions and the so-called partial integration source model-

ing approach (Pursiainen, Lucka, & Wolters, 2012; Weinstein,

Zhukov, & Johnson, 2000; Yan, Nunez, & Hart, 1991). Moreover, the

transfer matrix method was used to reduce the computational effort

(Gençer & Acar, 2004; Piastra et al., 2018).

The code used in the simulations is implemented in the DUNEuro

software (Nüßing et al., 2019) and validated inNüßing,Wolters, Brinck, and

Engwer (2016), Engwer, Vorwerk, Ludewig, andWolters (2017), andPiastra

et al. (2018). Example scripts to compute the EEG and MEG forward

problems are available onGitLab (https://gitlab.dune-project.org/duneuro/

duneuro-py/snippets) and at theDUNEurowebsite (http://duneuro.org/).

2.6 | SNR mappings

We computed SNR mappings to cortical and subcortical dipolar

sources and for both EEG and MEG. We analyzed their sensitivity to

F IGURE 3 (a) Source depth with respect to the closest nodes on the inner skull surface mesh visualized on the cortical mantle. (b) Histogram
of cortical source depth represented in five bins

F IGURE 4 (a) Source angles with respect to the closest nodes on the inner skull surface mesh visualized on the cortical mantle. (b) Histogram
of cortical source angles represented in five bins. (c) Schematic representation of the cortical and inner skull surfaces (black curves) with examples
of one dipole for each bin of the angle histogram. The color-coding guides the association in all three subfigures
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three different head volume conductor models, described in the sec-

tions above. We adopted the SNR definition of (Goldenholz

et al., 2009) for our EEG/MEG sensitivity analysis:

SNRi =10log10
ai
� �2
N

XN

k =1

bik

� �2

s2k

0
B@

1
CA ð1Þ

for each point-like dipolar source i, where ai is the source amplitude

(i.e., 10 nAm, as suggested in Hämäläinen et al. (1993) and Goldenholz

et al. (2009)), N is the number of sensors (i.e., 271 coils and 71 elec-

trodes, after rejection of bad channels), bik is the EEG (in μV) or MEG

(in fT) forward solution at sensor k, and s2k is the noise variance at sen-

sor k, deduced from the pretrigger baseline interval of the combined

EEG/MEG recordings from Section 2.2, as suggested in Goldenholz

et al., 2009]. More specifically, s2k is in the order of magnitude of

10 μV2 and 1e4 fT2 for EEG and MEG, respectively. In addition, we

computed the so-called differential SNR maps related to cortical

sources, following the formula

Di =SNRi
MEG−SNRi

EEG, ð2Þ

for each dipole i.

2.7 | Visualization of the results

Inflated surfaces were produced in MeshLab starting from the cortical

mantle and used to visualize (with ParaView (http://www.paraview.

org/) the differential SNR maps (see Equation (2)) related to cortical

sources when the 3CI, 4CI, or 6CA head model was used. We used

boxplots and heat maps to visualize the remainder of the results.

3 | RESULTS

The presentation of results is split between cortical and subcortical

sources.

In Figure 5, we computed the differential SNR presented in For-

mula (2) for cortical sources and for each of the three models, that is,

3CI (top row), 4CI (middle row), and 6CA (bottom row), on both the

original cortical source space (left column) and the inflated cortical

source space (right column). The areas depicted in red are the areas

where the SNR of the MEG is larger than the SNR of the EEG and the

areas depicted in blue are the areas where the SNR of the EEG is

larger than the SNR of the MEG. The same scaling from −10 to

+10 dB is used for all head models to enable an easier comparison.

In all three models, we can observe that the SNR of EEG is larger

at the gyri crowns and sulcal valleys, where the orientations of the

sources are rather radial. In a complementary way, the SNR of MEG is

larger at the sulcal walls, where the orientation of the sources is

mainly tangential.

When comparing the maps throughout the models, we can

observe that the areas where the SNR of EEG is larger are reduced

when the number of compartments included in the model is increased,

especially when including the CSF compartment. Furthermore, when

increasing the number of compartments, the areas where the SNR of

MEG are larger do not only grow in size (more red in middle and lower

rows), but also the difference between the SNRs of both modalities

increases (darker red in middle and lower rows). The CSF thus

weakens the sensitivity profile of EEG when compared to the one of

MEG. The distribution of the differential SNR between both modali-

ties with respect to the distinction between gyri and sulci is

highlighted by the inflation of the cortical source space (right column

in Figure 5). MEG SNR values are particularly high in frontal areas,

which may be due to the better coverage of frontal areas by the MEG.

As a further study, we investigated the modulation of SNR corti-

cal values by source depth and source orientation. In Figure 6,

boxplots of SNR values sorted by increasing source depth (upper sub-

figure, x-axis) and angle (lower subfigure, x-axis) are reported.

From Figure 6, we notice that EEG SNR values are mainly con-

stant throughout varying source depth and angle. This is not the case

for MEG. In Figure 6a, it is indeed noticeable that the more superficial

sources are, the more MEG SNR values are higher than EEG SNR

values. This trend gradually reverses when increasing the depth of the

sources, until the last bin, that is, depth of 40–50 mm, where the situ-

ation is the opposite: EEG SNR values are higher than MEG SNR

values. From Figure 6b, we observe that MEG SNR values are higher

for more tangential sources, that is, sources corresponding to the cen-

tral bin, and lower for more radial sources, that is, sources in the first

and last bin.

In order to further investigate the modulation of SNR values by

source depth and orientation, we created heat maps, that is,

bidimensional histograms, normalized by column for EEG and MEG

SNR values with respect to source depth and angle, when 6CA was

adopted (see Figure 7).

From Figure 7, a weak modulation of source depth and orienta-

tion for EEG SNR values is confirmed. We notice a slow SNR decrease

for increasing depth. For MEG SNR values, the behavior is quite dif-

ferent. In Figure 7 (lower left), we observe how SNR values are

extremely low for very superficial sources, but they increase to reach

their maximum within a few mm. After the peak, SNR values decrease

with source depth in a stronger way than for the EEG. Note the scat-

ter of SNR values for depths and angles where the fewest sources are

(see histograms in Figures 3b and 4b), that is, depths larger than

~30 mm and angles smaller than 25� and larger than 150�.

For the visualization of SNR values for subcortical dipoles, we

used boxplots, as, in this case, we are dealing with sources lying in a

volume and not on a surface. In Figure 8, the SNR values for EEG and

MEG, and for all three head models are shown when considering the

radial (Figure 8a) and a tangential (Figure 8b) component of the EEG

and MEG. The behavior of the SNR values of the tangential orienta-

tion related to the second highest singular value in the SVD decompo-

sition was very similar and therefore omitted here.
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From Figure 8a, we can notice that, first of all, the EEG SNR

values for the subcortical radial sources are systematically much larger

than the MEG SNR values. The differences between median values

are between about 10 and 20 dB. Second, the difference between

results of head models 4CI and 6CA is small compared to the differ-

ence between 3CI and 4CI/6CA, and the latter is the case for all

subcortical areas. Third, the EEG SNR values for three compartments

are larger than when four or six compartments are considered. The

opposite is shown for the MEG SNR values: the SNR values are lower

when the 3CI head model is used in all subcortical areas but the cere-

bellum, where there seems to be no remarkable difference between

the three models.

F IGURE 5 Differential signal-to-noise ratio (SNR) when using head model 3CI (first row), 4CI (second row) and 6CA (third row) visualized on
the cortical source space (left column) and on the inflated cortical source space (right column). The values are expressed in decibels. The areas
depicted in red are the areas where the SNR of the magnetoencephalography (MEG) is larger than the SNR of the electroencephalography (EEG)
and the areas depicted in blue are the areas where the SNR of the EEG is larger than the SNR of the MEG. The same scaling from −10 to +10 dB
is used for all head models to enable an easier comparison
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Finally, for tangential sources, in Figure 8b, we do not notice a

clear difference between EEG and MEG. It is indeed remarkable that

the range of MEG SNR values coincides with the one of the EEG SNR

values. Whereas for cerebellum, the MEG SNR is even larger than the

EEG SNR, it is the inverse for the thalamus and for all other subcorti-

cal structures, where EEG and MEG results in more or less similar

SNR values.

4 | DISCUSSION

In this work, we present a comprehensive study on EEG and MEG

sensitivity to cortical and subcortical sources. We aimed at

making available new up-to-date sensitivity simulation results in a

unified and state-of-the art framework using detailed FEM head

models.

Experimental (Rice et al., 2013) and simulation studies (Vorwerk

et al., 2014) have already shown that CSF modeling has a considerable

influence on EEG forward solutions. Indeed, when such a conductive

material surrounding the brain is included in the model, a shunting

phenomenon occurs and leads to a decrease of the EEG signal ampli-

tude. Nevertheless, the sensitivity maps and studies presented so far

in literature do not take these effects into consideration, possibly

leading to inaccurate results and conclusions. In Goldenholz

et al. (2009), for example, EEG and MEG SNR maps were computed,

compared and visualized in inflated cortical mantles and their SNR for-

mula is also the one we adopted for our study (see Equation (2)).

However, Goldenholz et al. (2009) performed BEM computations in a

three-compartment isotropic head model, thus, ignoring the EEG

weakening effect of the CSF compartment. The EEG SNR over-

estimation is therefore present in their differential SNR map, leading

to the conclusion that the cortical strips where MEG is less sensitive

than EEG are even thinner, as shown by our results. Also in Hunold

et al. (2016), BEM is used in a three-compartment head model. The

EEG SNR values reported in their work are therefore also

overestimated.

In our study, we do not only clearly reproduce the high CSF

effects on EEG SNR values, but we provide new SNR mappings in

highly detailed head models for drawing conclusions on source recon-

struction studies, or, in a reciprocal way, for optimizing brain stimula-

tion set-ups, and, more generally, for the designing of new

bioelectromagnetism experiments. A further novelty of this study is

that such sensitivity estimations are additionally computed for subcor-

tical sources, where, for the first time, evidence about the importance

of modeling the CSF also in this scenario is provided.

It is crucial to take into account that a main consequence of our

result for the EEG SNR maps is that MEG might be, all in all, more sen-

sitive to the majority of cortical sources than EEG. This aspect was

less evident in previous studies (Goldenholz et al., 2009; Hunold

et al., 2016). These results are in agreement with simultaneous

EEG/MEG measurements in epilepsy. For example, in Iwasaki

et al. (2005), from 43 epilepsy patients, interictal spikes were captured

in MEG alone in eight (18%), in EEG alone in one (2%), and the com-

bined sensitivity was 31/43 patients (72%). In Knake et al., 2006),

MEG-only interictal epileptiform discharges (IED) were recorded in

9 out of 67 patients (13%), whereas in only two EEG-only IEDs were

recorded (3%) and the combined sensitivity was 50/67 patients (75%).

Furthermore, for example, in SEP and SEF studies, it was shown that

while the radial P22 is mainly only measurable in EEG, the SNR of the

superficial and more tangentially oriented P20 and N30 components

are much higher in MEG than EEG (Allison, Wood, McCarthy, &

Spencer, 1991; Antonakakis et al., 2020; Aydin et al., 2017; Buchner

et al., 1994; Fuchs et al., 1998; Papadelis, Eickhoff, Zilles, &

Ioannides, 2011). The majority of cortical sources is thus rather

tangentially oriented and therefore more visible in MEG, in agreement

with the results of our Figure 5. On the other side, deep sources

such as those underlying the SEP/SEF 14 ms component

F IGURE 6 Signal-to-noise ratio (SNR) values for cortical dipoles
for electroencephalography (EEG) (in green shades) and
magnetoencephalography (MEG) (in red shades) sorted by (a) source
depth and (b) source angle for the three-compartment isotropic (3CI),
four-compartment (+CSF) isotropic (4CI) and six-compartment
anisotropic (6CA) head models. In the boxplots, the analysis includes
maximum and minimum, indicated by upper and lower error bars, and
thereby the total range. Furthermore, it includes the interval between
upper and lower quartile, that is, the interquartile range, which is
marked by a box with a black dash showing the median
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(Fuchs et al., 1998) or auditory brainstem responses (Parkkonen,

Fujiki, & Mäkelä, 2009) are, however, better detectable by EEG than

by MEG.

Moreover, in additional investigations (not shown here), we did

not find the spatial sampling of the MEG sensors to have an influence

on our results, whereas the spatial coverage is important. In these

investigations, we computed SNR values for 68 regularly distributed

MEG sensors, instead of 271, and all the 71 EEG sensors, and we

found hardly any difference with regard to our main conclusions.

Regarding the MEG case, Hillebrand and Barnes (2002) and Attal

et al. (2012) conducted MEG sensitivity studies and computed MEG

sensitivity maps. In both cases, they focused on MEG only and they

used simplified head models and methods to compute the forward

solutions. While the main conclusions are in line with our findings,

they lack in relating the MEG SNR maps to the EEG SNR maps, one of

the main objectives of our comprehensive study. We have indeed

used the same highly detailed head models for EEG and MEG forward

computations.

As previously already observed, electric and magnetic sensitivity

maps have to be taken into account when evaluating data in neurosci-

entific and neurodiagnostic applications not only in EEG and MEG

source analysis, but also in TES or TMS. In brain stimulation research

the EEG and MEG sensitivity maps produced in this work can be

indeed taken into account in a reciprocal way (Vallaghé et al., 2008;

Wagner, Burger, & Wolters, 2016), guiding the optimization of the

stimulation configuration (Guler et al., 2016; Sadleir et al., 2012; Wag-

ner, Lucka, et al., 2016).

In the current implementation, we modeled EEG/MEG sensors as

point-sensors. While more realistic models like the complete electrode

model for EEG (He, Rezaei, & Pursiainen, 2019; Ollikainen,

Vauhkonen, Karjalainen, & Kaipio, 2000; Pursiainen, Agsten,

Wagner, & Wolters, 2017) and higher order integration for MEG

(Roth & Sato, 1993) forward modeling exist, it was shown for the EEG

in Pursiainen et al. (2012) (and even for a neonate with large sensor to

head surface ratio (Pursiainen, Lew, & Wolters, 2017) and for the

MEG in Dachwitz (2019) that these modeling improvements will not

considerably influence our main conclusions here.

In reality, there is a large inter-subject variability in CSF volume

(section 12.3.4 in Benninghoff (2004)), with highest volumes more

than 60% larger than lowest ones in healthy subjects. Abnormalities

such as brain atrophy (e.g., in dementia, Alzheimer, or anorexia), stroke

lesions or hydrocephalus might correspond to a much-increased intra-

cranial fluid volume (Sakka, Coll, & Chazal, 2011). It is therefore impor-

tant to compute individual sensitivity maps. Furthermore, the

compartment between brain and skull, homogenized in this study as

the CSF compartment, contains also other tissues such as dura mater

and blood vessels. We assumed for CSF a fixed conductivity value of

1.79 S/m due to the study of (Baumann et al., 1997), who measured

this average over seven CSF samples at body temperature with less

than 2% deviation across a frequency range of 10 Hz to 10 kHz. Even

if this is nearly identical to the recommended weighted average mean

value of 1.71 S/m of a recent meta-analysis (McCann, Pisano, &

Beltrachini, 2019), a larger variability of CSF conductivity was

reported when using magnetic resonance electrical impedance

F IGURE 7 Heatmaps normalized by column of electroencephalography (EEG) (upper row) and magnetoencephalography (MEG) (lower row)
signal-to-noise ratio (SNR) values in dependency of source depth (left) and source angle (right) from the inner skull surface, when 6CA was
adopted. Only cortical sources are taken into consideration here
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tomography instead of direct applied current for its determination

(Figure 8 in McCann et al. (2019)). These aspects might reduce the

sensitivity of the EEG to the CSF and the EEG SNR overestimation

discussed for the three-compartment head model. On the other side,

especially in pathological situations such as in brain atrophy, stroke

lesions or hydrocephalus, the described CSF shunting effect might be

much larger than presented here. Therefore, individualized SNR maps

should be drawn using head models that also include dura mater

(Ramon, Garguilo, Fridgeirsson, & Haueisen, 2014) and blood vessels

(Fiederer et al., 2016).

Also individual skull conductivities (Antonakakis et al., 2020) and

local skull inhomogeneities such as sutures, which could provide a

path of higher conductance (Ollikainen et al., 2000; Pohlmeier

et al., 1997; Tang et al., 2008), might have to be taken into account.

Especially in neonates (Azizollahi et al., 2016) and infants (Lew

et al., 2013), the inclusion of skull conductivity inhomogeneities can

have high importance and should therefore not be neglected.

Due to our noise estimation procedure from measured SEP and

SEF data, we only investigated sensitivity maps for our EEG and MEG

(axial gradiometers) systems. However, not only the individual head

F IGURE 8 Signal-to-noise ratio (SNR)
values for radial (a) and the strongest
tangential (b) components of
electroencephalography (EEG) and
magnetoencephalography (MEG) for
subcortical dipoles. On the x-axis, the nine
subcortical areas considered are listed, on
the y-axis, the correspondent SNR values
for head models 3CI, 4CI, and 6CA. Cold

colors are used for the EEG SNR values,
warm colors for the MEG SNR values. In
the boxplots, the analysis includes
maximum and minimum, indicated by
upper and lower error bars, and thereby
the total range. Furthermore, it includes
the interval between upper and lower
quartile, that is, the interquartile range,
which is marked by a box with a black
dash showing the median
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model influences the sensitivity maps, as discussed here, but also the

specific systems (see, e.g.,Wendel et al., 2009). Future investigations

should thus be carried out to compute and compare sensitivity maps

between different EEG and MEG (e.g., axial vs. planar gradiometers

vs. magnetometers) systems.

Finally, as a follow-up project, it might be interesting to use the

SNR maps created in this study to weight the leadfield matrices and

investigate the influence on the accuracy of combined EEG/MEG

source reconstruction results, similarly to Fuchs et al. (1998),

Muravchik and Nehorai (2001). In Muravchik and Nehorai (2001), they

indeed used statistical methods to relate the SNR to source localization

errors. Furthermore, this study can be extended in order to create and

study sensitivity maps for neonates (Mahmoudzadeh, Wallois, Kongolo,

Goudjil, & Dehaene-Lambertz, 2017; Roche-Labarbe et al., 2008), chil-

dren (Aarabi, Kazemi, Grebe, Moghaddam, & Wallois, 2009) or patients

with brain lesions (Datta, Baker, Bikson, & Fridriksson, 2011; Minjoli

et al., 2017), together with different sensor configurations, for exam-

ple, intracranial EEG sensors (Branco et al., 2018).

5 | CONCLUSIONS

In this work, we computed and analyzed EEG and MEG SNR mappings

for three head models, from an isotropic three-compartment head

model, to an isotropic four-compartment head model and a detailed

six-compartment head model with anisotropic white matter using

state-of-the-art FEM computations. We used two source spaces,

namely a cortical surface and a subcortical volume.

Our study had two main goals. First, we assessed the impact of

forward modeling accuracy on sensitivity maps. Second, we extracted

useful and novel insights from our EEG and MEG sensitivity maps.

Results show that, first, a three-compartment head model leads

to overestimated EEG SNR values for both cortical and subcortical

sources. We therefore made available sensitivity maps which are built

on a more detailed head model that also includes a representation of

the highly conducting CSF compartment. Second, we conclude that

MEG is more sensitive than EEG to the majority of cortical sources.

Finally, as to subcortical sources, our results show that MEG is not

blind for deep tangential sources.

Our comprehensive sensitivity guideline could encourage brain

researchers and clinicians to use combined EEG/MEG or, if a combi-

nation is not feasible, the choice of either EEG or MEG modality for

their experimental setup or diagnosis. Furthermore, our results might

guide a correct interpretation of neuroscientific and neurodiagnostic

applications such as EEG/MEG source localization or, in a reciprocal

sense, TES/TMS sensor placement optimization.
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