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Abstract: The aim of this study was to investigate the potential of magnetic resonance imaging
(MRI) for a non-invasive synergistic assessment of tumor microenvironment (TME) hypoxia
and induced neovascularization for the identification of aggressive breast cancer. Fifty-three
female patients with breast cancer underwent multiparametric breast MRI including quantitative
blood-oxygen-level-dependent (qBOLD) imaging for hypoxia and vascular architecture mapping
for neovascularization. Quantitative MRI biomarker maps of oxygen extraction fraction (OEF),
metabolic rate of oxygen (MRO2), mitochondrial oxygen tension (mitoPO2), microvessel radius (VSI),
microvessel density (MVD), and microvessel type indicator (MTI) were calculated. Histopathology
was the standard of reference. Histopathological markers (vascular endothelial growth factor receptor
1 (FLT1), podoplanin, hypoxia-inducible factor 1-alpha (HIF-1alpha), carbonic anhydrase 9 (CA IX),
vascular endothelial growth factor C (VEGF-C)) were used to confirm imaging biomarker findings.
Univariate and multivariate regression analyses were performed to differentiate less aggressive
luminal from aggressive non-luminal (HER2-positive, triple negative) malignancies and assess
the interplay between hypoxia and neoangiogenesis markers. Aggressive non-luminal cancers
(n = 40) presented with significantly higher MRO2 (i.e., oxygen consumption), lower mitoPO2 values
(i.e., hypoxia), lower MTI, and higher MVD than less aggressive cancers (n = 13). Data suggest that a
model derived from OEF, mitoPO2, and MVD can predict tumor proliferation rate. This novel MRI
approach, which can be easily implemented in routine breast MRI exams, aids in the non-invasive
identification of aggressive breast cancer.
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1. Introduction

Breast cancer is characterized by considerable heterogeneity, resulting in varying genetic,
phenotypic and behavioral characteristics, clinical presentations, and treatment responses [1–6].
This recognized tumor heterogeneity and the lack of understanding thereof significantly contributes to
treatment failures and patient deaths [7,8]. To date, risk stratification and clinical decision-making
in breast cancer have focused on molecular biology and cancer genomics. Yet the focus on tumor
molecular profiles ignores the fact that tumor growth and progression does not only depend on
the tumor cells’ molecular toolbox, but also on the tumor microenvironment (TME), i.e., features of
the tissues that host the cancer and their interaction with the tumor. The TME has been identified
as a critical factor of cancer development and progression and current concepts favor that tumor
heterogeneity is driven by the combined effect of genomic instability and differential selective pressures
from the TME [9].

In breast cancer, TME hypoxia and the induced neovascularization have been recognized as
key drivers of the development of an aggressive and treatment-resistant tumor phenotype and are
strong prognostic factors for disease progression, metastases, and survival [8,10]. In addition, several
studies have reported that microvessel density (MVD) is associated with poorer recurrence-free,
cancer-specific, and overall survival [11–13] as well as with clinical response to chemotherapy [14].
Therefore, an approach that enables a non-invasive synergistic assessment of hypoxia and
neovascularization for the identification of aggressive breast cancer could provide actionable
information for clinical decision-making.

We have recently developed a novel MRI approach for the non-invasive assessment of hypoxia
and neovascularization in benign and malignant breast tumors, which can be easily integrated into
a clinical MRI protocol, requiring less than seven minutes of additional scan time and no additional
injection of gadolinium-based contrast agents (GBCAs) [15]. In our pilot study, we reported that the
proposed approach showed potential to improve tumor characterization and can provide insight into
the intratumoral heterogeneity of breast tumors [15].

The aim of this study was to investigate the potential of this non-invasive synergistic assessment
of TME hypoxia and induced neovascularization for the differentiation of more aggressive and less
aggressive breast cancer.

2. Materials and Methods

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Medical University of Vienna (Project identification code
297/2007).

2.1. Patients

Between October 2016 and July 2017, 76 patients were consecutively included and underwent
multiparametric contrast-enhanced MRI of the breast for the assessment of an imaging abnormality
detected at conventional breast imaging. All patients met the following inclusion criteria: 18 years
or older, not pregnant or breastfeeding at the time of the examination, suspicious imaging finding at
mammography or breast ultrasound (Breast Imaging Reporting and Data System [BI-RADS] assessment
category 4–5) [16], no previous treatment (i.e., breast biopsy before MRI, neoadjuvant chemotherapy),
and no contraindications to MRI or MR contrast agents; 53 were subsequently diagnosed with invasive
breast cancer as the study population. The median age of this population was 57 years (range:
34–90 years). Some patients have been previously analyzed and reported in our pilot study [15].
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2.2. MRI Data Acquisition, Processing, and Biomarker Calculation

All patients underwent MRI exams on a 3 Tesla scanner (Tim Trio, Siemens, Erlangen, Germany)
equipped with a standard 16-channel breast coil (Sentinelle, Invivo, Gainesville, FL, USA). The standard
MRI protocol comprised of three sequences: an axial T2-weighted turbo spin echo sequence (TR/TE:
4630/194 ms, in-plane resolution: 0.5 × 0.5 mm, slice thickness: 2.5 mm, number of slices: 33);
a single-shot diffusion-weighted echo-planar imaging sequence (TR/TE: 6000/66 ms, in-plane resolution:
1.1 × 1.1 mm, slice thickness: 4 mm, number of slices: 33 slices, b-values: 0 and 850 s/mm2),
and a 3-dimensional T1-weighted fast low-angle shot sequence (TR/TE: 4.0/1.4 ms; in-plane resolution:
0.9 × 0.9 mm; slice thickness: 0.9 mm; 160 slices) which was performed once before and 5 times after
contrast injection (gadoterate meglumine, 0.1 mmol/kg body weight) for dynamic contrast-enhanced
(DCE) perfusion imaging.

In addition to the standard MRI protocol, we performed quantitative blood-oxygen-level-dependent
(qBOLD) imaging, comprising a multi-echo gradient echo sequence (8 echoes; TR: 750 ms, TE: 5–40 ms) for
T2*-mapping and a multi-echo spin echo sequence (8 echoes; TR: 2000 ms; TE: 15–120 ms) for T2-mapping.
We also performed vascular architecture mapping (VAM), comprising a diffusion-weighted imaging
sequence (b-values: 0 and 850 s/mm2; TR/TE: 3000/53 ms; TA 50 s) and a dynamic susceptibility contrast
(DSC) bolus-tracking perfusion sequence combined with a hybrid single-shot gradient echo (GE) spin
echo–echo planar imaging (EPI) readout [17] (TR: 1360 ms; TE for gradient echo (GE): 25 ms; TE for
spin echo (SE): 93 ms). Identical geometric parameters were applied to all qBOLD and VAM sequences
(coronal slice orientation; field-of-view: 320 × 240 mm; in-plane resolution: 2.5 × 2.5 mm, slice thickness:
6 mm; 8 slices). DSC gradient echo spin echo (GESE) perfusion yielded 60 dynamic volumes of both
GE-EPI and SE-EPI for tracking the first-pass peak contrast media bolus dynamics.

Processing of qBOLD and VAM data as well as calculation of MRI biomarker maps for oxygen
metabolism and neovascularization were performed with custom-made MATLAB (MathWorks, Natick,
MA, USA) software. qBOLD data processing yielded MRI biomarker maps of oxygen metabolism,
including oxygen extraction fraction (OEF; percent of the oxygen removed from the blood for tissue
consumption), metabolic rate of oxygen (MRO2; rate of oxygen consumed by the tissue in µmol/100 g
per min.), and average mitochondrial oxygen tension (mitoPO2; balance between the delivery and
consumption of oxygen, i.e., tissue oxygen tension). VAM data processing yielded MRI biomarker maps
of neovascularization, including MVD, vessel size index (VSI, i.e., microvessel radius), and microvessel
type indicator (MTI) (Table 1). Further details regarding imaging acquisition and processing have been
previously reported [15].

Table 1. List of acronyms of novel MRI parameters and their according units.

Acronym Novel MRI Parameters Unit

qBOLD quantitative blood-oxygen-level-dependent imaging
OEF oxygen extraction fraction %

MRO2 metabolic rate of oxygen µmol/100 g ×min
mitoPO2 mitochondrial oxygen tension mmHg

VAM vascular architecture mapping
VSI vessel size index µm

MVD microvessel density mm−2

MTI microvessel type indicator s−5/2
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2.3. Quantitative Data Extraction

Two-dimensional regions of interest (2D ROIs) were manually defined by one reader (SA) based on
features seen on the MVD maps for high, medium, and low neovascularization in order to investigate
the intratumoral spatial heterogeneity of neovascularization, oxygen metabolism, and hypoxia. MVD
were chosen for two reasons: (i) MVD is a common parameter for neovascularization, and (ii) it was
demonstrated in a previous study that MVD is best suited for detection of neovascularization in brain
tumors. Cut-off values were obtained from previous studies [18].

MRI biomarker values for oxygen metabolism (OEF, MRO2, mitoPO2; Table 1) and for
neovascularization (MVD, VSI, MTI; Table 1) were then averaged for each ROI. Total tumor volumes
were calculated based on tumor extent on DCE-MR images. The ellipsoid volume formula V = π/6 × L
×W × H was used for the calculation of tumor volumes.

2.4. Histopathological Reference Standard

Diagnosis was established by an experienced specialized breast pathologist (ZBH). All lesions were
histopathologically verified by image-guided needle biopsy or surgery. For all invasive breast cancers,
histopathology results were reviewed for tumor subtype according to world health organisation (WHO)
classification, and tumor stage and grade according to Elston and Ellis [19]. Breast cancer intrinsic
subtype was determined by immunohistochemistry based on estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth receptor 2 (HER2) status as well as Ki67 expression
according to current guidelines [20] and defined as luminal A, luminal B, HER2-positive, and triple
negative (TN) [21,22]. Patients with equivocal HER2 status were evaluated using chromogenic in situ
hybridization to detect gene amplification. HER2-positive and TN breast cancers were considered
more aggressive breast cancers with a worse prognosis than luminal A/B breast cancers.

Hypoxia-inducible factor 1-alpha (HIF-1alpha), carbonic anhydrase 9 (CA IX), vascular endothelial
growth factor C (VEGF-C), vascular endothelial growth factor receptor 1 (FLT1), and Podoplanin
(all Ventana, Tucson, AR, USA) staining were performed on selected specimens, depending on the
availability of the specimens. Immunohistochemistry staining was performed using an automated
Ventana Benchmark Ultra (Ventana, Tucson, AR, USA) staining device.

2.5. Statistical Analysis

Nominal data were presented using absolute frequencies and percentages. Metric data were
presented using means ± SD if normally distributed or median (min, max) if skewed. SPSS 25.0 (IBM
Corp., Armonk, NY, USA) and R statistics (R Foundation, Vienna, Austria) were used for statistical
evaluation. Unpaired t-tests were performed to compare median MRI-derived imaging metrics and to
differentiate “less aggressive” luminal (luminal A, luminal B) from “more aggressive” non-luminal
(HER2-postive, TN) malignancies. The association between qBOLD and VAM markers, PR, ER, p53,
ki67 and tumor size was explored by univariate Spearman rank correlation coefficient calculation
and multivariable linear regression analysis using backward feature selection (entry and remove
limits: p < 0.05 and p < 0.1). Variance Inflation Factors (VIFs) were calculated to identify collinearity,
considering VIFs below 3 as acceptable and values > 10 as definitely inacceptable. p values less than
0.05 were deemed statistically significant.

3. Results

There were 53 malignant breast tumors (mean tumor volume: 6.54 mL) in 53 patients. There were
40 (75.5%) less aggressive luminal and 13 (24.5%) more aggressive non-luminal breast cancers. Table 2
illustrates the patients’ clinical and histopathological information. MRI measurement of TME hypoxia
and neovascularity with qBOLD and VAM was successfully performed in all breast cancers.
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Table 2. Clinical and histopathological properties of participants (n = 53).

Characteristic n (%)

Entire cohort 53 (100%)
Mean patient age (SD) 57.6 (±13.1y)
Mean tumor volume 6535 mm3

Tumor grade
G1 6 (11%)
G2 27 (51%)
G3 20 (38%)

Luminal A/B 40 (75.5%)
Mean patient age (SD) 53.7 (±14.8y)
Mean tumor volume 3144 mm3

Luminal A 9 (17%)
Luminal B 31 (59%)

Non-luminal 13 (24.5%)
Mean patient age (SD) 60 (±11.8y)
Mean tumor volume 16,968 mm3

HER2-positive 4 (7.5%)
TN/basal-like 9 (17%)

Abbreviations: G1, grade 1; G2, grade 2; G3, grade 3; HER2; human epidermal growth receptor 2; SD, standard
deviation; TN, triple negative.

3.1. Identification of Aggressive Breast Cancer

From QBOLD mapping, MRO2 was significantly lower in less aggressive luminal (129.4 ±
19.7 µmol/100 g·min) compared to aggressive non-luminal breast cancers (146.9 ± 19.1 µmol/100 g·min;
p = 0.007). The opposite was true for mitoPO2 that was significantly higher in less aggressive luminal
(13.3 ± 7.1 mmHg) compared to aggressive non-luminal breast cancers (8.6 ± 4.1 mmHg; p = 0.006)
(Table 3). Hypoxia correlated with the proliferation rate and biologic aggressiveness of breast cancer
as indicated by immunohistochemistry expression and distribution of common markers of hypoxia
(HIF-1alpha, VEGF-C, CA IX, and FLT-1). Figures 1 and 2 exemplify CA IX staining in in a luminal B
tumor and a non-luminal triple negative tumor, respectively. CA IX, a marker that is expressed only
upon severe hypoxia, was strongly expressed in the fibrotic center of the TN tumor but not the luminal
B tumor, representing the lower and higher mitoPO2 values seen on MRI, respectively.

Table 3. MRI biomarkers and p-values for non-luminal and luminal malignancies.

MRI Biomarkers
(unit) Tumor Type Value Std. Error p-Value

OEF Non-luminal 48.81 ±12.6 0.568
(%) Luminal A/B 46.55 ±12.19

MRO2 * Non-luminal 146.93 ±19.12 0.007
(µmol/100 g ×min) Luminal A/B 129.45 ±19.7

mitoPO2 * Non-luminal 8.62 ±4.06 0.006
(mmHg) Luminal A/B 13.3 ±7.13

VSI Non-luminal 13.81 ±6.04 0.966
(µm) Luminal A/B 13.88 ±4.73

MVD * Non-luminal 110.56 ±14.57 <0.001
(mm−2) Luminal A/B 81 ±24.32
MTI * Non-luminal −62.13 ±39.27 <0.001
(s−5/2) Luminal A/B −22.43 ±25.6

Abbreviations: MRO2, metabolic rate of oxygen; MVD, microvessel density; OEF, oxygen extraction fraction; PR,
progesterone receptor; QBOLD, quantitative blood-oxygen-level-dependent; VIF, Variance Inflation Factors; VSI,
vessel size index, * indicates statistically significant results (p < 0.05).
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Figure 1. Radiologic-histopathologic correlation: 58-year-old patient with an invasive ductal 

carcinoma (estrogen receptor (ER)/ progesterone receptor (PR) positive and human epidermal growth 

receptor 2 (HER2) negative, ki-67 20%). A MRI biomarkers B Contrast enhanced T1 (CE-T1) image 

Figure 1. Radiologic-histopathologic correlation: 58-year-old patient with an invasive ductal carcinoma
(estrogen receptor (ER)/ progesterone receptor (PR) positive and human epidermal growth receptor 2
(HER2) negative, ki-67 20%). (A) MRI biomarkers (B) Contrast enhanced T1 (CE-T1) image coronal
(C) CE-T1 image axial (D) vascular endothelial growth factor receptor 1 (FLT1) (E) podoplanin
(F) hypoxia-inducible factor 1-alpha (HIF-1alpha) (G) carbonic anhydrase 9 (CA IX) (H) vascular
endothelial growth factor C (VEGF-C). HIF-1alpha is expressed ubiquitously, along with VEGF-C and
FLT1 in the more solid areas of the tumor. This is matched by higher mitoPO2 values and a higher
OEF (especially in the tumor center) and lower MRO2 levels compared to the more aggressive triple
negative tumor. Concordantly, CA IX is not expressed. MVD is lower as compared with the more
aggressive lesion in Figure 2.
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Figure 2. Radiologic-histopathologic correlation: 83-year-old patient with an invasive ductal carcinoma
(ER/PR−, HER2−, ki-67 30%). (A) MRI biomarkers (B) CE-T1 image coronal (C) CE-T1 image axial
(D) FLT 1 (E) Podoplanin (F) HIF-1alpha (G) CA IX H VEGF-C. (H) VEGF-C. CE-T1 displays a tumor
with a fibrotic center and rim enhancement. The blank center represents the biopsy clip region. The
fibrotic center shows strong CA IX staining, indicating severe hypoxia corresponding to the MRI
hypoxia imaging marker findings. HIF-1alpha, VEGF-C, and FLT1 staining are significantly stronger in
this exemplary non-luminal tumor as opposed to Figure 1. They verify the hypoxia imaging markers.
An arterial feeding vessel is seen on the left lower perimeter of the lesion that is reflected by a bright
yellow signal on the left lower perimeter of the lesion in the MTI image. The purple hues of the MTI
imaging represent venous draining vessels, matched by histopathological staining results. Venous
draining vessels are more predominant in more aggressive lesions as illustrated in this example of a TN.
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From VAM mapping, aggressive non-luminal cancers had a significantly higher MVD than
less aggressive luminal cancers (110.6 ± 14.6 mm−2 vs. 81 ± 24.3 mm−2; p < 0.001). In contrast,
aggressive non-luminal cancers had lower MTI than less aggressive luminal cancers (−62.1 ± 39.2 s−5/2

vs. −22.4 ± 25.6 s−5/2, p < 0.001), showing that aggressive non-luminal cancers had a microvessel
type that was significantly more tortuous with slow flowing blood (capillary/venous) (Figures 1–3,
Table 3). The increase in MVD was reflected by an increase in tumor vasculature as illustrated in the
histopathological sample cases.Cancers 2020, 12, x 8 of 16 
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Figure 3. Box and whisker plots show the imaging biomarkers for luminal (A and B) and non-luminal
(HER-2 positive and TN) tumors. Boxes are mean values ± standard deviations, and whiskers indicate
minimum and maximum values. * indicates statistical significance (p < 0.05).

3.2. QBOLD Mapping and Histopathological Markers

Univariate analysis (Figure 4) showed a negative correlation between MRO2 and ER as well
as PR expression, along with a positive correlation between MRO2 and p53 and ki67 (p < 0.05).
mitoPO2 positively correlated with ER and PR expression and negatively correlated with ki67 (p < 0.05).
No statistically significant correlation was found for QBOLD derived indicators and HER2 expression
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or lesion size (p > 0.05). OEF and lesion volume did not display a statistically significant correlation
with any of the investigated histopathological markers (p > 0.05).Cancers 2020, 12, x 9 of 16 
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Figure 4. Correlation matrix of Spearman’s rank correlation coefficients. White indicates positive,
whereas black indicates negative correlations. Size corresponds to strength of correlation. All fields
with an entry were statistically significant (p < 0.05).

3.3. VAM Mapping and Histopathological Markers

Univariate analysis (Figure 4) showed a negative correlation between MVD and ER and PR
expression and a positive correlation between MVD and p53 as well as ki67 (p < 0.05). MTI positively
correlated with ER expression and negatively correlated with p53 and ki67 (p < 0.05). No statistically
significant correlation was found for VAM derived indicators and HER2 expression or lesion size
(p > 0.05). VSI and lesion volume did not display a statistically significant correlation with any of the
investigated histopathological markers (p > 0.05).

3.4. Prediction of ki67 by QBOLD and VAM Imaging

Multiple regression analysis for prediction of ki67 by VAM- and QBOLD-derived markers was
based on OEF, mitoPO2, and MVD, with corresponding regression coefficients of −0.07 (standard error,
SE: 0.04), p = 0.07; −0.29 (SE: 0.07), p = 0.0001 and −0.04 (SE: 0.01), p = 0.003, respectively. This model
yielded an adjusted R2 of 0.36 (Table 4). Figure 5 displays a scatterplot of predicted vs actual ki67 values.

3.5. Prediction of Hormone Receptors and p53 by QBOLD and VAM Imaging

Multiple regression analysis for prediction of ER positivity yielded a model based on MRO2, OEF,
MVD, and VSI. The overall model exhibited an adjusted R2 of 0.47. In this multivariate model, the
following regression coefficients between imaging markers and ER positivity were found: MRO2 −0.06
(SE: 0.02, p = 0.004), OEF −0.13 (SE: 0.04, p < 0.001), MVD −0.11 (SE: 0.02, p < 0.0001), and VSI −0.23
(SE: 0.09, p < 0.01) (Table 2).
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Table 4. Multiple regression analysis for prediction of ki67, ER, PR, and p53 positivity by qBOLD and
VAM-derived features.

Heading Coefficient Std. Error p-Value VIF Adjusted R2

ki67 0.361
(constant) 74.9

OEF −0.072 0.039 0.07 2.55
mitoPO2 −0.292 0.067 0.0001 2.35

MVD 0.038 0.012 0.003 1.14
ER positivity 0.469

(constant) 332.1
MRO2 −0.056 0.019 0.004 1.03
OEF −0.133 0.035 <0.001 1.25
MVD −0.109 0.018 <0.0001 1.46
VSI −0.235 0.088 0.011 1.31

PR positivity 0.254
(constant) 218.9

MRO2 −0.048 0.023 0.038 1.03
OEF −0.109 0.041 <0.01 1.13
MVD −0.068 0.019 <0.001 1.14

P53 positivity 0.298
(constant) −10.6

MVD 0.038 0.015 0.014 1.0

Abbreviations: ER, estrogen receptor; MRO2, metabolic rate of oxygen; MVD, microvessel density; OEF, oxygen
extraction fraction; PR, progesterone receptor; QBOLD, quantitative blood-oxygen-level-dependent; VAM, vascular
architecture mapping; VIF, Variance Inflation Factors; VSI, vessel size index.

Cancers 2020, 12, x 10 of 16 

 

Table 4. Multiple regression analysis for prediction of ki67, ER, PR, and p53 positivity by qBOLD and 

VAM-derived features. 

Heading Coefficient Std. Error p-Value VIF Adjusted R2 

ki67     0.361 

(constant) 74.9     

OEF −0.072 0.039 0.07 2.55  

mitoPO2 −0.292 0.067 0.0001 2.35  

MVD 0.038 0.012 0.003 1.14  

ER positivity     0.469 

(constant) 332.1     

MRO2 −0.056 0.019 0.004 1.03  

OEF −0.133 0.035 <0.001 1.25  

MVD −0.109 0.018 <0.0001 1.46  

VSI −0.235 0.088 0.011 1.31  

PR positivity     0.254 

(constant) 218.9     

MRO2 −0.048 0.023 0.038 1.03  

OEF −0.109 0.041 <0.01 1.13  

MVD −0.068 0.019 <0.001 1.14  

P53 positivity     0.298 

(constant) −10.6     

MVD 0.038 0.015 0.014 1.0  

Abbreviations: ER, estrogen receptor; MRO2, metabolic rate of oxygen; MVD, microvessel density; 

OEF, oxygen extraction fraction; PR, progesterone receptor; QBOLD, quantitative blood-oxygen-

level-dependent; VAM, vascular architecture mapping; VIF, Variance Inflation Factors; VSI, vessel 

size index. 

 

Figure 5. Scatterplot of predicted versus actual ki67 values. Actual ki67 levels (y axis) are plotted 

against predicted ki67 values (x axis). 

3.5. Prediction of Hormone Receptors and p53 by QBOLD and VAM Imaging 

Multiple regression analysis for prediction of ER positivity yielded a model based on MRO2, 

OEF, MVD, and VSI. The overall model exhibited an adjusted R2 of 0.47. In this multivariate model, 

the following regression coefficients between imaging markers and ER positivity were found: MRO2 

−0.06 (SE: 0.02, p = 0.004), OEF −0.13 (SE: 0.04, p < 0.001), MVD −0.11 (SE: 0.02, p < 0.0001), and VSI 

−0.23 (SE: 0.09, p < 0.01) (Table 2). 

Figure 5. Scatterplot of predicted versus actual ki67 values. Actual ki67 levels (y axis) are plotted
against predicted ki67 values (x axis).

Multiple regression analysis for prediction of PR positivity yielded a model based on MRO2, OEF,
and MVD. The overall model exhibited an adjusted R2 of 0.25. In this multivariate model the following
regression coefficients between imaging markers and PR positivity were found: MRO2 −0.05 (SE: 0.02,
p = 0.04), OEF −0.11 (SE: 0.04, p < 0.01), and MVD −0.07 (SE: 0.02, p < 0.001) (Table 2).

Multiple regression analysis for prediction of p53 expression identified only MVD as an
independent predictor with an adjusted R2 of 0.298 and a regression coefficient for MVD of 0.04
(SE: 0.02, p = 0.01) (Table 2).
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A schematic drawing of the hypothesis upon which this explorative analysis was based is given
in Figure 6A,B illustrating the interplay of qBOLD and VAM derived imaging biomarkers of hypoxia
and neoangiogenesis with tumor aggressiveness, subtype, and histopathologic markers.
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Figure 6. Panel A. Illustration of imaging marker behavior in relation to hypoxia and neoangiogenesis.
Direction of arrow indicates increase or decrease of values. Asterisks indicate predictive significance as
suggested by our data (** highly indicative, * moderately indicative, (*) mildly indicative, schematically
based on data derived from Spearman’s rank correlation coefficient analysis). Panel B. Schematic
illustration of biomarker distribution in relation to hypoxia, neoangiogenesis, and tumor aggressiveness.
Triple negative breast cancer (TNBC).

4. Discussion

Recently, we developed a non-invasive synergistic assessment of TME hypoxia and induced
neovascularization in breast tumors; our initial results showed that this approach is promising to
improve tumor characterization and provide insight into the distinct intratumoral heterogeneity of
breast tumors [15]. In this study, we investigated the same algorithm for the differentiation of less
aggressive luminal and more aggressive non-luminal breast cancers. In the past, molecular profiling
has proven that breast cancer is a disease with a remarkable heterogeneity and that various cancer cell
populations co-exist in a given primary tumor that differ significantly in their genetic, phenotypic, and
behavioral characteristics. However, breast cancer heterogeneity is not solely driven by the combined
effect of genomic instability within the tumor, but also by differential selective pressures from the TME,
with hypoxia being one of the most significant TME factors. Hypoxia induces the development of
sub-populations of cells within a tumor with an aggressive and treatment-resistant phenotype leading
to rapid progression and a poor prognosis [8,23]. To survive and grow in a hostile, hypoxic TME,
tumor cells co-opt adaptive mechanisms; one key mechanism is the development of new tumor vessels
(“angiogenic switch”) to deliver oxygen and nutrients and remove metabolic waste products [24,25].

Our results indicate that the identification of aggressive breast cancer is feasible using our approach.
It has to be noted that lesion size did not correlate with indicators of tumor aggressiveness in any of
our analyses. A less aggressive slow growing tumor does not undergo the same pathophysiological
changes evoked by hypoxia, as does a rapidly dividing, “aggressive” cell population. Morphologic
imaging features cannot capture the underlying oncogenic processes, highlighting the importance of
quantitative imaging biomarkers of hypoxia and neovascularization in this context.
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In clinical practice, molecular breast cancer subtypes, i.e., luminal A, luminal B, HER2-positive, and
TN, are usually derived using immunohistochemistry surrogates to inform on tumor aggressiveness,
prognosis, and prediction, and are routinely used to guide recommendations for neo- and adjuvant
systemic therapies [20,21]. However, to date, the information on molecular subtypes has to be obtained
by invasive tissue sampling, which is a snapshot of a specific tumor region, subject to selection bias and
not representative of the tumor in its entirety. Tumor biology is also subject to change over time and
with treatment [26]. Therefore, the investigation of novel non-invasive approaches—such as ours—for
the identification of aggressive breast cancer that are derived from the tumor in its entirety and be
easily repeated over the course of neoadjuvant treatment are warranted.

Particularly promising, therefore, are the results of our analysis that allow to predict ki67
status through a combined analysis of OEF, mitoPO2, and MVD (Figure 2). Ki67 is a particularly
valuable biomarker in breast cancer as higher ki67 indicates higher tumor grade (i.e., increased
tumor aggressiveness). It is increased in dividing cell populations and therefore increased in fast
growing breast cancers. Accelerated tumor growth implies hypoxia with subsequently induced
neoangiogenesis. Therefore, our finding that ki67 is positively linked with MRO2 (i.e., oxygen
consumption) and negatively linked with mitoPO2 (tissue oxygen tension) along with increased MVD
(mean vascular density) and decreased MTI (i.e., more venous draining vessels) is in agreement with
the hypothesis (see Figure 2).

With regard to tumor aggressiveness, the tumor suppressor p53 is another used biomarker.
IHC detection of p53 protein is loosely, but imperfectly, associated with mutations in TP53 [27,28].
An increase of p53 implies a partial/complete loss of p53 function, which contributes to uncontrolled
cell growth, ensuing hypoxia, and neoangiogenesis. qBOLD and VAM imaging should therefore
also indirectly associate with IHC p53 levels, which we observed both in univariate as well as in
multivariate analysis.

Luminal, less aggressive breast cancer phenotypes that display slower growth, warranting less
oxygen supply than more aggressive breast cancer subtypes. We observed higher oxygen tension and
lower oxygen consumption, i.e., positive association of mitoPO2 and negative association of MRO2 in
luminal breast cancers. VAM mapping derived factors complete this picture, where MVD (i.e., mean
vascular density) independently associates with hormone receptor positivity whereas VSI (i.e., vessel
size index) negatively associates only with ER positivity in the multivariate analysis.

All of these markers tested separately fit the proposed schematics along which the imaging
biomarkers were designed. In the last step of our analysis, we therefore tested whether our approach
could accurately predict aggressive tumor subtypes as defined by current histopathological standards.

Specifically, we observed that aggressive non-luminal cancers (HER2 positive and TN) presented
with significantly lower MRO2 (i.e., metabolic rate of oxygen) than less aggressive luminal cancers
(luminal A and luminal B) and lower mitoPO2 values (i.e., hypoxia) than luminal breast cancers.
This reflects the increased oxygen consumption accompanied with increased hypoxia that is exacerbated
in fast growing aggressive phenotypes. Moreover, we also observed lower MTI (i.e., microvessel
type indicator) and higher MVD (i.e., microvessel density) in non-luminal cancers than in luminal
cancers. In our model, we view hypoxia and the consequently induced neoangiogenesis as a complex
dynamic process with several feedback loops. As a tumor grows, the increasing cell mass enlarges
the space between preexisting blood vessels; thus, the formerly high MVD turns into a low MVD.
Simultaneously, this process of rapid cell division warrants higher oxygen supply, and the consequently
effected hypoxia induces angiogenesis, which in turn increases MVD with increasing MRO2.

With respect to this complex dynamic process between hypoxia and neovascularization, one of
these factors alone cannot characterize tumor aggressiveness. Our novel MRI approach allows however,
a non-invasive simultaneous assessment of hypoxia and neovascularization. While patients with
luminal cancer may be offered endocrine therapy in addition to surgery and radiation treatment,
and patients with HER2 positive cancer may receive additional targeted treatment with monoclonal
antibodies, patients with TN cancer have no currently available targeted treatment [29]. After additional
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validation, these specific results of our study might have direct clinical consequences, i.e., in preventing
the exclusion of patients from adequate therapy when a heterogeneous tumor is present.

In this study, we also performed a direct histopathologic correlation for MRI biomarkers.
The pathophysiologic changes depicted using our developed novel MRI approach were shown to be
similarly traceable by IHC staining. However, it has to be noted that this analysis relies on the limited
specimens from invasive tissue sampling, highlighting the clinical difficulties to comprehensively
assess tumor neovascularization and hypoxia in its entirety and to monitor these factors during the
course of novel MRI approach neoadjuvant treatment. We observed that hypoxia correlated with the
proliferation rate and breast cancer aggressiveness as indicated by immunohistochemistry expression
and the distribution of common markers of hypoxia (HIF-1alpha, VEGF-C, CA IX, FLT-1, and MVD).
Aggressive tumor subtypes (non-luminal) exhibit higher levels of hypoxia and neovascularization with
an increased oxygen consumption compared to slower proliferating luminal phenotypes. In particular,
the most aggressive tumors, i.e., TN breast cancer, presented with strong hypoxia only in the fibrotic
center as evidenced by CA IX staining. HIF-1alpha localization provided additional support to
our imaging data, whereby HIF-1alpha translocated into the nucleus under hypoxic conditions to
induce (among others) VEGF expression. In line with this, we observe a predominantly cytoplasmatic
distribution in the more intraductal tumor components for both luminal and non-luminal tumors and
a stronger nuclear staining in the stromal/invasive parts of the lesions.

In our initial pilot study [15], we showed that our novel MRI approach provided information for
the differentiation of benign and malignant breast. In this study, we expand on its potential to provide
an accurate tumor characterization through consistent and direct measurement of neovascularization,
oxygen metabolism, and hypoxia. Given the high accuracy of breast cancer detection by routine
CE-MRI and the clinical need to obtain biopsy specimen at initial diagnosis, we consider our results
to be particularly promising in regard to non-invasive disease monitoring (i.e., during neoadjuvant
chemotherapy). While initial classification into luminal and non-luminal cancers will for the foreseeable
future still be based on histopathological assessment, the fact that ki67 seems to be highly linked to
hypoxia, and neovascularization presents a promising opportunity for qBOLD and VAM derived
biomarkers to serve as non-invasive quantitative biomarkers for disease monitoring.

This study has a few limitations. Due to the lower signal-to-noise ratio of the SE-DSC sequence
compared with a standard T1w DCE perfusion sequence, the spatial resolution is limited. Research is
ongoing and further improvements of spatial resolution of qBOLD and VAM imaging can be expected
and will overcome this current limitation. Due to the high number of simultaneously assessed variables,
this study is only exploratory in nature. We therefore cannot exclude, that some data derived from
multiple regression analysis are overfit. Larger datasets will be required to establish a clinical algorithm
providing actionable information for breast cancer patients by qBOLD and VAM imaging biomarkers
and will be the subject of future confirmatory analyses.

5. Conclusions

In conclusion, in this study, we demonstrated that a novel MRI approach for the non-invasive
synergistic assessment of TME hypoxia and neovascularization, which can be easily implemented in
routine breast MRI exams, enables the non-invasive identification of aggressive breast cancer and may
provide diagnostic, prognostic, and predictive indicators derived from the tumor in its entirety to
guide treatment decisions.
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