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ABSTRACT Allelic imbalance (AI) indicates the presence of functional variation in cis regulatory regions.
Detecting cis regulatory differences using AI is widespread, yet there is no formal statistical methodology
that tests whether AI differs between conditions. Here, we present a novel model and formally test differ-
ences in AI across conditions using Bayesian credible intervals. The approach tests AI by environment (G·E)
interactions, and can be used to test AI between environments, genotypes, sex, and any other condition.
We incorporate bias into the modeling process. Bias is allowed to vary between conditions, making the
formulation of the model general. As gene expression affects power for detection of AI, and, as expression
may vary between conditions, the model explicitly takes coverage into account. The proposed model has
low type I and II error under several scenarios, and is robust to large differences in coverage between
conditions. We reanalyze RNA-seq data from a Drosophila melanogaster population panel, with F1 geno-
types, to compare levels of AI between mated and virgin female flies, and we show that AI · genotype
interactions can also be tested. To demonstrate the use of the model to test genetic differences and
interactions, a formal test between two F1s was performed, showing the expected 20% difference in AI.
The proposed model allows a formal test of G·E and G·G, and reaffirms a previous finding that cis reg-
ulation is robust between environments.
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Regulatory variation can occurwithin cis acting regions (e.g., promoters,
enhancers, and other noncoding sequences, directly altering expression
of a gene. Other trans acting factors such as transcription factors con-
tribute to regulatory variation, but are expected to affect transcription
of many target genes with which they interact. By revealing cis differ-
ences in regulation and controlling for trans effects, allelic imbalance

(AI) provides a direct window into the relationship between cis regu-
latory sequence and regulation of transcript levels (Brem et al. 2002;
Yan et al. 2002; Lo et al. 2003; Wittkopp et al. 2004). Testing for
regulatory variation that affects expression in cis is conceptually
straightforward: two alleles within a heterozygote are compared to
one another. If AI is observed, there is direct evidence of cis differences
between alleles; trans acting regulation alters expression of both alleles
equally, producing an average effect across alleles at a locus, and does
not contribute to AI within the heterozygote. Genetic interactions be-
tween trans acting factors and cis regions are expected in some cases,
and these interactions are not easily separated from cis effects.

Cis regulatory differences play a critical role in expression variation
within populations (Rockman and Wray 2002; Stranger et al. 2012;
Graze et al. 2014; Fear et al. 2016; Wang et al. 2017), divergence of
gene expression between species (Wittkopp et al. 2004; Graze et al.
2009; McManus et al. 2010), parental imprinting (Crowley et al.
2015), and in human health and disease (McCarroll et al. 2008; Lin
et al. 2012; Maurano et al. 2012). Importantly, many experimental
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designs have also incorporated comparisons across different physiolog-
ical or environmental conditions (von Korff et al. 2009; Tung et al.
2011; Cubillos et al. 2014; Buil et al. 2015; Chen et al. 2015; Fear et al.
2016; Moyerbrailean et al. 2016; Knowles et al. 2017). Cis regulatory
differences that are robust to environmental conditions, as well as
apparent cis variant by environmental interactions, have been reported
in these and other studies. However, it is unclear if cis variation is
similar in most environments, or if there is a significant environmental
component of variation in cis regulation. Current approaches rely on
informal comparisons of AI estimates made separately for each condi-
tion, and there is no current formal test for AI by environment
interaction.

One inherent, and often neglected, difficulty in measurement of
AI is to discriminate real allelic imbalance frombias in estimation of
AI, often due to differential mapping of the two alleles on the
reference (Degner et al. 2009). Early studies of AI used simple
designs consisting of two parental strains and a single F1 genotype,
with expression measured under standard conditions. These stud-
ies often used empirical controls (typically F1 DNA samples) to
identify bias in estimation of AI (Wittkopp et al. 2004; Graze et al.
2009, 2012). However, sequencing DNA for many genotypes, in
addition to RNA samples for multiple genotypes and conditions,
can be prohibitively expensive. Alternatively, parental DNA reads
can be simulated for identification of some forms of bias (Degner
et al. 2009; Stevenson et al. 2013; León-Novelo et al. 2014), and/or
a range of bias can be examined for the impact on inferences (Fear
et al. 2016). The use of a strain-specific reference or direct identi-
fication of genetic variants from the data also improves the esti-
mation of AI (Skelly et al. 2011; Turro et al. 2011; Graze et al. 2012;
Satya et al. 2012; León-Novelo et al. 2014; Munger et al. 2014; Fear
et al. 2016). These analytical approaches account for bias by fil-
tering regions of likely bias, incorporating information from con-
trols or simulations, or use both filtering and modeling (reviewed
in Castel et al. 2015).

A variety of approaches have been taken to test for significant allelic
imbalance in simple designs (Ronald et al. 2005; Degner et al. 2009;
Zhang and Borevitz 2009; Gregg et al. 2010; McManus et al. 2010;
Rozowsky et al. 2011; Skelly et al. 2011; Turro et al. 2011; Graze
et al. 2012; León-Novelo et al. 2014). Approaches have included linear
models for array based studies (Ronald et al. 2005; Zhang and Borevitz
2009), binomial or chi-square tests (Degner et al. 2009; Gregg et al.
2010;McManus et al. 2010; Rozowsky et al. 2011), and Bayesianmodels
for RNA-seq based studies (Skelly et al. 2011; Turro et al. 2011; Graze
et al. 2012; León-Novelo et al. 2014). The variance due to random
sampling reads from a library can be modeled by treating the total
number of reads in a biological replication as a random variable
(Graze et al. 2012; León-Novelo et al. 2014).

For more complicated designs that include multiple genotypes,
sexes, and/or environmental conditions, existing studies have pri-
marily used two-stepmethods, applying an initial model to detect AI
in each condition, and then a comparison to determine if AI differs
between sample groups. This two-step method has been imple-
mented for a variety of different approaches, including binomial
tests with log odds ratios, likelihood ratio tests with Bayesian meta-
analysis, and Bayesianmodels with pairwiseWilcoxon tests (Edsgärd
et al. 2016; Fear et al. 2016; Moyerbrailean et al. 2016). For example,
as part of their analyses, Fear et al. (2016) apply a Bayesian model to
determine AI, and identify the genes in AI across 49 test crosses of
female Drosophila melanogaster flies in only one environment, ei-
ther virgin or mated. The approach proposed here is more general in
the sense that not only does it, as in Fear et al. (2016), determines AI

in mated and/or in virgin flies, but, in contrast to Fear et al. (2016), it
also formally tests whether the levels of AI are significantly different
in the two environments.

We introduce here a novel Bayesian model (referred to as the
environmental model) that allows formal testing of AI between envi-
ronments, while accounting for potential bias, and model the total
number of reads as a randomsample from the library. Themodel can be
used with or without empirical control samples to account for bias. In
addition, the environmental model explicitly takes into account the
expression level of the genic region being examined in each condition, as
well as the proportion of reads that are informative for estimating
allele-specific expression. The ability to assign reads to the paternal or
maternal allele depends upon the amount and location of sequence
differences observed between the alleles. The higher the number of
differences, and the more even the distribution, the greater the
discrimination ability. Lower numbers of differences or large regions
with nodifferences result in greater numbers of unassigned reads that
are not informative for estimation of AI. To our knowledge, in all
analyses of AI to date, reads uninformative for AI analyses are
discarded. The unassigned reads provide us information about the
variability of the read counts, and more precise estimate of this
variance increases the power to detect AI.

To test theperformanceof themodelwith real data,wealsoconduct a
reanalysis of existing data, examining differences in AI for an environ-
mental perturbation in Drosophila that has dramatic effects on overall
expression, the change from virgin to mated status. During mating,
male D. melanogaster transfer, together with sperm, a mixture of pep-
tides and proteins into the female reproductive tract; these peptides
cause profound changes in female physiology (Zhou et al. 2014). As
a consequence, mated female flies experience changes in body compo-
sition (Everaerts et al. 2010), life span (Aigaki and Ohba 1984), and
gene expression (Lawniczak and Begun 2004; McGraw et al. 2008).
Here, we use the environmental model to understand how this large
physiological change affects variation in cis regulation.

METHODS

The baseline model
The baselinemodelwas developed by León-Novelo et al. (2014). Briefly,
the observed read counts in biological replicate (i) for any single
exon/environment are assigned to maternal or paternal alleles, and
unassigned reads are discarded (Figure 1). Let xi and yi be the RNA
allele-specific read counts from a heterozygote in biological replicate
iði ¼ 1; . . . IÞ :

yi
��m;a;bi; q � PoissonðmabiqÞ; and

xijm;bi; q � Poissonðmbið12 qÞÞ:
Here, m is the overall mean, bi is the variation of biological replicates
(i ¼ 1; . . . ; I) due to the random sampling of reads from libraries,
a is the effect of a read having AI, and q incorporates bias informa-
tion, where values .0.5 indicates bias toward the y allele, and
values ,0.5 is bias toward the x allele. If u is the real proportion of
reads from the y allele then:

u ¼ mabi

mbi þ mabi
¼ a

1þ a
;

when there is no AI (u ¼ 0:5), therefore a ¼ 1: The bias correction
parameter is q; it can be a random variable estimated from DNA
controls, from simulation, or a fixed constant varied to reflect un-
certainty (Fear et al. 2016).
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The environmental model
Let i = 1,2 be the index of condition, which can represent environ-
mental differences or differences in treatments (e.g., mated and
virgin status) or differences between genotypes. We define them
as environment 1 and environment 2.

Assume that we haveK1 biological replicates for environment 1 and
K2 replicates for environment 2.

For each gene/gene region to be examined, we define:

xi,k = number of RNA reads aligned to the “maternal” allele in
environment i and replicate k,

yi,k = number of RNA reads aligned to the paternal allele.
zi,k = number of RNA reads aligned equally well to both alleles, and

that cannot be assigned to either allele; they are also referred to as
“unassigned”; and

ri,p (ri,m) = probability that a read generated from paternal (mater-
nal) aligns to paternal.

(maternal) for environment i. In specific notation:
ri,p = Pr[read aligns to paternal|read generated by paternal] for

i = 1,2.
12ri,p = Pr[read is unassigned|read generated by paternal] for the

genotype in environment i.

ri,p (ri,m) can be estimated from control DNA or from simulation.
To estimate ri,p, (1) use the paternal genome to simulate all possible
reads that can be generated by the paternal allele, (2) align these reads to

both the paternal and maternal genomes, and (3) estimate ri,p as the
proportion of the simulated reads aligning best to the paternal genome.
Note that the true proportion of simulated reads aligning best to the
parental allele in the two environments (r1,p and r2,p) for the same
genotype is expected to be similar. However, to allow for comparisons
across genotypes where this assumption may not hold, the model does
not force these two parameters to be identical.

We assume that the distribution of the counts xi,k; yi,k; zi,k|ai, bi,k
have the expected values given in Table 1. A graphical representation of
the expected values is provided in Figure 1. The biological replication
specific random effect bi,k corrects for the random sampling of reads
from the library for each biological replication. As with the baseline
model, we assume that the total number of reads from a biological
replication is a random effect with expected value bi;kðai þ 1=aiÞ: This
explicitly recognizes the sampling of material from a library in order to
generate the observed reads and incorporates the resulting sampling
variance directly into the model. Approaches that consider the total
number of reads in a biological replication to befixed often fail tomodel
the overdispersion of the data. Allowing it to be random allows mod-
eling of the overdispersion.

For example, the maternal read count of the third virgin replicate,
x2;3; has an expectation of a2b2;3r2;m: Note that when ri,p and ri,m are
both equal to 1, we expect all the reads to be assigned to an allele, and
the proportion unassigned to be zero (i.e., zi,k = 0). The proportion of
reads assigned to the maternal (paternal) allele compared to those that

Figure 1 Read assignment. Reads aligning to
the maternal allele (m) are purple, those align-
ing to the paternal allele (p) are green, and
those aligning equally well to both alleles (un-
assigned) are gray. Expected values accord-
ing to the environmental model are given in
Table 1, and are in black type above. The
baseline model uses information of the reads
aligning to paternal or maternal alleles only
(red boxes), while the environmental model
additionally incorporates information about
unassigned reads (blue boxes). In the
baseline model, m is the overall expected
value, bk models the biological replicate
variation, a 6¼ 1 is equivalent to AI, and the
known quantity 12q is interpreted as the
expected proportion of maternal read counts
when there is no AI. In other terms,
Eðx=ðy þ xÞja ¼ 1Þ ¼ 12q: The priors for all
model parameters are gamma(1/2,1/2).
The quantities

ffiffiffi
a

p
mbk and 1=

ffiffiffi
a

p
in the

notation of the baseline model play the
role of the parameters bk=ðrm þ rpÞ and a

respectively in the environmental model.
When a ¼ 1 in the environmental model,
E ðx ja ¼ 1Þ=E ðx þ y ja ¼ 1Þ ¼ rm = ðrm þ rpÞ:
This leads us to an interpretation of q under
the null in the baseline model as rp=ðrm þ rpÞ
in the environmental model.
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are not assigned will depend on several factors, such as read length, the
level of divergence between the two haplotypes, the alignment algo-
rithm, and the stringency of alignment. These parameters are not equal
to reflect the possibility that the quality of the genotype specific refer-
ences may not be equivalent between the maternal and paternal refer-
ence, and/or that for a particular gene/gene region there may be
unobserved structural variation in one but not both alleles. DNA con-
trols can account for factors such as hidden structural variation, but can
be prohibitively expensive. In the absence of DNA controls, the use of
simulations can estimate some of the potential bias, and inclusion of
these estimates in the model is preferable to ignoring sequence and
mapping bias altogether (León-Novelo et al. 2014).

bi,k/ai and aibi,k are the total expected number of reads from the
paternal and maternal alleles, respectively, in environment i and bi-
ological replication k. Of the bi,k/ai reads coming from the paternal
allele, we expect (1/ai)bi,kri,p to be assigned to the paternal allele, and
(12ri,p)bi,k/ai to be unassigned. Similarly, of the aibi,k reads from
the maternal allele, we expect aibi,kri,m to be assigned to the mater-
nal allele and (12ri,m)aibi,k to be unassigned. The parameter a2

i is
the ratio of the maternal and paternal expected value counts for
genotype i, after adjusting for assignment bias. Explicitly allowing
for reads to be unassigned allows the level of expression to be in-
cluded in the modeling.

The notation is the following:

a2
i ¼

E
�
xi;k

��
ri;m

E
�
yi;k

�.
ri;p

;

for i = 1,2 and k = 1,2,. . .,Ki.
We are interested in testing the null hypotheses:

1. Allelic balance in environment 1 (e.g., mated) or, equivalently, H01:
a1 = 1.

2. Allelic balance in environment 2 (e.g., virgin), H02: a2 = 1.
3. The level of AI is the same in both (or independent of) environ-

ments. Equivalently, H03: a1 = a2.

Notice that H03 is testing if the true proportion of reads coming
from the paternal allele in environment 1 (e.g., mated) is the same as in
environment 2 (e.g., virgin), or, in other words, the level of AI is the
same in both conditions (e.g., mated and virgin). This is a formal test for
the interaction between AI and environment.

The proportion of counts coming from the maternal allele (line) in
environment i is then:

ui ¼
E
�
xi;k

�
ri;m

�
E
�
xi;k

�
ri;m þ yi;k

.
ri;p

� ¼ ai

ai þ 1=ai
:

ui is expected to be 0 when no counts are coming from the maternal
allele, 1 when all the counts are coming from the maternal allele, and
0.5 in the case of perfect allelic balance. The model is implemented in
R (R Core Team 2017), and is available as Supplemental Material,
File S2.

Negative binomial sampling model
Above, we describe themodel for the expected value counts, and nowwe
model the counts. We assume the counts follow a negative binomial
distribution, with expected values given in Table 1. For example, the
distribution for the read counts in the third virgin biological replicate
aligning to the maternal allele is:

x2;3 � NB
�
mean ¼ r2mb2;3a2; dispersion ¼ f

�
:

The dispersion parameter f is common to the distribution of all read
counts. Here x � NBðm;fÞ denotes the negative binomial distribu-
tion with mean m and variance mþ fm2: RNA-Seq data typically
exhibit overdispersion (with respect to the Poisson model; i.e., the
variance is greater than the mean). Since the negative binomial
sampling distribution can model overdispersed data, it has been
proposed as a sampling distribution for RNA counts (Robinson
and Smyth 2007; Anders and Huber 2010; Di et al. 2011; León-
Novelo et al. 2017).

To complete the Bayesian model, we specify the prior distributions
for the model parameters:

a1;a2 � lognormal
�
ma ¼ 0;s2

a ¼ 1
�
42
�

b1;1 ; . . . ;b1;K1
;b2;1; . . . ;b2;K2

� gamma
�
ab ¼ ~ab; bb

�

bb � gamma

	
abb ¼ 2; bbb ¼ 2 ~bb




f � Inverse2 gamma
�
af ¼ 2:01; bf ¼ 0:05

�
:

Here, gammaða; bÞdenotes the gamma distribution with mean shape
and rate parameters a and b:

The computation of credible intervals for the parameters of interest
a1;a2 and a1=a2 is carried out using Markov Chain Monte Carlo. We
rejectH01when the credible interval fora1does not contain 1. Similarly,
we reject H02 (or H03) when the credible interval fora2 (ora1=a2Þ does
not contain 1.

The lognormal prior distributions for the parametersa1anda2 were
used to make the model symmetric with respect to the labels paternal
and maternal (in our example, tester and line, respectively). This is a
priori ai � 1=ai so the estimates of ai in the baseline model are the
same as the estimates of 1=ai in the model swapping the labels of tester
and line. The hyper-parameter s2

a ¼ 1=42 is chosen so that the prior
expected value of ai equals ma þ expðs2

a=2Þ ¼ 1:03 � 1; and prior
variance ðexpðs2

aÞ2 1Þ · expð2ma þ s2
aÞ ¼ 0:4168; so, in the case of

noninformative data (e.g., very small counts), the posterior distribution
of ai is similar to the prior, and we do not conclude AI. The gamma
prior for bb “tightens” the biks to be similar.

n Table 1 Expected values for read counts under the proposed
model for environment i and replicate (i, k), where i = 1, 2 and k =
1,2. . ..ki

Maternal (xi,k) Paternal (yi,k) Unassigned (zi,k)

aibi,kri,m (1/ai)bi,kri,p [(12ri,p)/ai + (12ri,m) ai]bi,k

Every replicate produces three observed counts for each gene/gene region: one
for reads aligning better to the maternal allele, one for reads aligning better to
the paternal allele, and one for reads aligning equally well to both alleles, and
therefore unassigned to either the paternal or maternal allele. The sum of the
expected counts will be the expected total number of reads aligned to that
gene/gene region and an estimate of overall expression. Note that the number
of reads is considered random to account for variation due to sampling reads
from the library.

n Table 2 Values of b used in the simulations

k = 1 k = 2 k = 3

i = 1 1 1.2 0.7
i = 2 1 1.3 0.8
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Setting a prior in the hyper-parameters of the prior distribution of
biks allows a “borrow of strength” across different biological replicates.
To set the hyper-parameters of the prior distribution for bb; we use
an “empirical Bayes approach.” First, we obtain (rough) estimates
for biks. Second, we assume that they follow a gamma distribution,
and compute the MLE estimates âb and b̂b of the shape and rate
parameters, respectively. Third, we set the parameter in the model
ab[âb; and we set abb ¼ 2b̂b and bbb ¼ 2 so that EðbbÞ ¼ b̂b and
varðbbÞ ¼ 2b̂b: Since we have few data points to estimate f; we use
an informative prior with mean bfðaf 2 1Þ � 0:05 prior with var-
iance b2f=½ðaf21Þ2ðaf 2 2Þ� � 0:05:

Measuring type I and II error rate
Read counts were simulated according to a negative binomial distribu-
tion in several different scenarios. In each scenario, read counts were
simulated for 1000 gene regions (for convenience, we refer to these as
exons) independently in two different environments, with three repli-
cates per environment. The number of readsmapping in each exon was
simulated according to a negative binomial distribution with size = 50
and expected value equal to bi,k · h, where bi,k is the effect of bi-
ological replicate in environment i and replicate k, and h is a factor
used to simulate different levels of gene expression (and/or sequencing

coverage), which in turn affect the power of detecting AI. Simulations
were run with h = 10 (low expression/coverage) and h = 100 (high
expression/coverage). bi,k was varied as shown in Table 2.

Different levels ofAI in the environment 2were simulated for sets of
1000 exons by varying a2 from 0.5 to 2. No AI was simulated in
environment 1 (i.e., a1 = 1); 11 different levels of log2 of the ratio a1

/a2 were simulated, varying from 21 and 1 with step 0.2.
Read counts were simulated without bias, i.e., with rp = rm. To

assess robustness of the model to misspecification of bias, unbiased
simulated counts were fed to the model, and analysis of AI was con-
ducted after providing biased prior estimates of rp and rm.

The bias in estimation of AI is not always correctly captured by
simulation or byDNAcontrols. Thismeans that, evenwhen controls are
used, bias may be mis-specified. It is important to understand how the
model performs with different levels of mis-specification. Bias mis-
specification was measured as x = 2(100)(r21), where (r21) is the
difference between the mis-specified value of rp (or rm) used to fit the
model, and the simulated value of rp (or rm), i.e., 1. Nine different levels
of mis-specification x were used: 240, 230, 220, 210, 0, 10, 20, 30,
and 40%.

When maternal and paternal alleles have similar sequences in the
coding region, the proportion of reads aligning equally well to both

Figure 2 Type I error rate. The two upper panels show Type I error rate in the case of low gene expression, and the two bottom panels show
Type I error rate in the case of high gene expression. Panels on the left show results obtained by specifying the number of reads aligning equally
well to both alleles as expected under the model in Table 1. Panels on the right shows results obtained by multiplying that quantity by 10,000. We
plot in red the type I error rate in environment 1, in gray the type I error rate in environment 2, and in blue and green the type I error rate in
detecting different levels of AI between environments using the Bayesian approach implemented in the environmental model, and the descriptive
method as implemented in the baseline model, respectively. Low expression: h = 10; High Expression: h = 100; Low unassignment: unassigned
reads = zi,k; High unassignment: unassigned reads = 10,000 · zi,k
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alleles is high. A series of simulations was conducted using the
expected number of unassigned reads zi,k. To assess the effect of
variation in the proportion of unassigned reads, an additional series
of simulations was conducted by multiplying the expected values of
zi,k by 10,000. We will refer to these two scenarios as “unassigned
inflation factor = 1” and “unassigned inflation factor = 10,000,”
respectively.

The first scenario can be observed when the paternal and maternal
haplotypes are different, and most reads can be assigned. The second
scenario is observedwhenmost of the reads cannot be assigned to either
haplotype, and is used as a worst case scenario of very similar paternal
and maternal haplotypes. In any given experiment, we expect some
genes to follow each of these two scenarios.

Tomeasure the robustness of the model to unequal gene expression
across conditions,we repeated the simulations comparingonecondition
with high coverage, and one with low coverage, i.e., we run a simulation
settingh1 = 10 andh2 = 100, and a simulation settingh1 = 100 and
h2 = 10. This is an important consideration as differential expression
should not be confused with AI.

Type I error was assessed using simulations in which a1 = 1 and
a2 = 1 (i.e., no AI in either environment). Type II error of AI detection,

and of the detection of difference in AI across environments, was
assessed using simulations in which a1 = 1 and a2 6¼ 1.

Reanalysis of D. melanogaster data (mated vs. virgin)

Data retrieval and cleaning: RNA-seq data from a panel of 68 D.
melanogaster F1 hybrids obtained from crossing 68 strains with the
w1118 laboratory strain (Kurmangaliyev et al. 2015) were used to mea-
sure allele specific expression. Mapping of reads on genotype-specific
references and quantification of reads aligning to each exon was per-
formed as previously described (Fear et al. 2016). Briefly, reads origi-
nating from each cross were aligned on the strain-specific references

Figure 3 Type II error rate. Type II error rate when comparing an environment for which no AI was present (a1 = 1) with an environment with
varying levels of AI. Differences in AI between environments are reported as log2 a1/a2. The two upper panels show Type II error rate in case
of low gene expression, and the two bottom panels show Type II error rate in case of high gene expression. Panels on the left show results
obtained by specifying the number of reads aligning equally well to both alleles as expected under the model in Table 1. Panels on the right
shows results obtained by multiplying that quantity by 10,000. We plot in red the type II error rate in environment 1, in blue the type II error
rate for difference in AI between environments, and in green the type II error rate between the environments when using the descriptive
approach as implemented in the baseline model. Each point represents the average over the seven simulated levels of bias misspecification,
and the error bars represent SE. Low expression: h = 10; High Expression: h = 100; Low unassignment: unassigned reads = zi,k; High
unassignment: unassigned reads = 10,000 · zi,k

n Table 3 Number of data points (exons 3 lines) showing AI

Mated Environmental a = 1 Environmental a 6¼ 1

Baseline a = 1 46,544 3574
Baseline a 6¼ 1 5853 6477
Virgin Environmental a = 1 Environmental a 6¼ 1
Baseline a = 1 46,353 3514
Baseline a 6¼ 1 5962 6619
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(obtained from FlyBase v5.51) for the two parental genomes, and reads
were classified as aligning in paternal (tester), maternal (ine), or un-
assigned (when reads mapped equally well on both references).

Based on simulations, low numbers of reads assigned tomaternal or
paternal allele, and/or high numbers of reads that cannot be assigned to
either allele lead to inflated type I error. For this reason, instances in
which the proportion of total reads assigned to either parental allele
was,1% (i.e., having either very low number of assigned reads or very
high number of unassigned reads) were excluded from analysis.

Analysis was performed on a total of 169,842 data points (termed
“exons · lines,” i.e., the number of exons across all lines), belonging to
13,898 different exons in 68 crosses. In the manuscript, the terms “data
point” and “exons · lines” will be used to indicate the sum of infor-
mative lines across all the informative exons (or equivalently, the sum
of informative exons across all the informative lines), as follows:

Data  pointsðexons · linesÞ ¼
Xn
i¼1

Xm
j¼1

eilj;

where ei and lj are 1 if exon i in line j is informative and zero otherwise,
and n and m are the total number of exons and lines considered,
respectively.

For thepurposeof analysis, datawere aggregatedby (a) exon, (b) line,
or (c) exon in line. We detail below the different meanings. One gene
composed of two exons, onewith data in 10 crosses, andonewith data in
15 crosses, respectively, has information in two exons, in 12.5 lines
(average) and 25 data points. A gene consisting of 25 exons, all with data
in just one cross, is said to have information in 25 exons, one line, and
25 data points.

Comparing the environmental model with the baseline model:
A Bayesian model that accounts for bias (León-Novelo et al. 2014) has
been already applied to the D. melanogaster data presented here (Fear
et al. 2016); we will refer to it as the “baseline” model. The model
presented here extends the baseline model significantly, and directly

compares AI between environments; it will be referred to as the “envi-
ronmental” (as opposed to the “baseline”) model. Results were com-
pared for a total of 66,504 data points that passed quality control in
both the previous (Fear et al. 2016) and present study. Pearson’s cor-
relation coefficients between the posterior estimates of the proportion
of reads aligning on the paternal allele (q) were estimated for mated

Figure 4 Posterior estimate of q. Posterior estimate of q according to the baseline and environmental model in mated (left) and virgin (right) flies,
respectively. Each dot represents a data point. Black points: no AI in either set. Red Points: AI detected by baseline model alone. Blue points: AI
detected by environmental model alone. Purple points: AI detected by both models. Blue line: bisector of the first quadrant angle. Red line:
regression line.

Figure 5 Exon coverage and AI. Base 10 logarithm of coverage of
exons for which no model detected AI (gray boxes), only the environ-
mental model detected AI (yellow boxes), only the baseline model
detected AI (dark red boxes), or both models detected AI (orange
boxes), respectively.
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and virgin flies according to results of the baseline and environmental
model, respectively.

To determine the effect of coverage (number of reads mapped on
each exon) on AI in the baseline and environmental model, exons were
stratified into four groups: (1) no AI according to either model, (2) AI
according to the environmental model only, (3) AI according to the
baseline model only, and (4) AI in both models. Mean coverage was

assessed by measuring the mean number of reads mapping an allele
specifically in each exon in mated and virgin lines. The distribution of
coverage among exons without AI was compared to the distribution of
coverage in the remaining three classes using the Wilcoxon-Mann-
Whitney test, separately for mated and virgin flies. The distribution of
the deviation of q from the expected value of 0.5 was plotted in exons
showing, or not showing, AI in either model in virgin and mated flies,

Figure 6 Deviation from expected q and AI. Distribution of the absolute value for the deviation of q from the expected value of 0.5 in exons for
which AI was detected (a = 1) or not (a 6¼ 1), according to the baseline (light pink) or environmental model (dark red). Differences between
groups according to Wilcoxon pairwise test are shown. Groups sharing a letter are not different. Groups not sharing letters are different.

Figure 7 BA plot. BA plot comparing esti-
mates of q according to the baseline (Base)
and environmental (Env) model in mated and
virgin flies, respectively. The red line repre-
sents the mean difference. The dotted lines
are the 95% confidence intervals of the differ-
ence. The regression of the difference over
the mean is represented by the blue line.
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separately. The distribution of the differences in the estimate of q be-
tween the two models were plotted, stratifying AI classification accord-
ing to the two models: no AI, AI according to either one of the models,
AI according to both models. Statistical analysis were performed in R
(R Core Team 2017).

Analysis of AI in mated and virgin flies using the environmental
model: The RNA-seq data included in this study has been described
before (Kurmangaliyev et al. 2015). Briefly, RNAwas obtained from F1
mated and virgin flies originated by crossing females of each of 68 lines
with mates of a common tester (w1118). Data points were included in

the study if at least 50 reads could be mapped to either paternal or
maternal allele in both virgin and mated flies, and if at least 200 total
reads weremapped to the exon (irrespectively of thembeing assigned to
the paternal or maternal allele, or being unassigned). The environmen-
tal model was used to simultaneously estimate AI in mated female flies,
in virgin female flies, and to test for AI by environment interaction
(G·E). In total, 169,842 data points were analyzed.

As each of the F1 genotypes has been evaluated for AI, it is of interest
to assess the population frequency of AI in any given exon, Fisher’s
exact test was performed on a 2 · 2 contingency table, reporting for
each exon and the number of F1 genotypes showing different levels of

Figure 8 Model comparison. Distribution of absolute difference in q estimates between mated and virgin flies in several contrasts according to
different models. Both a = 1: AI not detected in mated nor virgin flies. One a = 1: AI detected in onemating status alone. Both a 6¼ 1: AI detected
in both mated and virgin flies. Classifications are based on results obtained by the baseline model, for which the difference in AI between
environments is reported using a descriptive approach (red), the environmental model, using the descriptive approach for describing difference
in AI (dark blue), and the environmental model, using a formal Bayesian test of the null hypothesis for detecting difference in AI (light blue).
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AI between conditions and those not showing differences inAI between
conditions. Exons showing higher (or lower) than expected frequency
of AI between conditions were identified by testing the hypothesis that
the odds ratio in the contingency table is .1 or ,1.

A further demonstrative analysis of how genotypes may be compared
across the population was performed by explicitly comparing AI in two
different F1 genotypes, treating each F1 genotype as an environment. The
environmentalmodelwasusedtosimultaneouslyestimateAIinr365·w1118
F1’s, in r907·w1118 F1’s, and to test for AI by F1 interaction (G·G).

Data availability
Sequences used for the presentworkwere retrieved from SRAunder the
accession number PRJNA281652. Detailed description of the proce-
dures for obtaining F1 genotypes is available at https://github.com/
McIntyre-Lab/papers/tree/master/lehmann_2015/original_data. File S1

includes supplemental methods, Figures S1–S5 in File S1 with leg-
ends, and Table S1 in File S1 with legend. The supplemental material
includes an implementation of the model in R and a toy data set.
Instructions are provided in File S2.

RESULTS AND DISCUSSION

Measuring type I and II error rate of the
environmental model
We assessed type I and II error simulating various scenarios that
could be experienced in real experiments. We varied h, a proxy of
the number of reads mapped to each feature, and thus represen-
tative of the combination of gene expression and average sequenc-
ing depth (coverage). In addition, we varied the proportion of
reads that cannot be assigned to either allele (unassignment). High

Figure 9 Comparison of AI detected in mated and virgin flies by the two models. Numbers represents the number of genes. A gene was
classified as having a 6¼ 1 when at least one exon in at least one line had a 6¼ 1.
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unassignment rates can be observed when the paternal and ma-
ternal allele are similar, and a large proportion of reads cannot be
unambiguously attributed to either allele.

Results shown in Figure 2 report Type 1 error rate as a function of
bias misspecification at two different levels of gene expression (or cov-
erage), and two different levels of unassigned reads. Unlike the baseline
model, the type I error rate when the number of unassigned reads
follows the model expectation (Table 1), and the bias is not higher than
previously reported in interspecific crosses, where it has beenmeasured
by DNA (Graze et al. 2012; León-Novelo et al. 2014), is close to the
expected nominal levels.

Only when the number of unassigned reads is 10,000 times the
expected value (Table 1), do type I error rates climb. As expected, when
bias is high, and unaccounted for in themodel, the type I error rate can
be very high. Under this “worst case” scenario, the environmental
model still has lower type I error relative to the baseline model.

When the number of unassigned reads matches the model expec-
tation (Table 1), the type I error rate for detecting differences in AI
across environments (blue lines and dots in Figure 2) is,5% for all bias
misspecification levels.

As expected, the type II error rate increases when log2 a1/a2 ap-
proaches zero. At each value of log2 a1/a2, lower expression leads to a
higher type II error rate. The effect of the misspecification of the pro-
portion of unassigned reads on type II error is small (Figure 3).

Further analyses were performed simulating 10-fold difference
in coverage between conditions. When higher coverage occurs in
environment 2 (Figure S1 in File S1 left panel), type I error in envi-
ronment 2 is higher, and vice versa (Figure S1 in File S1 right panel).
The detection of differences in AI between environments might be
negatively affected by different levels of coverage across the experi-
ments. Our simulations show that in this case, as previously reported,
the baseline model has a high type I error while the environmental
model has very low type I error (Figure S1 in File S1). This suggests
that the environmental model does, as expected, protect from type I
error under different coverage levels. Correspondingly, the Type II
error is higher for the environmental model compared to the baseline
model. This is especially true when the difference in a is small (Figure
S2 in File S1).

Reanalysis of D. melanogaster data

Comparing the environmental model with the baseline model: We
provide here a comparison of the results from the environmental model
to those published using the baseline model (Fear et al. 2016), for
analysis of differences inAI acrossmated and virgin physiological states
and F1 genotypes. A total of 62,448 data points (4880 different exons
and 49 different lines) were included in the final analysis. On average,
each exon had detectable expression in 14 lines (ranging from 1 to

49 detected), and each line contains 1375 exons (ranging from 446 to
2832 detected). Figures S3 and S4 in File S1 show, for each of the
49 lines, the proportion of exons flagged with AI in mated and virgin
flies, respectively. The figures suggest that the two models have similar
behavior in the analyzed lines, with the environmental model being
generally more conservative and showing less extreme differences
across lines. According to the environmental model, line r907 has the
highest proportion of exons with AI both in mated (44%) and virgin
flies (44%). According to the baseline model, line r907 has the highest
proportion of exons with AI in mated flies (42%), and line r502 has the
highest proportion of exons with AI in virgin flies (46%).

Table 3 reports the number of data points showing AI in mated and
virgin flies, according to the baseline and environmental models, re-
spectively. In general, the baseline model is less conservative than the
environmental model, detecting 12,330 and 12,581 events of AI in
mated and virgin flies, respectively, vs. 10,051 and 10,133 detected by
the environmental model. Cohen’s kappa (Cohen 1960) between the
two models is 0.49 in bothmated and virgin flies. Posterior estimates of
q were strongly correlated between the two models, with R2 of 0.92 in
both mated and virgin flies (Figure 4).

We compared coverage of exons stratified by significance according to
either environmental or baseline model. According to Wilcoxon’s test,
coverage in exons not showing AI in either model was significantly lower
than all other classes (Figure 5). The result is expected, since genes with
low coverage are expected to provide lower power for the detection of AI
(León-Novelo et al. 2014). Exons showing AI only according to the
baseline model had higher coverage than all the remaining categories.
This might be due to false positives in the baseline model. Simulation
results showed that the power of the environmental model increases as
coverage increases, with a relatively constant type I error rate, while the
baseline model has an increase in type I error at higher coverage. This is
likely due to the inclusion of the unassigned reads as an estimate of
coverage in the environmental model. The coverage of exons for which
only the environmental model showed AI and of exons for which both
models detected AI, did not differ significantly.

As expected, the estimated deviation in AI from the null expectation
is greater in exons for which AI was detected in bothmodels (Figure 6).

Figure 10 Proportion of exons showing AI. Distribution of proportion
of exons showing AI in mated flies, virgin flies, and with different levels
of AI between the two mating statuses. Samples that have significantly
different distributions are represented by different letters.

n Table 4 Comparison of AI detected in mated and virgin flies by
the two models

Baseline aM = 1 aM 6¼ 1

aV = 1 500 184
aV 6¼ 1 178 1742
Environmental aM = 1 aM 6¼ 1
aV = 1 453 165
aV 6¼ 1 192 1794

a = 1: number of genes for which no evidence AI was detected. a 6¼ 1: number
of genes for which at least one exon showed evidence of AI in at least one line.
Cohen’s kappa between virgin and mated flies is 0.63 according to the baseline
model, and 0.64 according to the environmental model.
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In addition, exons in which AI was detected by the environmental
model showed higher median deviation than exons for which AI was
detected by the baseline model. No significant difference between base-
line and environmental model was observed for the estimates of q in
exons without AI.

Figure 7 shows the BA plot comparing the two methods (Altman
and Bland 1983). The plot shows that a minority of data points elicit
different estimates ofq between baseline and the environmental model,
especially for intermediate estimates ofq. We compared the number of
data points for which differential AI between conditions was detected
by the environmental and baseline models stratifying by discrepancy in
q estimates (Table S1 in File S1). Data points with a difference in q
estimate (i.e., those lying outside of the 95% confidence interval)
showed stronger disagreement between the environmental and the
baseline model in detecting differential AI across conditions (Fisher’s
exact test p-value = 7.01E207 for data stratified by difference in q
estimates inmated flies, and p-value = 2.27E206 for data stratified by
differences in virgin flies). The difference is mainly due to instances in
which the baseline model detects differences in AI and the environ-
mental model does not (p-value = 2.62E207 and p-value = 1.79E205
for estimates of q in mated and virgin flies, respectively). Instances in
which the environmental model alone detects differential AI between
conditions do not vary between points lying inside or outside of the
confidence intervals (p-value = 0.87 and p-value = 0.07 for estimates
of q in mated and virgin flies, respectively). This means that when the
estimates of q differ, the baseline model shows a smaller difference in AI
across conditions.

The baseline model uses a descriptive approach to consider AI
differences in mating status, by which an exon is classified as showing

different AI values in the two statuses, if and only if, it shows AI only in
one status. This descriptive approach can be applied to the environ-
mentalmodel (in addition to the explicit test of the null hypothesis), and
we implemented this approach to further compare the two models.

Using the baseline model, different AI between environments is
declaredwhenAI is present in one of the two environments alone; using
the environmental model, it is possible to both identify significantly
different levels of AI between environments with a direct test, and
indirectly as a comparison between the individual tests within each
environment. Using the three possible approaches, we plot in Figure 8
the distribution of q in exons for which no AI was detected (Both
a = 1), AI was detected in one environment (One a = 1), and AI
was detected in both environments (Both a 6¼ 1).

The expectation is that, when the models detected AI in one
environment and not in the other (coded here as “One a = 1”), the
difference in theq distributions is greater than for other situations. This
was the case for all the approaches, but the larger difference was ob-
served with the direct test of the null hypothesis a1 = a2 in the envi-
ronmental model (Coffman et al. 2003).

We counted the number of genes for which at least one exon showed
AI in at least one line in mated and virgin flies, respectively; results are
shown in Figure 9 and Table 4.

Analysis of AI in mated and virgin flies using the environmental
model: Analysis of AI using the environmentalmodel was performed
on a total of 169,842 exons in lines, belonging to 13,898 different
exons in 68 crosses. On average, each exonwas analyzed in 12 crosses

n Table 6 List of the 20 exons showing the least proportion of
differences in AI between mating statuses

Genea Chrb
Exon
Startc

Exon
Endd Counte

AI
Difff P Diffg

Rack1 2L 7,826,534 7,826,981 68 0 0.007
CG13868 2R 16,196,282 16,197,251 66 0 0.009
eIF-4a 2L 5,985,026 5,985,793 63 0 0.011
HmgZ 2R 17,584,993 17,585,809 63 0 0.011
RpS24 2R 18,528,031 18,528,610 61 0 0.012
Neb-
cGP|nocte

X 10,355,115 10,359,100 58 0 0.015

CG5210 2R 12,579,123 12,579,404 57 0 0.016
Gpdh 2L 5,947,240 5,948,843 57 0 0.016
GstE9|imd 2R 14,296,553 14,297,838 57 0 0.016
CG3198 X 6,562,736 6,566,212 56 0 0.018
CG4577 2L 1,139,829 1,141,156 55 0 0.019
CG7378 X 18,802,917 18,805,876 55 0 0.019
CG9140 2L 6,062,079 6,062,435 54 0 0.020
PGRP-LF|UGP 3L 9,343,967 9,344,950 54 0 0.020
Tsp42Ee 2R 2,905,195 2,905,867 54 0 0.020
wupA X 18,000,714 18,000,855 53 0 0.022
CG15209|
CG32669

X 10,736,188 10,739,114 52 0 0.023

CG11073 2R 17,979,647 17,982,292 50 0 0.027
Emc 3L 752,272 753,492 50 0 0.027
l(1)G0156 X 19,412,461 19,413,658 50 0 0.027
a
FlyBase gene name.

b
Chromosome.

c
Exon start position.

d
Exon end position.

e
Total number of lines in which the exon was tested.

f
Total number of lines in which the studied exon showed different levels of AI
between mated and virgin flies.

g
Fisher’s exact test p-value for depletion of lines showing different levels of AI
between mated and virgin flies for the studied exon.

n Table 5 List of the 20 exons showing the highest proportion of
differences in AI between mating statuses

Genea Chrb
Exon
Startc

Exon
Endd Counte

AI
Difff P Diffg

CG4757 3R 6,986,929 6,987,965 15 7 3.10E205
pn|Nmd X 2,075,449 2,077,582 6 4 0.0003
CG10576 3L 5,756,655 5,756,876 16 6 0.0005
CG10924 2R 14,420,177 14,423,254 16 6 0.0005
Vps4 X 17,802,841 17,803,702 22 7 0.0005
CG8920 2R 16,209,183 16,211,729 52 11 0.0008
Gbs-76A 3L 19,275,028 19,278,200 12 5 0.0009
CG14478 2R 13,349,499 13,353,085 53 11 0.0009
CG15465 X 5,068,930 5,070,541 53 11 0.0009
Fur2 X 16,268,959 16,269,892 31 8 0.0010
CG9170 X 15,872,136 15,875,705 62 12 0.0011
CG1910 3R 27,575,303 27,576,308 47 10 0.0013
CG31650 2L 5,042,491 5,042,890 32 8 0.0013
Tomb 2L 5,535,365 5,537,732 4 3 0.0013
CG6404 3L 10,877,834 10,878,890 8 4 0.0013
l(1)G0196 X 21,907,441 21,908,017 34 8 0.0019
CG10932 X 7,781,300 7,782,785 9 4 0.0022
Irc 3R 12,831,146 12,831,711 9 4 0.0022
Mapmodulin 2R 13,753,683 13,754,758 15 5 0.0027
CG8258 2R 4,792,349 4,793,083 5 3 0.0030
a
FlyBase gene name.

b
Chromosome.

c
Exon start position.

d
Exon end position.

e
Total number of lines in which the exon was tested.

f
Total number of lines in which the studied exon showed different levels of AI
between mated and virgin flies.

g
Fisher’s exact test p-value for excess of lines showing different levels of AI
between mated and virgin flies for the studied exon.
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(range 1–68). The distribution of q in the whole data set is shown in
Figure S6 in File S1. As expected, the distribution of q is similar in the
two environments—mated and virgin flies—and is centered on 0.5.

Figure 10 shows the distribution of the proportion of exons
showing AI in mated and virgin flies, separately, together with the
proportion of exons showing a difference in AI between mated and
virgin flies. The proportion of exons with a significant difference in
AI across environments is significantly lower than the proportion of
exons with AI in either one of the environments. This suggests that
genetic regulation is generally robust to environmental changes,
with the exception of line r149, which is clearly visible as the outlier
in the third bar of the boxplot.

To identify genes for which cis regulatory variation is either
responsive or robust to environmental changes, we list genes that
show an excess of AI variation in response to environmental
changes, and those that show no variation in AI in response to
environmental changes.

We performed Fisher’s exact test to determine if the proportion of
lines showing AI in a given exon was significantly higher (Table 5) or
lower (Table 6) than the proportion of lines showing AI for all other
exons. While the environmental approach does not depend on popu-
lation frequency of variants, this further analysis does. By searching for
excess (or depletion) of differences in AI across environments in the
study population, our power depends on the number of exons that can
be tested in the population, and this number is smaller for rare variants.
This is especially true for Table 6, where a significant depletion of AI
across environments can be detected only when a large number of
exons (50 or more) have been tested, and none show differences of
AI across environments.

Table 5 lists the 20 genes with the highest excess of lines showing
differences in AI between mated and virgin flies, according to Fisher’s
exact test. These are the genes that show the highest levels of cis by
environment variation, which suggests regulatory genetic variation in
the response to mating itself.

Table 6 lists the 20 genes showing the least difference in AI between
mated and virgin flies, according to Fisher’s exact test. These are genes
that show unusually low levels of cis by environment variation, com-
pared to other genes in the genome, suggesting robust cis activity.
Another possible interpretation is that the allele frequency for different
regulatory alleles in this population is low.

The environmental model can test variation of AI across environ-
ments, genotypes, sex, and other conditions. We compared AI levels
between the F1’s r365·w1118 and r907·w1118—the two genotypes
having, respectively, the lower and higher proportion of exons with
AI. A total of 406 exons was analyzed in both lines and used for this
analysis. In mated flies, AI was detected in 16 exons in line r365 and
124 in line r907, while in virgin flies, AI was detected in 14 exons in line
r365 and 123 in line r907. Difference in AI between r365 and r907 was
detected in 88 and 83 exons, respectively, or �20%, indicating a large
number of differences between alleles in these two F1s.

Conclusions
We present a direct approach for simultaneously testing of AI and
differences inAIacross environments.Wemeasuredperformanceusing
simulated data, showing that the method has relatively low Type I and
Type II error rates.Ourmodel alsoaccounts fordifferences inmagnitude
of gene expression counts and unassigned reads, while providing amore
conservative method to estimate AI differences between different en-
vironments. Our model protects from increases in type I error even
when the number of sequenced reads in the two environments differ by
10-fold.We reanalyzed published data to further investigate robustness

of AI to environmental conditions. Our results indicate that gene reg-
ulation is substantially robust to environmental changes, with a small
number of notable exceptions among genes whose expression is af-
fected by mating status. An analysis directly comparing two different
F1s shows�20% of the exons have differences in cis regulation among
lines; this estimate is on par with the detection of cis differences in
regulation in the population, and demonstrates that the environmental
model can be used to test G·G across F1s as well as G·E effects.
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