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Stochastic simulation methods can be applied successfully to model exact

spatio-temporally resolved reaction–diffusion systems. However, in many

cases, these methods can quickly become extremely computationally intensive

with increasing particle numbers. An alternative description of many of these

systems can be derived in the diffusive limit as a deterministic, continuum

system of partial differential equations (PDEs). Although the numerical

solution of such PDEs is, in general, much more efficient than the full stochas-

tic simulation, the deterministic continuum description is generally not valid

when copy numbers are low and stochastic effects dominate. Therefore, to

take advantage of the benefits of both of these types of models, each of

which may be appropriate in different parts of a spatial domain, we have

developed an algorithm that can be used to couple these two types of

model together. This hybrid coupling algorithm uses an overlap region

between the two modelling regimes. By coupling fluxes at one end of the inter-

face and using a concentration-matching condition at the other end, we ensure

that mass is appropriately transferred between PDE- and compartment-based

regimes. Our methodology gives notable reductions in simulation time in

comparison with using a fully stochastic model, while maintaining the impor-

tant stochastic features of the system and providing detail in appropriate areas

of the domain. We test our hybrid methodology robustly by applying it to sev-

eral biologically motivated problems including diffusion and morphogen

gradient formation. Our analysis shows that the resulting error is small,

unbiased and does not grow over time.
1. Introduction
Multiscale modelling challenges occur frequently throughout cellular biology

and in the context of cell migration. Spatial reaction–diffusion models can

be used to describe, either deterministically or stochastically, various bio-

logical phenomena. These include actin dynamics in filopodia [1], calcium

signalling [2] and chemisorption of polymers [3]. In many cases, it may be

beneficial to use a multiscale approach to modelling using different descrip-

tions in different spatial regions. In this article, we will set out a method for

coupling together a continuum deterministic description and a discrete

stochastic description.

Commonly, continuum approaches using partial differential equations

(PDEs) are adopted to model biological systems [4]. These equations can

either be solved analytically (in some cases) or simulated numerically. Results

using this methodology are relatively fast to calculate computationally. How-

ever, for systems with small numbers of molecules the results obtained using

deterministic methods may not always capture the behaviour of a stochastic

system appropriately, especially in situations where molecular numbers are
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Figure 1. The domain V showing the division into a compartment-based
region Vc on [21, I1] and a PDE-based region Vp on [I0, 1] with an overlap
region where both model descriptions are valid on [I0, I1]. Orange bars rep-
resent the number of particles in the fully compartment-based regime, green
bars represent the number of particles in each compartment of the overlap
region, and the blue curve represents the solution of the PDE.
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low and interactions are nonlinear. For example, in a system

with multiple steady states such as the canonical model of

Schlögl [5], a deterministic model fails to capture the switch-

ing behaviour between the steady states seen in a stochastic

model. In general, PDE models break down when the

number of molecules present is very low and stochastic

effects dominate [6]. Although deterministic models may pro-

vide useful information about average behaviour (in the case

of linear systems), they cannot offer a full description of every

system. Thus, in the case where copy numbers are low, the

best description will be afforded by a stochastic model.

There are two main types of stochastic models used for

reaction–diffusion equations [7]: off-lattice methods and

on-lattice compartment-based methods. We will focus on

compartment-based methods, which generally offer a coarser

description than their off-lattice counterparts.

When simulating a system using a compartment-based

stochastic model (also known as a position-jump model),

the computational cost of the simulations can become prohi-

bitive if the number of particles in the system is high. A

computationally efficient continuum model may be more

appropriate in this scenario. Thus, in situations where par-

ticle concentrations vary widely across the domain there

may be advantages to using a continuum PDE model in the

region of the spatial domain where particle numbers are

high and a discrete stochastic model elsewhere. Moreover,

detail is often only required in a certain part of the domain

and thus a spatial-hybrid model may be most appropriate

[1,3,7–10]. Such a hybrid model would allow an accurate rep-

resentation of the reaction–diffusion dynamics in the region

where this is required but minimizes the computational

resources needed to perform the calculation by using less

detailed, more efficient methods in regions of the domain

where detail is not required.

Previously, Flekkøy et al. [8] have developed a hybrid

model that links a PDE-based model to the motion of

random walkers on a lattice. Motivated by heat transport

around a facture in a solid, Flekkøy et al. [8] choose a detailed

description of the particle dynamics coupled to a coarse-

grained PDE model: the lattice spacing used to solve the

PDE is larger than in the particle-based region. More recently,

PDE-to-compartment hybrid methods have been developed

which employ a region of the PDE regime in which particles

are represented using both the compartment- and PDE-based

modelling regimes simultaneously [11,12]. The duality of

these so-called ‘pseudo-compartment methods’ allows for

particles to behave correctly as they cross individually

between the two different regimes because particles can

jump into their neighbouring compartment according to

standard compartment-based rules for diffusion.

Our hybrid modelling regime employs a PDE mesh that is

significantly (and arbitrarily) finer than the lattice in the

compartment-based region. This choice is natural in many

situations, including in a biological context, where we are

choosing to use the PDE model in regions of high population

to offer improved computational efficiency. Taking a fine mesh

will not prove computationally prohibitive compared with the

stochastic model, but allows us to make the numerical solution

of the PDE arbitrarily accurate. Methodologies with coarser or

equal PDE spacing relative to compartment spacing [8,12] are

open to questions about what exactly the ‘PDE regime’ rep-

resents given its resolution and accuracy are restricted by the

resolution of the compartment-based method.
Our approach to coupling of deterministic PDE-based

and stochastic compartment-based regions employs an over-

lap region where both modelling descriptions are valid. This

overlap region can contain multiple compartments if desired.

The method that we have developed relies upon specifying a

Dirichlet-type condition between the two models at one inter-

face at the edge of the PDE-based region and dictating the

correct flux of PDE on compartments at the other interface.

This fixes the boundary conditions at the interfaces between

each of the regions.

In the remainder of this article, we describe and explore

our novel hybrid coupling algorithm in detail and illustrate

the effectiveness of the method. In §2.2, we present the

hybrid method in full and justify the coupling conditions

chosen. Thereafter, in §3.1, we demonstrate the appropriate

behaviour of our method through its application to systems

of diffusing particles with various extreme initial conditions

(chosen specifically to test the algorithm) and a biologically

motivated example: the formation of a morphogen gradient.

We apply the model to a travelling wave example in §3.1.3

and introduce an adaptive interface between the modelling

regimes in §3.1.4. We present detailed simulation-time com-

parisons of the hybrid model with the fully stochastic model

for our test problems at the end of §3.1.4, which explicitly

demonstrate the improved efficiency of our hybrid

method. The fidelity of the algorithm’s performance is

then examined and the error (with respect to a range of

model parameters) analysed in §3.2. We verify in §3.3 that

the hybrid coupling algorithm gives results which match

the variances across the interface, as well as the mean be-

haviour. We conclude in §4, with a discussion of the

potential advantages of this hybrid method in relation to

other existing methods.
2. Methods
2.1. The domain
Suppose, arbitrarily, we have a domain V ¼ [21, 1] which we

divide into a region Vc in which we use a compartment-based,

stochastic model and a region Vp in which we use a determinis-

tic, PDE-based model. A characterizing feature of our hybrid

methodology is an overlap region (shown in figure 1) in which
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both modelling regimes are simultaneously valid descriptions

(i.e. Vc > Vp = ;). Either side of the overlap region, we have

interfaces I0 and I1 (figure 1). In a similar context, it has been

demonstrated that an overlap region is required to give the

appropriate variance for a model coupling a Brownian motion

particle-based description and a PDE-based model [3].

In Vc, the domain is split into compartments of width h,

where the kth compartment occupies the region

½I0 � kh, I0 � ðk � 1Þh� for k ¼ �m, . . . ,� 1, 1, . . . , n. The m
compartments labelled –m, . . . ,21 are situated in the overlap

region and the n compartments (note there is no compartment

0) labelled 1, . . . , n are in [21, I0]. The labelling of compartments

is illustrated in figure 1. We assume particles are well mixed

within these compartments.

A continuum description of diffusion, as assumed when

modelling with a PDE, requires sufficiently high particle num-

bers. For low concentrations, this assumption breaks down. If

the concentration of particles is u(x, t), given a total of N particles

in the system, then we can relate the probability of finding any

particular particle in the system, pp(x, t), to the concentration

as ppðx, tÞ ¼ uðx, tÞ=N. This probability density remains well

defined even at low particle copy numbers, when we cannot

interpret the PDE as a concentration but are able to view it as a

probability. Therefore, the probability to find each of N particles

in the PDE region in a given interval [x, x þ dx] at a certain time t
is
Ð
½x,xþdx� ppðy, tÞ dy. The expected number of particles in a

subset, v, of the PDE domain, Vp, is given by N
Ð
v

ppðx, tÞ dx.

We will use uk(t) where k ¼ 1, . . . , K þ 1 to denote the PDE

density at the kth PDE lattice point in the finite difference

discretization of the PDE required for our hybrid algorithm.

For the compartment-based regime, let pc(x, t) (defined

initially only at the centre of compartments) be the probabi-

lity of finding one of the identically initialized particles at

position x at time t. Because each compartment is well mixed,

we can describe the evolution of pc(x, t) using the reaction–

diffusion master equation [13]. We will also use the notation

AðtÞ ¼ ðA�mðtÞ, . . . , A�1ðtÞ, A1ðtÞ, . . . , AnðtÞÞ to represent the

distribution of particle numbers across compartments.
2.2. The coupling algorithm
We now describe an algorithm, which couples the two regimes

together. Informally, the coupling is achieved by setting the

value of the PDE lattice point at I0 to the average of the adjacent

compartment populations in Vc and using the gradient in

the PDE-based region Vp to give a rate of jumping across the

interface I1 for the compartment-based regime.

In what follows, we specify and justify these coupling con-

ditions mathematically. These conditions are analogous to a

Neumann condition for the compartments at I1 and a Dirichlet

condition for the PDE at I0. We aim to apply an appropriate

flux of particles to and from Vc based on the PDE profile

across the interface I1, which will ensure that the gradients of

the different modelling regimes agree. Feasibly, if this were the

only condition, situations could arise where the gradients of

the two regimes agree, but there is a notable discontinuity in

the values of the density between descriptions. To prevent this,

we enforce a boundary condition on the PDE requiring the den-

sity on the lattice point at I0 to match an average of the density of

the surrounding compartments. These conditions are chosen to

maintain both the continuity of flux and mass/density across

the discrete–continuum interface. A similar approach has been

employed for a hybrid fluctuating hydrodynamics model [14].

In order to justify our coupling, first consider the Dirichlet

matching condition at I0, where we specify the PDE density in

terms of particle numbers

u1ðtþ DtÞ ¼ A�1ðtþ DtÞ þ A1ðtþ DtÞ
2

: ð2:1Þ
Writing this in terms of the analogous probability densities,

we have

ppðI0, tþ DtÞ ¼ pcðI0 þ h=2, tþ DtÞ þ pcðI0 � h=2, tþ DtÞ
2

: ð2:2Þ

Extending pc to continuous space (an approach used similarly in

previous work [7,15,16]) and Taylor expanding the terms on the

right-hand side (RHS) of equation (2.2) to first order, we find that

ppðI0, tþ DtÞ ¼ pc(I0, tþ Dt)þ h
2

@

@x
pc(I0, tþ Dt)þ pc(I0, tþ Dt)

�

� h
2

@

@x
pc(I0, tþ Dt)þOðh2Þ

�
=2

� pc(I0, tþ Dt):

This suggests that matching condition (2.1) ensures agreement

between the solution of the PDE and compartment-based par-

ticle numbers at I0. The agreement will become exact in the

limit h! 0.

For the condition at I1, we want to match the flux across I1

in the compartment-based regime to that in the PDE regime.

We will show that by enforcing the matched flux condition,

the probability density for the compartment-based region

evolves according to the diffusion equation in the limit of small

compartment size.

We begin by writing down the master equation [13] for the

probability density of a single particle at compartment 2m,

adjacent to the interface, I1:

p�m
c ðtþ DtÞ ¼ DDt

h2
p�ðm�1Þ

c ðtÞ þ 1�DDt
h2

� �
p�m

c ðtÞ þ cp, ð2:3Þ

where pk
cðtÞ is shorthand for pcðI0 þ ð2k þ 1Þh=2, tÞ and describes

the probability density for a single diffusing particle to be found

in the kth compartment at time t. Here, cp is the flux imposed (as

part of the hybrid algorithm) on compartment 2m from the

right. If there were compartments to the right of the compart-

ment labelled 2m (i.e. –(m þ 1), etc. (figure 1)) the true net

flux would simply be

cc ¼
DDt
h2
ðp�ðmþ1Þ

c ðtÞ � p�m
c ðtÞÞ: ð2:4Þ

Instead, we must approximate the true flux, cc, by an ansatz

derived from the PDE, cp as follows.

Suppose that the lth lattice point of the PDE lies on the inter-

face I1, and w is the ratio of spacing between the compartment

size, h, in Vc and the PDE finite difference lattice size,

Dxp ¼ ð1� I0Þ=K, such that w ¼ h=Dxp.

In order to approximate the flux across the interface with cp,

we must approximate the density at the centre of compartments

adjacent to the interface I1, based on the density of the PDE. In

general, the PDE mesh will not coincide with the centre of the

compartments. Therefore, we apply a linear interpolation of the

density based on the PDE mesh points closest to the centres of

the relevant compartments. The linear interpolation is chosen

because it is the simplest method, but provides sufficient

accuracy to approximate the flux across the interface.

We interpolate the density in Vp at the centre of the 2mth

compartment by

p� ¼ 1þ w
2

j k
� w

2

� �
pa�

p ðtÞ þ
w
2
� w

2

j k� �
pb�

p ðtÞ,

where a� ¼ l� bw=2c, b� ¼ l� bw=2c � 1. Imagine an extra com-

partment –(m þ 1) to the right of I1. We could interpolate the

density at the centre of this ghost compartment using a similar

expression

pþ ¼ 1þ w
2

j k
� w

2

� �
paþ

p ðtÞ þ
w
2
� w

2

j k� �
pbþ

p ðtÞ,

where aþ ¼ lþ w=2, bþ ¼ lþ bw=2c þ 1:



Algorithm 1. Time-based hybrid algorithm for stochastic reaction –
diffusion simulations using a compartment-based region and an
overlapping PDE-based region.

(i) Initialize number of particles Ak, k ¼ �m, . . . ,

�1,1, . . . ,n in compartments in Vc and apply

consistent initial conditions in Vp.

(ii) Select the compartment-based time step Dt, such

that the probability of more than one event occur-

ring per time step is O(Dt2), and a maximum

duration of the simulation, Tfinal. Set t:¼ 0.

(iii) Calculatec¼ Ncp, wherecp is as in equation (2.5).

Draw a uniform random number r1.

If r1, jcj, then update A�mðtÞ :¼ A�mðtÞþ sgnðcÞ.
(iv) Calculate a uniform random number r2.

If r2, a0Dt, where a0 is the total propensity of

the ‘reaction’ events in the compartment-based

regime, then a reaction occurs in that time step.

(v) If a ‘reaction’ occurs, generate a uniform

random number r3, and find j such thatP j�1
i¼1 ai � r3a0 ,

Pj
i¼1 ai.

Update number of particles in each compart-

ment according to chosen reaction, j.
(vi) Update time such that t :¼ tþ Dt.

(vii) Update PDE region Vp using an appropriate

numerical method. Apply the boundary condition

at the right-hand boundary and the coupling con-

dition at I0 as follows:

u1ðtþ DtÞ ¼ ðA�1ðtþ DtÞþ A1ðtþ DtÞÞ=2:

(viii) If t , Tfinal, then go back to step (iii). Else, end.
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Given these interpolations of the PDE density at the centre of

compartments, we can approximate the diffusive flux across the

interface and consequently set

cp ¼
DDt
h2
ðpþ � p�Þ: ð2:5Þ

Substituting this into equation (2.3) gives

p�m
c ðtþ DtÞ ¼ p�m

c ðtÞ þ
DDt
h2

( p�ðm�1Þ
c ðtÞ � p�m

c ðtÞ þ pþ � p�):

ð2:6Þ

Upon rearrangement this implies

pc I1 �
h
2

, tþ Dt
� �

� pc I1 �
h
2

, t
� �

Dt

¼ D
h2

�
pc I1 �

3h
2

, t
� �

� pc I1 �
h
2

, t
� �

� pp I1 �
h
2

, t
� �

þ pp I1 þ
h
2

, t
� ��

:

In order to demonstrate the veracity of our choice of cp, we extend

pc to be a continuous function of space and Taylor expand terms

on the RHS in space about the centre of the 2mth compart-

ment (i.e. I1 2 h/2). Taylor expanding pc(I1 � h=2, tþ Dt) in

time and taking the diffusive limit, we find we recapitulate

the diffusion equation for the probability density at I1 2 h/2 if

ppðI1 þ h=2, tÞ � ppðI1 � h=2, tÞ ¼ pcðI1 þ h=2, tÞ � pcðI1 � h=2, tÞ
or equivalently cp ¼ cc. Consequently, this indicates that the flux

cp given by equation (2.5) is an appropriate boundary condition

for the compartment-based model.

Given our two matching conditions at either end of the inter-

face, the hybrid algorithm can be implemented in a time-driven
sense as given in Algorithm 1. Note the factor of N in the calcu-

lation of c at step (iii) is due to the scaling between concentration

and the probability distribution for a single particle. Taking

sgn(c) in step (iii) corresponds to either adding a particle into

the 2mth compartment due to flux into Vc when sgn(c) ¼ þ 1

or removing a particle due to flux out of Vc when sgn(c) ¼ 21.

Both ‘time-based’ and ‘event-based’ versions of the hybrid

coupling algorithm are possible [3]. The main difference between

these is that the time-based algorithm uses a fixed time step Dt to

update both Vc and Vp, while the event-based algorithm steps for-

ward to the next reaction in Vc [17], while still fixing a maximum

time step in Vp for updating the PDE. For systems with large num-

bers of particles, the event-based algorithm will be more efficient

as it allows the use of larger time steps in the stochastic regime so

fewer steps of the algorithm are required. However, for simplicity,

we present here the time-based version, Algorithm 1.
3. Results
3.1. Numerical simulations
3.1.1. Test problem: diffusion
We will begin our examination of practical applications of the

hybrid coupling algorithm by applying the method to a test

problem in which particles diffuse with diffusion constant

D. With large copy numbers of particles in the system,

the density of diffusing particles, u(x, t), is governed by the

diffusion equation

@u
@t
¼ D

@2u
@x2

, x [ V: ð3:1Þ

Adding reactions to this system should not affect the bound-

ary behaviour directly and therefore it is sufficient to test our

model on a problem of this type [15]. As previously specified

(but without loss of generality), our domain is V ¼ [21, 1]

with zero flux boundary conditions at both ends. This

domain is divided into a deterministic PDE-based region

and a stochastic compartment-based region as required by

the hybrid coupling algorithm. We choose Vc ¼ [21, 0.1],

Vp ¼ [0, 1]. The left-hand interface of the overlap region is

at I0 ¼ 0 while the right-hand interface of the overlap

region lies at I1 ¼ 0.1.

We consider three different initial conditions, f(x): a uni-

form initial condition, demonstrating that the algorithm can

maintain an equilibrium state, a step function with all the

mass in [0, 1], that is

fðxÞ ¼ N:1x�0 ¼
0, x , 0,
N, x � 0,

�
ð3:2Þ

and a step function with all the mass in [21, 0], that is

fðxÞ ¼ N:1x�0 ¼
N, x � 0,
0, x . 0:

�
ð3:3Þ

These provide a robust test of our hybrid algorithm in a variety

of different scenarios, showing it can maintain net flux from

each region to the other. We note that the initial condition in

(3.3) is used here to stress test the algorithm under extreme cir-

cumstances, and does not correspond to a situation where it

would be appropriate to apply this methodology. Generally,

the PDE representation should be used to model regions of

high density and the compartment-based representation to

model regions of lower density.

We have performed simulations of the hybrid model,

using the three different initial conditions described above.
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Figure 3. Simulating simple diffusion starting from a step function with mass in [0, 1]. Panels (a), (b) and (c) show the particle density at times t ¼ 0.1, t ¼ 1
and t ¼ 10, respectively. Simulations are performed using the hybrid coupling algorithm set out in Algorithm 1. Parameters, repeats and figure descriptions are as
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and t ¼ 10, respectively. Simulations are performed using the hybrid coupling algorithm set out in Algorithm 1. Parameters, repeats and figure descriptions are as
for figure 2. (Online version in colour.)

de
ns

ity

0

500

1000

(a) (b) (c)

0

500

1000

0

500

1000

x
–1 0 1 –1 0 1 –1 0 1

x x

Figure 2. Simulating simple diffusion starting from a uniform distribution of mass throughout the domain V. Panels (a), (b) and (c) show the particle density
at times t ¼ 0.1, t ¼ 1 and t ¼ 10, respectively. Simulations are performed using the hybrid coupling algorithm set out in Algorithm 1. Parameters used are
D ¼ 0.025, Dt ¼ 0.001, h ¼ 0.05, Dxp ¼ 0.01 and the simulation results are averaged over 100 repeats. The black line represents the density in Vp and the
red bars represent the particle density in Vc. The dashed green line shows the (trivial) analytic solution. (Online version in colour.)
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We also present the analytical solutions of the mean-field dif-

fusion equation. In particular, suppose that all the mass is

initially in [0,1], as in (3.2). Using a Green’s function and an

infinite series of images at the boundaries, we obtain an

analytical solution to equation (3.1) of the form

uðx, tÞ¼N
2

erf
1�xffiffiffiffiffiffiffiffi

4Dt
p
� �

�N
2

erf
�xffiffiffiffiffiffiffiffi
4Dt
p
� �

þN
2

X1
k¼1

erf
1þðx�2kÞð�1Þkþ1ffiffiffiffiffiffiffiffi

4Dt
p

 !
�erf

ðx�2kÞð�1Þkþ1ffiffiffiffiffiffiffiffi
4Dt
p

 !(

þ erf
1þðxþ2kÞð�1Þkþ1ffiffiffiffiffiffiffiffi

4Dt
p

 !
�erf

ðxþ2kÞð�1Þkþ1ffiffiffiffiffiffiffiffi
4Dt
p

 !)
,

ð3:4Þ
where we have written the solution in terms of error func-

tions. The solution for the initial condition of a step

function with all the mass in [21, 0] (as in equation (3.3))

can be obtained by symmetry from equation (3.4). These

solutions are used in figures 3 and 4, respectively.

Comparisons between our hybrid model and the mean-

field analytical solution are shown in figures 2–4 for a

range of times. Agreement is observed between the simulated

results and the analytic solutions.

Quantitative comparisons of the simulations from

the hybrid model with the analytic solutions showing the

behaviour of the error over time can be seen in figure 5.

We compute the error as a sum across the entire spatial

domain V of absolute values of the difference between
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the average of the hybrid model and the analytic mean-

field solutions. This difference is computed at the centre

of each region of width h, in both Vc and Vp. The resulting

stochastic error is normalized by the total number of par-

ticles in the system. There is no long-term bias in the

errors, and crucially, in each case, the magnitude of the

absolute error does not increase over time. This demon-

strates quantitatively the agreement between the two

modelling regimes.

3.1.2. Test problem: morphogen gradient
We also apply our model to another test problem: the for-

mation of a morphogen gradient. For this problem, we use

the same domain and partitioning as before. Morphogen

molecules are produced at rate J at x ¼ 1 and throughout

the domain morphogen molecules decay with constant rate

m and diffuse with diffusion coefficient D. When there are

sufficiently many molecules in the system, we expect the den-

sity of molecules, u(x, t), to be governed by the following

PDE:

@u
@t
¼ D

@2u
@x2
� muþ Jdðx� 1Þ, x [ V: ð3:5Þ

We apply zero flux conditions at the boundaries and initially

we assume there are no molecules in the system.

The results of simulating this morphogen system

are shown in figure 6. The system was simulated up until

t ¼ 20 after which point the system had approached steady

state. Good agreement can be seen between the hybrid

simulation algorithm and the analytical solution of (3.5).
3.1.3. Test problem: travelling wave
The occurrence of travelling waves is common throughout

the natural world: they describe a variety of phenomena

from propagation of genes in a population [18], to epidemic

outbreaks [19], and in the FitzHugh–Nagumo equations for

a nerve axon pulse [20].

One commonly used model for a travelling wavefront is

the Fisher–KPP equation

@u
@t
¼ D

@2u
@x2
þ k1u� k2u2, ð3:6Þ

where D is the diffusion coefficient, and k1 and k2 are reaction

rates. This is a nonlinear reaction–diffusion equation for the

concentration or population density u in one dimension. It

can be shown that this results in the formation of a travelling

front with a minimum wave speed of c ¼ 2
ffiffiffiffiffiffiffiffi
Dk1

p
, given

continuous initial conditions with compact support [21].

Consider the reversible chemical reaction

A O
k1

k2

AþA: ð3:7Þ

Using the law of mass action in a deterministic setting [21]

and including diffusion effects results in the Fisher–KPP

equation (3.6) as a description of the evolution of the chemi-

cal concentration. To investigate stochastic simulations of the

propagation of travelling waves, we can interpret the reaction

system (3.7) in a stochastic sense [9]. The stochastic simu-

lations of wavefront propagation do not generally match

the deterministic models, with stochastic models resulting

in a different wave speed than given by the deterministic



de
ns

ity

0

5

10

15

x
–50 0

(a) (b) (c)

50
x

–50 0 50
x

–50 0 50
0

5

10

15

0

5

10

15

Figure 7. Simulating a travelling wave using the hybrid model, and the fully stochastic scheme (3.7). The results shown have been averaged over 1000 repeats.
Parameters used are D ¼ 1, h ¼ 2, Dxp ¼ 0.5, k1 ¼ 1, k2 ¼ 0.1. Panels (a), (b) and (c) show the particle density at times t ¼ 0, t ¼ 10 and t ¼ 20, respect-
ively. The green dashed line shows the result of fully stochastic simulations while the red histogram and black line show the result of the hybrid model in the
compartment-based and PDE-based regions, respectively. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160335

7

model and different speeds given depending on the

stochastic model used [22]. The wave speed in the stochastic

models approaches that of the deterministic model in the

continuum limit of many particles, but does so relatively

slowly with v ¼ vmin � K=ðln NÞ2, where vmin is the mini-

mum velocity for the deterministic model, K is a constant

and N is the total number of molecules [23]. By considering

moments of the appropriate chemical master equation, we

obtain a hierarchy of coupled equations, where the kth

moment depends upon the (k þ 1)th moment [24]. In order

to obtain a closed system we must make a closure approxi-

mation. The degree of agreement between the deterministic

and stochastic descriptions will depend on the validity of

this closure assumption.

We note that the nature of reaction scheme (3.7) means

that population growth in compartments ahead of the wave-

front does not begin until there is at least one particle present

in that compartment. The discretization of particles in the sto-

chastic model, therefore, restricts the progress of the wave

and results in the lower wave speed in comparison to the

deterministic interpretation [25].

Given that we do not expect the stochastic model to cor-

respond to the deterministic model in the mean-field we

will use a fully stochastic compartment-based description of

the system for comparison with our hybrid system in order

to determine its accuracy (as opposed to the PDE description

which represented the mean-field behaviour of the previous

test systems). We expect to make computational savings by

using a PDE to describe the mean-field behaviour behind

the wave whilst using the stochastic compartment-based

model to simulate behaviour at the wavefront and ahead of

the wave, which determines the wave speed.

Applications of hybrid models to travelling waves have

been made in previous work. Moro [9] has successfully

demonstrated such a model, using a flux-based approach

similar to that of Flekkøy et al. [8]. This hybrid model was

then used to confirm the scaling of the velocity correction

for the stochastic mesoscopic model. Further to this, an adap-

tive version of the two-regime method has also been applied

to a travelling wave problem [22]. This model couples a

microscopic Brownian motion based description to a meso-

scopic compartment-based description, as in the original

two-regime method [7]. In addition, the interface between

the two regions is, in this case, allowed to move adaptively

following the propagation of the front [22]. This enables the

microscopic description to represent the most appropriate

region of the domain, following the front of the wave, with
the less computationally intensive mesoscopic description

remaining behind the wave.

We demonstrate that our hybrid model can be applied

successfully to a travelling wave using a fixed overlap

region between the models, taking the domain as V ¼

[2L, L] where L ¼ 50, with an overlap region at [0, 2]. Conse-

quently, we have Vc ¼ [250, 2] while Vp ¼ [0, 50]. We take

our initial condition as a step function: fðxÞ ¼ 10 � 1x.0. The

results of simulations are displayed in figure 7, showing the

close agreement between the hybrid model and the fully

stochastic model. The hybrid model accurately captures the

stochastic behaviour at the front of the wave that is missed

by the fully PDE-based model.

An important measure when investigating stochastic

simulations of reaction system (3.7) is the resulting wave

speed. It can be difficult with a stochastic model to specify

exactly where the wavefront is at a given time and to quantify

exactly how fast it is moving, because there will inevitably be

noise in the results of simulations [24]. We choose to use the

method outlined by Robinson et al. [22], which considers the

rate of change of the total mass, M(t), in the system. For times

t2 and t1, we take

ĉ ¼Mðt2Þ �Mðt1Þ
t2 � t1

k2

k1
, ð3:8Þ

where the factor k2/k1 is necessary since the height of the

wave will approach k1/k2. Dividing the rate of change of

mass by this factor gives a measure of how fast the wave is

propagating through the domain.

Figure 8 shows a comparison between the wave speeds

obtained from the fully stochastic compartment-based

model, the hybrid model and the deterministic PDE model.

There is more variation in the fully stochastic model since

the PDE part of the hybrid model acts to dampen the fluctu-

ations in the stochastic part of the model. Good agreement is

seen between the wave speeds of the two models as estimated

by a moving average of the wave-speed estimates, after an

initial transient. The slower initial wave speed observed in

both models is explained by the steep initial condition,

which first needs to approach the profile of the travelling

wave before it starts to move at constant speed.
3.1.4. Adaptive interface via a local detection criterion
In certain situations, as with the travelling wave presented in

the previous section, the region of interest with lower particle

numbers changes position dynamically. In order to capture
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most effectively the detail in this area while reducing the

computational requirements it will be useful to have an inter-

face that also changes position, so that regions with higher

particle numbers can more often be modelled using the

PDE. To ensure that the interface moves correctly, we initiate

moves of the interface adaptively based on a detection

condition of the particle density near the interface. Moving

the interface should also prevent unnecessary simulation of

large particle numbers using the stochastic regime in regions

where this is not required; for example, behind the wavefront

for larger times in the travelling wave model (figure 7c).

Such adaptive interfaces have previously been imple-

mented in hybrid models [12] and in several works [22,26]

based on the previously mentioned two-regime method [7].

The two-regime method implements a coupling between

a compartment-based stochastic model and a molecular

based stochastic model. In the adaptive two-regime method

[22], the interface between the two models moves adaptively

in increments of the compartment width h. The moves are

made to keep the density of particles below a certain

threshold umax. If the density of the particles in the com-

partment adjacent to the interface is above umax, then the

interface is moved into the compartment-based region. Con-

versely, if the density in the molecular region is below

another threshold then the interface is moved into the mol-

ecular region. This threshold is chosen as umax 2 du, where

du is a small (constant) increment, to prevent unnecessary

fluctuations in the position of the interface due to the stoc-

hasticity of the system [26]. For similar reasons, the

condition for updating the position of the interface is not

checked every time step but after a fixed number of time

steps to prevent errors resulting from moving the interface

too frequently [26].

We choose to move the interface only by small increments

equal to the compartment width h after each successful check

of a local detection criterion. This criterion is checked at intervals
of h steps of the algorithm. The requirement for moving the

interface is that the density in both the compartment-based

region and PDE-based region near the interface must be either

above umax or below umax 2 du. Specifically, we check the com-

partments either side of interface I0 in Vc and PDE points at

equivalent positions either side of the interface I1.

In the particular case of the travelling wave considered in

§3.1.3, it is important that we keep the entire front of the wave

in Vc, because it is the description governing the wavefront

that dictates the wave speed. To ensure this, we take

umax ¼ 10.5, du ¼ 1.0 for model parameters as in figure 9.

When we have performed several iterations of the hybrid

adaptive algorithm and wish to take an average of the results

we encounter some difficulties. After a full iteration of the

algorithm has been completed, the interface between the

models will have, in general, changed position following

the wavefront. However, upon repeating the iteration, the

position of the interface may have changed by a different

amount. This is due to the stochastic nature of the process

that we are simulating. We note that in the overlap region

both of the model descriptions are valid. With this in mind,

we record the concentration in both the stochastic and deter-

ministic regions for each iteration of the algorithm and

combine the concentrations together to give an average

value for the concentration at each position. That is we

take, for any point in the overlap region for any of the

iterations of the algorithm, uavðx, tÞ ¼ ðAðx, tÞ þ upðx, tÞÞ=2,

where uav is the concentration in the overlap region, up is

the concentration in the PDE-based region and A is the par-

ticle number in the compartment-based region. Otherwise,

outside the regions covered by the overlap region, we use

the deterministic and stochastic descriptions as usual. It is

this combination of deterministic and stochastic descriptions

that is plotted in figure 9.

Notable computational improvements are afforded by

the hybrid model in comparison to the fully stochastic

compartment-based model. Simulation time is decreased by

a simulation-dependent factor of around 5. Note that the

adaptive interface algorithm for the travelling wave simu-

lations is significantly faster than the scenario with the

fixed interface. Despite the cost associated with moving the

interface, there is a large reduction in simulation time because

the computationally cheaper PDE is solved on a larger part of

the domain and the more computationally intensive stochas-

tic model is restricted to a smaller region, in comparison to

the hybrid model with a fixed interface (table 1).
3.2. Sensitivity analysis
We demonstrate robustness of the coupling algorithm to

choices of the algorithm parameters h, the compartment

width, and Dxp, the PDE discretization, showing how the

total error varies as a function of these parameters. Because

we are also able to vary the size of the overlap region in

our coupling algorithm, we also demonstrate the effects of

varying the number of compartments in this region. As the

test problem here, we use simple diffusion with the same

step-function initial condition as in figure 3 given by equation

(3.2). The results are presented in figure 10. The total error E
is calculated by summing the absolute value of the point-wise

differences between the analytical and the hybrid solutions at

the centre of each compartment in Vc and equivalently in Vp.

The error is shown for a single time point, at t ¼ 1.
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Algorithm 2. Algorithm for stochastic reaction – diffusion simulations
with an adaptive interface using a compartment-based region and a
PDE-based region.

(i) Initialize and apply initial conditions. Set t :¼ 0

and k :¼ 0.

(ii) If k ¼ h, where h is the checking interval, then

check position of interface, otherwise proceed

to step (iv).

(iii) If Ai . umax for i [ f�1, . . . ,�mg, and uj . umax

for j [ fl� w, lþ wg, where the lth lattice point

of the PDE lies on the interface I1, and w ¼ h/

Dxp is the ratio of discretizations in Vc and Vp,

then update interface: I0 :¼ I0 � h.

If Ai , umax � du for i [ f�1, . . . ,�mg and

uj , umax � du for j [ fl� w, lþ wg, then

update interface: I0 :¼ I0 þ h.

If I0 has been updated, then density in newly cre-

ated region is equal to density of that region in

previous description.

(iv) Implement one iteration of Algorithm 1. Incre-

ment k ¼ k þ 1. Return to step (ii) unless final

time is reached.

Table 1. Computation times for each of the test problems, comparing the
hybrid model with the fully stochastic model. Parameters used are as for
figures 4, 6, 7, 9. Speed ups are given as a multiple of the fully stochastic time.

model
fully stochastic
model (s)

hybrid
model (s)

speed
up

simple diffusion (IC:

mass in [0,1])

1381.5 260.6 5.3�

morphogen

gradient

2721.6 518.0 5.3�

travelling wave

(fixed interface)

3133.3 688.1 4.6�

travelling wave

(adaptive

interface)

3133.3 527.6 5.9�

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160335

9

As h increases, the error value increases due to the smaller

number of compartments used and the corresponding larger

size of each compartment. However, this is the behaviour we

would expect and is also seen in the fully stochastic model, as

shown by the derivation in Appendix A. With varying Dxp,

the magnitude of the stochastic error remains approximately

constant. Similarly, the error is independent of changes in the

number of compartments in the overlap region.

3.3. Variance coupling
In previous sections, we have demonstrated that our hybrid

coupling method correctly matches the mean behaviour of

the compartment-based model and the deterministic PDE.

In other similar coupling schemes, it has been of interest to

ensure higher order moments match between the two model-

ling regimes. This has been successfully achieved with an

overlap region [3].

Our coupling methodology naturally employs an overlap

region between the different modelling regimes. We found that

the variance of our hybrid method agrees with that observed

from simulations of the fully stochastic compartment-based

model, as shown in figure 11.
4. Discussion
4.1. Summary
In this article, we have presented a novel hybrid algorithm

for coupling a stochastic compartment-based model with a

deterministic PDE model for reaction–diffusion systems.

This technique is helpful for simulating reaction–diffusion

systems, providing most benefit in comparison with existing

methods in cases where a detailed description is necessary in

a part of the domain of interest, but there are computational

restrictions preventing the use of the detailed stochastic

model throughout the domain. We utilize an overlap region

where both modelling descriptions are valid. To perform

the coupling, we apply a flux-based condition at one interface

and a Dirichlet-type condition at the other interface. Further-

more, we justified mathematically the particular form of the

boundary conditions used.

Biochemical systems where reaction–diffusion modelling

approaches have been applied are found widely in the natu-

ral world from population ecology [21], to the spread of

epidemics [21], to cell biology such as calcium signalling

[2], and wound healing [27]. In particular, we focused on

systems with multiple scales where detailed modelling is

required in a certain region, but it might prove computation-

ally wasteful to apply that method throughout the domain.

Such systems occur frequently in a biological context due to

the multiscale nature of biological systems [28].

The hybrid algorithm that we have developed was

robustly tested and demonstrated by applying it to several
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biologically motivated problems in §3.1. There are note-

worthy improvements in simulation time in comparison to

a fully stochastic model, including a decrease in simulation

time by approximately a factor of 5 when applied to a suite

of standard test problems. The performance of this hybrid

algorithm and the error compared to an analytic solution

were analysed and explained.

At low particle numbers, a deterministic modelling

method may no longer be appropriate and a stochastic

method should be applied to account for the variation.

There are disadvantages to the stochastic methods too;

in particular they can require long simulation times.

In order to make best use of the complementary advantages

of deterministic and stochastic models, multiscale hybrid

models are becoming increasingly widespread, particularly

in applications relating to reaction–diffusion systems.

We have presented our own hybrid coupling algorithm to

segue between stochastic compartment-based models and

deterministic PDE-based models. Further computational

improvements have been reached by adding an adaptive

interface to the algorithm.
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Appendix A. Linear dependence on
compartment size
We demonstrate linear dependence of the error between the

density of the compartment-based model and the mean-field

PDE density, by performing a Taylor expansion in the compart-

ment size h. From the master equation for the jth compartment,

assuming only diffusion and no reactions, we have

@pj
c

@t
¼ dp j�1

c � 2dpj
c þ dp jþ1

c ,

where d is the jump rate between compartments. Applying a

Taylor expansion in space

@pj
c

@t
¼ dðpj

c � h
@pj

c

@x
þ h2

2

@2pj
c

@x2
þOðh3ÞÞ � 2dpj

c þ dðpj
c þ h

@pj
c

@x

þ h2

2

@2pj
c

@x2
þOðh3ÞÞ,

¼ dh2 @
2pj

c

@x2
þOðdh3Þ:

Taking a jump rate d ¼ D/h2, we recover the diffusion

equation with diffusion coefficient D and an error term

OðhÞ. This gives an error between the compartment-based

model and the mean-field diffusion equation linear in the

compartment spacing h, as observed in figure 10.
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