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Abstract: (1) Background: The relatively poor expert restaging accuracy of MRI in rectal cancer after
neoadjuvant chemoradiation may be due to the difficulties in visual assessment of residual tumor
on post-treatment MRI. In order to capture underlying tissue alterations and morphologic changes
in rectal structures occurring due to the treatment, we hypothesized that radiomics texture and
shape descriptors of the rectal environment (e.g., wall, lumen) on post-chemoradiation T2-weighted
(T2w) MRI may be associated with tumor regression after neoadjuvant chemoradiation therapy
(nCRT). (2) Methods: A total of 94 rectal cancer patients were retrospectively identified from three
collaborating institutions, for whom a 1.5 or 3T T2w MRI was available after nCRT and prior to
surgical resection. The rectal wall and the lumen were annotated by an expert radiologist on all
MRIs, based on which 191 texture descriptors and 198 shape descriptors were extracted for each
patient. (3) Results: Top-ranked features associated with pathologic tumor-stage regression were
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identified via cross-validation on a discovery set (n = 52, 1 institution) and evaluated via discriminant
analysis in hold-out validation (n = 42, 2 institutions). The best performing features for distinguishing
low (ypT0-2) and high (ypT3–4) pathologic tumor stages after nCRT comprised directional gradient
texture expression and morphologic shape differences in the entire rectal wall and lumen. Not only
were these radiomic features found to be resilient to variations in magnetic field strength and expert
segmentations, a quadratic discriminant model combining them yielded consistent performance
across multiple institutions (hold-out AUC of 0.73). (4) Conclusions: Radiomic texture and shape
descriptors of the rectal wall from post-treatment T2w MRIs may be associated with low and high
pathologic tumor stage after neoadjuvant chemoradiation therapy and generalized across variations
between scanners and institutions.

Keywords: radiomics; rectal cancer; texture; shape; magnetic resonance imaging; treatment response;
machine learning

1. Introduction

Colorectal cancer is the third most common cancer worldwide (incidence rate of 10.2%), of which
over 700,000 patients will be annually diagnosed with tumors localized to the rectum [1]. Those with
locally advanced rectal cancer typically receive neoadjuvant chemoradiation therapy (nCRT) followed
by total mesorectal excision (TME) surgery, as the standard-of-care treatment protocol in the US [2].
While the goal of nCRT is to down-stage rectal tumors prior to surgery (occurring in ~50–60% of
rectal tumors [3]), determining the exact extent of tumor regression after nCRT is critical for better
personalizing interventions in rectal cancers. For instance, minimally invasive procedures [4] could
be adopted in patients exhibiting marked tumor stage regression (T-stage 0–2, with minimal or no
tumor extent within the rectal wall), thus reducing associated morbidities of bleeding or infections [5,6].
By contrast, chemoradiated tumors which still extend outside of the rectum into the perirectal fat and
surrounding structures (T-stage 3–4) need to be accurately targeted for aggressive resection [7] and
could be recommended adjuvant therapy to ensure optimal patient survival [8].

Magnetic resonance imaging (MRI) is routinely acquired both prior to as well as following nCRT to
non-invasively assess rectal tumor extent in vivo [9]. As compared to less routinely used dynamic [10] or
diffusion [11] MRI sequences which capture functional information, the clinically standard T2-weighted
(T2w) MRI sequence offers high-resolution in vivo structural detail of the rectum and surrounding
structures (lumen, mesorectum). Under the current protocol where all patients undergo surgery,
post-nCRT T2w MRI is used to identify disease extent, plan surgical procedures, and thus guide patient
management [9]. However, expert restaging of tumor extent on post-nCRT T2w MRI has relatively poor
agreement with “ground truth” pathologic stage (MRI sensitivity of ~52% when compared to excised
specimens) due to the difficulties in visual identification of residual tumor on imaging [12,13]. This
confounded appearance is primarily due to the appearance of fibrotic regions within the rectal wall
after neoadjuvant therapy, which have an overlapping intensity appearance with residual tumor on
T2w MRI [14,15]. This suggests a critical need for more accurate imaging markers towards enabling
non-invasive evaluation of rectal cancer stage after chemoradiation (and prior to surgery).

Recent advances in the field of radiomics have demonstrated great promise for computer-extracted
quantitative features from radiographic images in enabling improved disease characterization compared
to using visual inspection alone [16]. Radiomics descriptors have been used in conjunction with
routinely available imaging to result in accurate treatment response evaluation across different cancers;
including brain [17], liver [18], head-and-neck [19], prostate [20], and lung [21]. While radiomic features
of rectal tumors on baseline T2w MRIs have been evaluated for associations with pathologic response
to nCRT [22], there has been relatively little work examining post-nCRT T2w MRIs alone.
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The most popular suite of radiomic features involve extracting texture responses, which could
help quantify the imaging appearance of deep stromal alterations caused by fibrosis [23] appearing
within the rectal wall after nCRT. Other hallmarks of nCRT impact in the rectum include changes in
rectal wall thickness due to the development of tumor necrosis or inflammation [24]. Chemoradiation
is also intended to reduce rectal tumor extent that had originally spread outward from the rectal wall
or inward into the lumen [25], implying it could cause changes in the morphology of these structures
within the rectal environment. We, therefore, hypothesized that by combining radiomic descriptors that
quantify (i) textural appearance changes within the rectal wall (characterizing appearance of treatment
effects) as well as (ii) morphologic shape changes of rectal structures (to capture distensions of wall or
lumen) on T2w MRI, we may be able to more accurately characterize rectal tumor stage regression after
nCRT. The goal of this work was to automatically differentiate between low and high pathologic stages
of rectal tumors after nCRT using radiomic texture and shape radiomic descriptors derived from the
post-nCRT rectal environment. These descriptors were further evaluated for their resiliency across
magnetic field strengths as well as for their discriminability across multiple institutions.

2. Results

2.1. Data Description

A total of 94 patients were included in this study from across three collaborating institutions,
all of whom had been treated for a clinically staged T2–T4 rectal carcinoma between August 2007
and January 2019 with standard-of-care neoadjuvant chemoradiation. Mean age was 62 years (range
30–85 years), with 61 male and 33 female patients. The discovery cohort comprised 52 studies from
Inst. 1 (University Hospitals Cleveland Medical Center, UHCMC). The hold-out validation cohort
comprised 42 studies: (i) 31 patients from Inst. 2 (Cleveland Clinic Foundation, CCF) and (ii) 11
patients from Inst. 3 (Louis Stokes Veterans Affairs Medical Center, VAMC). All included patients had
an MRI acquired after nCRT using a T2-weighted sequence at each institution, with the scanner and
imaging parameters used at each site summarized in Table 1. Rectal gel had been used to routinely prep
all patients at Inst. 1 and Inst. 2 but not Inst. 3. Across the three institutions, three different scanner
manufacturers and 10 different models were used for MR imaging; though the range of acquisition
parameters was relatively consistent within each institution. Imaging data were acquired as a series of
DICOM images saved directly from the scanners.

2.2. Identifying T2w Radiomic Texture Features Associated with Pathologic Tumor Down-Staging
after Chemoradiation

Table 2 lists the top-ranked T2w radiomic texture features that comprise FT (as identified over
multiple runs of 3 fold cross-validation), together with their p-values from Wilcoxon ranksum testing
between pathologic stage groups. These features include responses to gradient and edge operators,
as well as three co-occurrence statistics. Representative heatmaps for the threee top-ranked T2w
texture features in Figure 1 reveal that these edge or gradient responses under-express in ypT0–2
patients (bluish-green appearance, left half) compared to significant over-expression in ypT3–4 patients
(greenish-yellow appearance, right half). Based on the QDA model trends for FT (orange lines in
Figure 2a,b while varying the number of features, using four radiomic texture features yielded an
optimal discovery AUC of 0.68 ± 0.07 and hold-out validation AUC of 0.70. At the optimized threshold,
this corresponded to an accuracy of 69% (MCC of 0.38) in identifying ypT0–2 patients after nCRT on the
discovery cohort and 62% accuracy on the external validation cohort (63% sensitivity, 62% specificity,
0.23 MCC, Figure 2c).
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Table 1. Summary of imaging parameters for post-nCRT T2w MRI scans used in this study.

Imaging Parameter
Institution 1

UHCMC
(n = 52)

Institution 2
CCF

(n = 31)

Institution 3
VAMC
(n = 11)

In-plane Resolution (mm) 0.256–0.977 0.313–0.898 0.398–0.938
Slice Thickness (mm) 3.0–5.0 3.0–6.0 3.0–8.0

Field of view (px)
224–576 ×
224–576 ×

20–57

256–640 ×
252–640 ×

13–79

234–576 ×
256–528 ×

24–50
Repetition Time (ms) 3253–12690 3400–13333 3420–7200

Echo Time (ms) 67–110 84–166 80–100
Sequence TSE TSE FSE

Magnet Strength
3 T 51 3 8

1.5 T 1 28 3
Scanner

Siemens Symphony 6
Siemens Avanto 14
Siemens Espree 3
Siemens Aera 4
Siemens Skyra 3
Siemens Verio 39

Philips Achieva 1 8
Philips Medical System Ingenuity 5

Philips Healthcare Ingenia 8
Toshiba Titan 2

Unknown 1
Imaging Plane Axial Through Tumor

Transverse 43 28 10
Coronal 9 3 1
Gel use Yes Yes No

UHCMC = University Hospitals Cleveland Medical Center; CCF = Cleveland Clinic Foundation, VAMC = Louis
Stokes Veterans Affairs Medical Center.

Table 2. Top-ranked radiomic descriptors within each of FT, FS, and FT+S, together with their p-value
from Wilcoxon ranksum testing (unadjusted) between ypT0–2 from ypT3–4 patient groupings. Features
are ranked based on selection frequency across 50 runs of 3 fold cross-validation. Note that FT+S

comprises a combination of top-ranked descriptors from each of FTand FS.

Rank FT FS FT+S

1
Median

Gradient Sobel xy
(p = 0.0002)

3D Compactness
Entire Rectal Wall

(p = 0.003)

Median
Gradient Sobel xy

(p = 0.0002)

2
Skewness

Gradient dy
(p = 0.0007)

Skewness - 2D Eccentricity
Lumen

(p = 0.004)

3D Compactness
Entire Rectal Wall

(p = 0.003)

3
Median

Laws L3S3
(p = 0.0009)

Variance - 2D Convexity
Entire Rectal Wall

(p = 0.0009)

Variance - 2D Convexity
Entire Rectal Wall

(p = 0.0009)

4
Median

CoLlAGe sum-av ws = 5
(p = 0.002)

Mean - 2D Compactness
Entire Rectal Wall

(p = 0.002)

Median
Laws L3S3
(p = 0.0009)

5
Median

Haralick sum-av ws = 3
(p = 0.006)

Variance - 2D Minor Axis Length
Lumen

(p = 0.0009)

Skewness
Gradient dy
(p = 0.0007)

6
Variance

Haralick sum-av ws = 3
(p = 0.006)

Kurtosis - 2D Major Axis Length
Lumen

(p = 0.02)

Median
CoLlAGe sum-av ws = 5

(p = 0.002)

FT = Normalized radiomic texture feature vector;FS = normalized radiomic shape feature vector; FT+S = combination
of texture and shape feature vector.
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Figure 1. Representative radiomic heatmaps overlaid on post-treatment T2w MRI depicting texture
heterogeneity differences between ypT0–2 (left) ypT3–4 (right) rectal cancer patients after long-course
chemoradiation therapy. Across both discovery (top row) and validation (bottom row) cohorts, gradient
and Laws responses under-express in ypT0–2 patients (more bluish-green regions) compared to
ypT3–4 patients.

Figure 2. Quadratic discriminant analysis (QDA) model AUC performance while varying the number of
radiomic features used (x-axis) when evaluated on (a) discovery, and (b) validation cohorts. The different
colors and symbols correspond to FT (orange),FS (blue), and FT+S (green); respectively. Error bars on
(a) reflect ± 1 standard deviation of AUC in cross-validation on the discovery cohort. Also shown are
confusion matrices for (c) FT, (d)FS, and (e)FT+S for the validation cohort at the optimized threshold.
FT+S can be seen to result in the best overall classifier performance in terms of accurately generalizing
to the validation cohort, with the optimal discrimination between pathologic stage groups achieved
using 4 features.

2.3. Identifying T2w Radiomic Shape Features Associated with Pathologic Tumor Down-Staging
after Chemoradiation

The top-ranked T2w radiomic shape features in FS comprise an equal number of rectal wall
and lumen features (Table 2). Two-dimensional and 3D renderings of the entire rectal wall (green)
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and lumen (yellow) in Figure 3 reveal that ypT3–4 tumors are associated with thicker rectal walls
which vary in thickness across the volume; as quantified via compactness and convexity measures.
ypT3–4 tumors also exhibit less continuous lumen structures with more abrupt changes across smaller
volumes; as quantified by eccentricity and axis length measurements. While a QDA model trained on
FS yielded a consistent performance on the discovery cohort (Figure 2a) AUC of 0.67 ± 0.06), this did
not generalize as well as FT in hold-out validation (Figure 2b, AUC of 0.62). When using fouur features
and at the optimized threshold, FS resulted in an accuracy of 67% (MCC of 0.34) in the discovery cohort
and 57% accuracy on the external validation set (63% sensitivity, 54% specificity, 0.16 MCC, Figure 2d).

Figure 3. 2D and 3D renderings of entire rectal wall (green) and the lumen (yellow) in the sagittal plane
on T2w MR images revealing morphologic differences between post-chemoradiation ypT0–2 (left) and
ypT3–4 (right) patients; across both discovery (top row) and validation (bottom row) cohorts. Higher
pathologic tumor stages are characterized by thicker rectal walls and less continuous lumen structures.

2.4. Combining T2w Radiomic Texture and Shape Features Consistently Discriminates Pathologic Tumor Stage
Groupings after Chemoradiation across Institutions and Magnetic Field Strengths

A combination of four textural and two shape descriptors were identified as comprising FT+S

(listed in Table 2), all of which were among the top-ranked features within FTandFS individually.
The resulting QDA model was consistent with the other feature vectors in discovery (AUC of 0.67 ±
0.06, Figure 2a) and yielded the best overall performance among the three feature vectors in hold-out
validation (AUC of 0.73, Figure 2b). FT+S also yielded consistent performance when varying the
number of radiomic features used, where using 4 features at the optimized threshold yielded an
accuracy of 69% in the discovery cohort as well as 69% accuracy (MCC of 0.36) in hold-out validation
(81% sensitivity, 62% specificity, 0.42 MCC); for identifying ypT0–2 patients as depicted in Figure 2e.
Model trends for a random forests classifier [26] are illustrated in Figure S1, revealing similar trends
in the performance of FT+S, FT, and FS, across discovery and validation cohorts. While the random
forests model yields a slightly higher performance in the discovery cohort (AUC of 0.73 ± 0.05), it does
not generalize as well as the QDA model in hold-out validation (AUC of 0.64).

Table S1 summarizes the performance of FT+S when using a QDA model for discriminating
pathologic tumor stage groupings after chemoradiation, between sex-specific subgroups. While there
are no significant differences in model performance between sexes in the discovery cohort, AUC and
MCC values are markedly lower for females versus males in the validation cohort (though there were
also fewer females in the validation cohort).

These results can be further interrogated via the boxplots in Figure S2a–f for each of the top-ranked
radiomics descriptors within FT+S, depicting their trends across each of the 3 institutions. While both
inst. 1 and 2 exhibited a similar trend in a majority of the descriptors, cases from Inst. 3 exhibited a
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differing trend for 2/6 descriptors. Correspondingly, the institution-specific confusion matrices for
FT+S in Figure S2g,h reveal that all four of the ypT3–4 tumors from Inst. 3 were misclassified by the
QDA model while only 6/22 ypT3–4 tumors were misclassified in Inst. 2.

Comparing the 3D scatter plots and clustering heatmaps of t-SNE projections corresponding
to each of FT, FS, and FT+S (Figure 4, for the validation cohort), illustrates how the combination of
texture and shape descriptors most distinctively segregates pathologic T-stage groupings with 63%
unsupervised clustering accuracy for both ypT0–2 and ypT3–4 tumors. By comparison, FT shows
much weaker consensus (more varied shading in the consensus cluster heatmap) and a markedly less
accurate clustering accuracy (ypT stages equally distributed across both clusters). The worst overall
performance corresponds to using FS alone where no consistent clusters are identified, and cluster 1
comprises a majority of the cohort (50% ypT0–2 and 77% ypT3–4).

Figure 4. Scatter plots of t-SNE projection and consensus clustering heatmaps via (a) FT, (b) FS, (c)
FT+S; in the validation cohort. Left column: 3D scatter plots of ypT0–2 tumors (green) vs. ypT3–4
tumors (red) obtained via t-SNE. Middle column: corresponding consensus clustering heatmaps of
t-SNE projections (blue shading indicates the frequency with which each pair of patients was clustered
together) with original ypT groupings depicted via red-green colorbar alongside. Right column:
Unsupervised clustering accuracy for each t-SNE projection showing that FT+S most accurately clusters
ypT0–2 from ypT3–4 tumors.

Table 3 summarizes the results of Wilcoxon ranksum testing each of the radiomic descriptors from
Table 2, between 1.5 T and 3.0 T scans. No significant differences (all p > 0.004, Bonferroni-corrected
threshold) are observed in any of the top-ranked texture and shape radiomic features between magnetic
field strengths. Table 4 similarly shows the results of statistically comparing each of the top-ranked
radiomics descriptors from Table 2 between 2 sets of expert annotations. No significant differences can
be observed for either texture or shape descriptors derived from either wall or lumen (all p > 0.05)
though three descriptors resulted in ICC < 0.5 (2 of which show institutional differences in Figure S2).
The excellent overlap between the 2 sets of expert annotations is also reflected in relatively high DSC
values, both for RE (0.72 ± 0.08) as well as RL (0.86 ± 0.1).
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Table 3. Statistical comparison of top-ranked texture and shape radiomic descriptors between different
magnetic field strengths. p-values computed via Wilcoxon rank sum testing.

Ranked
Feature

1.5 T
Median (IQR)

3 T
Median (IQR)

Unadjusted
p-Value

Median Gradient Sobel xy 0.64 (−0.05–1.40) 0.31 (−1.34–1.12) 0.127

3D Compactness: ERW −0.43 (−2.09–1.77) −0.64 (−1.42–0.17) 0.921

Variance—2D Convexity ERW −2.26 (−2.72–−0.91) −1.37 (−2.31–0.34) 0.015

Median Laws L3S3 0.79 (−0.80–1.57) 0.60 (−1.04–1.65) 0.814

Skewness Gradient dy 0.26 (−0.77–0.96) 0.30 (-1.12–0.88) 0.423

Median CoLIAGe sum-av ws = 5 −0.21 (−1.07–0.84) −0.50 (−1.31–1.03) 0.789

Median Haralick sum-av ws = 3 −0.97 (−1.82–0.29) −0.03 (−0.9–1.21) 0.014

Variance Haralick sum-av ws = 3 0.05 (−0.95–0.79) −0.54 (−1.34–0.71) 0.369

Skewness—2D Eccentricity Lumen 0.11 (−1.54–1.04) 0.06 (-0.67–0.99) 0.510

Mean—2D Compactness ERW −0.2 (−0.98–0.58) 0.37 (−0.97–1.17) 0.166

Variance—2D Minor Axis Length Lumen −0.03 (−0.80–1.82) −0.45 (−1.49–0.43) 0.030

Kurtosis—2D Major Axis Length Lumen −1.33 (−1.81–0.09) −0.60 (−1.64–1.05) 0.423

Table 4. Statistical comparison of top-ranked texture and shape radiomic descriptors between 2
independent expert annotations on a subset of 20 patients (from across discovery and validation cohorts).
p-values computed via Wilcoxon rank sum testing. ICC: Intra-class Correlation Coefficient.

Radiomic
Feature

Unadjusted
p-Value ICC

Median Gradient Sobel xy 0.457 0.549

3D Compactness: ERW 0.776 0.923

Variance—2D Convexity ERW 0.441 0.375

Median Laws L3S3 0.693 0.908

Skewness Gradient dy 0.962 0.484

Median CoLIAGe sum-av ws = 5 0.602 0.829

Median Haralick sum-av ws = 3 0.912 0.947

Variance Haralick sum-av ws = 3 0.079 0.745

Skewness - 2D Eccentricity Lumen 0.925 0.473

Mean—2D Compactness ERW 0.903 0.842

Variance—2D Minor Axis Length Lumen 0.903 0.831

Kurtosis—2D Major Axis Length Lumen 0.285 0.695

3. Discussion

In this study, we investigated the ability of radiomic features from post-treatment T2w MRI to
evaluate pathologic tumor down-staging after nCRT in rectal cancers. A combination of textural
and morphologic radiomic descriptors was found to most accurately distinguish between patients
with ypT0–2 and ypT3–4 pathologic stages after chemoradiation, with consistent performance across
discovery and hold-out validation cohorts accrued from 3 different institutions. Optimal performance
of our radiomics model was achieved using 4 features, both in terms of AUC as well as accuracy of
identifying ypT0–2 patients at the optimized threshold.

The most relevant T2w radiomic texture features that best differentiated low and high pathologic
T-stages comprised responses to gradient and edge operators, both of which measure heterogeneity
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patterns in local signal intensity along the lateral axis within the rectal wall. Down-staged tumors
(ypT0–2) were characterized by diminished gradient expression within the rectal wall as well as
lower level-spottiness energy. Studies of the histopathology of down-staged rectal tumors after
chemoradiation [27] have indicated that tumor cells are replaced by fibrosis or scar tissue, where
the latter are visualized as hypo-intense regions within the rectal wall on T2w MRI [9]. We suggest
that fibrosis-associated T2w signal hypo-intensities within the rectal wall of patients with tumor
down-staging may be driving the subtly weakened edge and image gradients being quantified by the
radiomic descriptors identified in this study.

While shape descriptors have been previously explored in lung [28,29] and breast [30] cancers,
our study is the first to evaluate this class of radiomic features for rectal structures (wall, lumen).
Morphologic descriptors quantifying the thickness of rectal wall as well as the regularity of the lumen
structure were found to best segregate low and high pathologic T-stages in this study. We found that
the rectal wall in patients with pathologic stages T0–2 after chemoradiation was more consistently
thinner (i.e., lower compactness and convexity), which intuitively aligns with definitions in the TNM
system [31] in that treated tumor does not invade beyond the rectal wall, therefore minimizing
distension in comparison to ypT3–4 tumors. The discontinuities and abruptness of shape variations of
the lumen that were found to be associated with ypT3–4 tumors (quantified as higher eccentricity and
changes in axis lengths across the rectum) likely arise based on whether disease extent after nCRT
continues to intrude into the lumen [25]; potentially indicative of larger, more ulcerated tumors which
did not respond to chemoradiation. Consequently, radiomic shape descriptors appear to accurately
capture morphologic characteristics of tumor stage after chemoradiation in rectal cancers.

A combination of texture and shape features were identified as consistently segregating pathologic
tumor stage groups, and yielded a marked improvement over reported expert restaging accuracies from
the literature [12,13]. This combined model leveraged complementary information from the two types
of descriptors used in this study, as evidenced when comparing scatter plots and confusion matrices
resulting from using texture or shape descriptors individually. The major source of classification
errors in hold-out validation stemmed from misclassification of ypT3–4 tumors accrued from one
of the institutions, where these datasets were found to exhibit markedly different trends in several
radiomic descriptors compared to the other institutions. In addition to using a slightly different
imaging sequence (FSE vs. TSE), this institution also did not use rectal gel when preparing the patients
for MR imaging. These imaging differences likely reduced the contrast between rectal wall and lumen,
which may have impacted some of texture and shape radiomic descriptors which exhibited marginal
differences between institutions as well as expert annotations. However, the final radiomics model
largely maintained its performance across the 3 different institutions, in addition to which no significant
differences were found in a majority of top-ranked radiomic descriptors when compared between
different magnetic field strengths or between annotations from two different experts; suggesting the
radiomics features identified in this study may be relatively resilient to annotation-based, institutional,
as well as scanner differences.

Prior related radiomics approaches for assessing treatment response in rectal cancer have primarily
focused on high order texture features on pre-chemoradiation MRIs alone [22,32,33] or on quantifying
texture changes between pre-, mid-, and post-treatment MRIs [34–39]. To the best of our knowledge,
only one other work has examined radiomic features from post-chemoradiation T2w MRI alone [40]
for evaluating pathologic complete response to therapy (ypT0N0M0). While the latter study used a
comparably sized patient cohort, it utilized texture features and reported cross-validated performance
on a single institution alone. Our analysis of a significantly expanded feature set also identified several
co-occurrence-based features as relevant for pathologic rectal tumor response to nCRT, resonating
with findings from this previous study. We have further evaluated how to combine textural and
morphological radiomic descriptors of post-treatment rectal tumors to better characterize pathologic
response, in a multi-institution setting.
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We do acknowledge some limitations of our study. While our final cohort was limited to
slightly under 100 patients, we nevertheless performed hold-out validation on patients curated from
different institutions from that of discovery. The data in this work also involved T2w sequences
with different resolutions, sequences, and different scanner equipment. As the radiomics descriptors
largely maintained their performance in hold-out validation despite these variations, this suggests they
may be relatively robust markers of pathologic stage after chemoradiation. While sequences such as
diffusion MRI have demonstrated great promise for capturing rectal tumor response [41] and T-stage [38]
prior to treatment, this sequence was not consistently available for patients in our multi-institution
cohort and was thus not included in our analysis. We also did not specifically assess interobserver
variability in annotating the region of interest used for radiomic analysis. However, this concern may
be ameliorated as we opted to characterize the entire rectal wall in-plane with the primary treated
tumor location on T2w MRI, and identification of the rectal wall is far more straightforward on T2w
MRI [42]. Using the rectal wall also overcomes a significant limitation of related work [34–37,40,43], all
of which have utilized radiologist annotations of suspicious tumor regions on post-chemoradiation
T2w MRI. The latter can be dubious [44] when there is no disease present pathologically as well
as potentially suffering high interobserver variability (~50–60%) [45]. Finally, we opted to restrict
our analysis to TNM staging as the criteria for pathologic outcomes after chemoradiation as tumor
regression grade information was unavailable for a majority of the patients in our cohort. Despite these
limitations, ours is the first multi-institution study for evaluating textural and morphological radiomic
descriptors from post-treatment T2w MRIs for identifying pathologic stage groupings of rectal tumors
after chemoradiation. This is a key step towards better pre-operative evaluation of rectal cancer patients
in order to effectively and accurately triage them towards minimally invasive or aggressive resection
procedures after chemoradiation, and thus improve their overall survival and quality of life.

4. Materials and Methods

4.1. Ethical Statement

This HIPAA-compliant, retrospective study was approved by institutional review boards
(IRBs) at three institutions, University Hospitals Cleveland Medical Center (UHCMC, #07-16-40,
STUDY20190073), Cleveland Clinic Foundation (CCF, #18-427), and the Louis Stokes Veterans Affairs
Medical Center (VAMC, #18025-H11); with a waiver for requirement of informed consent as de-identified
patient data was utilized.

4.2. Patient Selection

A total of 119 patients diagnosed with rectal cancer between September 2009 and October 2015 were
curated from a colorectal surgery database at UHCMC. Of these, 59 patients had post-nCRT T2w MRIs
available for biopsy-proven rectal adenocarcinomas, as well as having pathology reports available from
examination of total mesorectal excision specimens. 6 patients were further excluded due to missing
relevant information from their pathology report, and 1 patient was excluded due to poor image quality.
In total, 52 patients met our initial inclusion-exclusion criteria for this study from UHCMC. A total of
137 patients diagnosed and treated for rectal cancer between August 2007 and September 2012 were
curated from a colorectal surgery database at CCF. Of these, 31 patients met our inclusion-exclusion
criteria of post-nCRT T2w MRIs being available after routine neoadjuvant chemoradiation and prior to
total mesorectal excision, together with pathology reports. Finally, a total of 16 patients diagnosed and
treated for rectal cancer between November 2015 and January 2019 were curated from a colorectal
surgery database at the VAMC. Of these, 11 patients met our inclusion-exclusion criteria of post-nCRT
T2w MRIs being available after routine neoadjuvant chemoradiation and prior to surgery, together with
pathology reports of excised rectal specimens. Patient enrollment together with inclusion-exclusion
criteria is summarized in Figure S3.
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4.3. Neoadjuvant Treatment and Histopathologic Assessment

All patients included had undergone long-course chemoradiation therapy prior to the restaging
MR imaging exam. Radiation therapy had involved 45 to 50.4 Gy in 25 to 28 fractions over 5 to 6 weeks,
with concomitant chemotherapy consisting of oral Capecitabine 825 to 850 mg/m2 (BID) on days of
radiation therapy. Dosages and durations varied slightly at each institution, though the regimen was
the same. All patients underwent a proctectomy at a median of 28 days (range: 6–83 days) after the
end of nCRT.

As part of routine clinical protocol, pathologists at each institution had assessed and recorded
tumor-node-metastasis (ypT-N-M) staging of the excised specimens according to AJCC guidelines [46]
into clinical reports for each patient; which was curated during retrospective data collection. This
pathologic stage assessment of post-surgical specimens was used as the ground-truth reference. As all
patients had undergone standard-of-care chemoradiation based on clinical staging, tumor down-staging
was defined as ypT0–2, i.e., a lower pathologic stage than the original clinical stage (also implying
minimal or dying tumor within the rectal wall). Table 5 summarizes the study population accrued
from all three institutions.

Table 5. Summary of demographic and pathologic information from multi-institution data cohort used
in this study.

Clinical Variable
Inst. 1

UHCMC
(n = 52)

Inst. 2
CCF

(n = 31)

Inst. 3
VAMC
(n = 11)

Gender
Male 30 20 11

Female 22 11 0
Age at diagnosis (yrs) 62.8 ± 13.6 58.2 ± 11.4 65.8 ± 12.0

Rectal wall volume (cm3) 43.1 ± 33.6 62.4 ± 66.1 35.9 ± 17.6
Lumen wall volume (cm3) 40.1 ± 31.1 69.5 ± 43.4 21.8 ± 8.8

Pathologic Staging
ypN0M0

ypT0–2 18 7 5
ypT3–4 15 9 2

ypN+ or ypM+
ypT0–2 4 2 2
ypT3–4 15 13 2

4.4. Annotation and ROI Identification on Post-nCRT T2w MRI Datasets

Based on available clinical, pathologic, and radiology reports (as well as any additional imaging
planes and sequences), an expert radiologist at each institution manually annotated two regions of
interest (ROI) on each post-nCRT T2w MRI dataset: (i) the entire rectal wall, and (ii) the lumen; via
hand-annotation tool in 3D Slicer [47]. They additionally identified the sub-volume of the rectal wall
comprising the primary treated tumor region in each dataset. This sub-volume was denoted RP, the
entire rectal wall was denoted RE, and the lumen was denoted RL. The discovery cohort was annotated
by RP (20 years of body imaging experience) while AP (11 years of experience) and JG (5 years of
experience) annotated data from each institution in the validation cohort. To account for differences in
voxel resolution across the three institutions (see Table 1), all T2w MRI datasets were linearly resampled
to the most consistently occurring resolution in the discovery cohort (0.781 mm × 0.781 mm × 4.0 mm)
using 3D Slicer. An overview of the entire radiomics analysis workflow is depicted in Figure 5.
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Figure 5. Overview of radiomics pipeline for evaluating pathologic tumor stage regression via
post-nCRT T2w MRI.

4.5. Radiomic Texture and Shape Feature Extraction

Computerized extraction of radiomic texture descriptors was performed using in-house software
implemented on MATLAB 2018a (MathWorks, Natick, MA, USA). To ensure that texture descriptors
were used to characterize the primary treated tumor region alone, RP was further limited to a sub-volume
comprising the largest annotated 2D section of the primary rectal wall together with two adjacent
sections (three consecutive 2D sections total). This was the smallest sub-volume of treated tumor that
was consistently available for all patients and thus accounted for varying sizes of RP among patients.
A total of 191 textural descriptors were, thus, computed on a pixel-wise basis within RP as summarized
in Table 6 together with their relevance for quantifying tumor stage regression in rectal cancers. Table S2
additionally provides IBSI (Image Biomarkers Standardization Initiative) [48] compliant definitions
for all textural descriptors extracted in this study. First-order statistics (mean, variance, kurtosis, and
skewness) were then calculated from each texture feature, resulting in 764 radiomic texture descriptors.

Computerized extraction of radiomic shape descriptors was implemented based on the Insight
Segmentation and Registration Toolkit (ITK) (www.itk.org) and MATLAB R2018a (MathWorks).
Twenty-five radiomic shape descriptors were extracted for each patient in 3D for both RE and RL

separately, categorized as (i) contour-based descriptors, which characterize each structure using the
object boundary points (e.g., perimeter, elongation, convexity); and (ii) region-based descriptors,
which characterize each structure based on the object interior (e.g., area, volume, compactness). Four
additional 3D descriptors were computed to quantify the relationship between RE and RL, based
on taking the difference between diameter-based descriptors. To quantify how shape morphology
varied across the entire volume, 2D descriptors were computed for each 2D section and the difference
between 2D descriptors from each pair of consecutive sections in the entire volume was computed
(done separately for RE and RL). First-order statistics (mean, variance, kurtosis, and skewness) were
then extracted across all section-based descriptors, yielding a total of 72 2D features. In total, this
resulted in a set of 198 shape radiomic descriptors for each patient. Table 7 summarizes all 2D and 3D
shape descriptors computed in this study.

www.itk.org
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Table 6. Texture descriptor families utilized in this study together with physiologic rationale and implementation.

Feature Group Quantity Description & Rationale

Histogram measures 21 First-order statistics of the original image signal intensity within local pixel neighborhoods, capturing basic
variations in signal intensities due to intermixed tissue types (fibrosis, ulceration, mucosa) after nCRT

Gradient operators [49] 10 Identification of leading gradients and edges in the local signal within small neighborhoods of pixels, likely
occurring due to impact of nCRT within the rectal wall

Haralick measures [50] 65
Quantify heterogeneity and entropy of local intensity texture as represented by the gray-level co-occurrence
matrix pixel neighborhoods, widely shown to be related to underlying tissue heterogeneity as a result of
intermixed treatment effects, residual disease, and irradiated tissue

Gabor operators [51] 35
Responses to Gabor wavelets which are defined at specific unit-length scales (λ = 0.765, 0.128, 1.786, 2.296, and
2.806; corresponding to window sizes 3, 5, 7, 9 or 11 pixels) and orientations (θ = π

8 , π4 , 3π
8 , π2 , 5π

8 , 3π
4 ), thus

capturing multi-scale and multi-oriented variations within the rectal wall

Laws operators [52] 34
Responses to local filters targeting combinations of specific textural patterns in the x- and y-directions.
Descriptors include all combinations of 1D filters: level (L), edge (E), spot (S), wave (W), and ripple (R), which
have been related to underlying abnormal structures or enhancement patterns

CoLlAGe [53] 26
Captures and exploits local anisotropic differences in voxel-level gradient orientations by assigning every image
voxel an entropy value associated with the co-occurrence matrix of gradient orientations, which have been
related to reflecting subtle local differences in tissue microarchitecture

nCRT = neoadjuvant chemoradiation therapy; CoLlAGe = co-occurrence of local anisotropic gradient orientations.
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Table 7. Description of 2D and 3D shape radiomic descriptors extracted and utilized in this study.

Feature Name Description 2D 3D

Contour-Based

Axis length Length of a line drawn through the center of an ellipse (2D) or sphere (3D) that has the same normalized second
central moments as the object x x

Convexity Ratio between the convex perimeter and the perimeter of the original object x
Convex perimeter Length of the outline of the convex object (smallest convex polygon that can contain the object) x

Eccentricity Ratio of the distance between the foci of the ellipse (2D) or sphere (3D) and its major axis length, measuring how
much a conic section deviates from being circular x x

Elongation Ratio between the minor and the major axis, measuring the aspect ratio of the object x x
Equivalent diameter Diameter of a circle that has the same area as the object x
Equivalent ellipsoid diameter Diameter of an ellipse that has the same second-moments as the object x
Equivalent spherical radius Radius of a sphere that has the same second-moments as the object x
Equivalent spherical perimeter Perimeter of a sphere that has the same second-moments as the object x
Flatness Measure that describe if the surface of the object is flat or if it has raised areas or indentations x

Orientation Angle between the x-axis and the major axis of the ellipse (2D) or sphere (3D) that has the same second-moments as
the object x x

Perimeter Length of the outline of the object x

Region-based
Area Measure of the number of pixels in a 2D object x
Area of bounding box Measure of the number of pixels in the bounding box (smallest rectangle containing the region) x
Compactness Ratio between the area (2D) of the object and the area of a circle with the same perimeter x x
Convex area Measure of the number of pixel in the convex hull (the smallest convex polygon that can contain the region) x

Elongation of the bounding box Ratio between the minor and the major axis of the bounding box (smallest rectangle containing the region),
measuring the aspect ratio of the object x

Elongation shape factor Square root of the ratio of the two second moments of the object around its principal axes x
Extent Ratio between pixels in the original object and pixels in the bounding box (smallest rectangle containing the region) x
Filled area Number of pixels in the filled object (original object with all the holes filled) x
Principal moments Measures that describe the moments of inertia at center of mass x

Roundness Ratio between the area (2D) or volume (3D) of the object and the area of a circle (2D) or sphere (3D) with the same
convex perimeter x x

Solidity Density of the object measured as proportion of the pixels in the convex object (smallest convex polygon that can
contain the object) that are also in the original object x

Volume Measure of the number of pixels in a 3D object x
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4.6. Identifying Relevant Radiomic Features Associated with Pathologic Stage after nCRT

Feature normalization was applied to all radiomic features by subtracting the mean and dividing
by the mean absolute deviation, resulting in each feature vector having a mean of 0 and mean absolute
deviation of 1. This resulted in a normalized radiomic texture feature vector (denoted FT, extracted
from RP) and a normalized radiomic shape feature vector (denoted FS, based on concatenating features
from both RE and RL, respectively).

Radiomic feature selection was implemented via a two-stage process, with methodological choices
based on previous large-scale comparisons of feature selection schemes [54,55]. First, a combination
of significance testing and correlation testing was implemented [54] to individually prune FT and FS

in order to remove potentially redundant features (whose correlation coefficient was >0.6 [56]). The
resulting pruned feature sets were denoted FT and FS for texture and shape features, respectively. Next,
the minimum Redundancy Maximum Relevance (mRMR) algorithm was used to identify the subset of
radiomic features from each of FT and FS which best differentiated between down-staged (ypT0–2)
and non-regressed tumors (ypT3–4). mRMR seeks to fulfill two criteria at the same time, by selecting
features that have the maximal mutual information (MI) but ensuring that the selected features stand
for those that have the minimum MI with respect to each other. Finally, FT and FSwere concatenated
and an optimal combination of texture and shape features (denoted FT+S) were identified from this
unified feature vector for differentiating between the 2 pathologic stage groupings via mRMR.

4.7. Statistical Analysis

Separate experiments were conducted to evaluate each set of T2w radiomic features: FT, FS,
and FT+S, via a quadratic discriminant analysis (QDA) classifier as well as a random forests classifier
(RFC). To avoid training bias within the discovery cohort, a randomized 3-fold cross-validation scheme
was used in which 2 folds were used for feature selection, and the third fold was used for testing
the performance of selected features. This was repeated so that each fold was tested on once, and
the entire cross validation process was repeated 50 times. Training model performance for each
feature set was quantified in terms of the area under receiver–operator curve (AUC) and the Matthews
correlation coefficient [57] of each classifier for differentiating ypT0–2 vs. ypT3–4, averaged across all
cross-validation runs.

The radiomic descriptors within each of FT, FS, and FT+S, were ranked based on how frequently
they appeared across all cross-validation runs. Top-ranked features were used to construct a final
classifier model (via both QDA and RFC) which was then evaluated in hold-out fashion on the validation
cohort. To fully estimate classification performance in the validation cohort, confusion matrices were
generated for the best performing classifier model based on each of FT, FS, and FT+S; at the optimized
threshold determined on the training cohort. Sex differences in model performance [58] in terms of both
classifier AUC and MCC were additionally calculated for sex-specific subgroups (male versus female).

The final number of radiomic descriptors selected to build this classifier model when using each of
each of FT, FS, and FT+S, was varied from 4 to 6 features in order to prevent overfitting and the “curse
of dimensionality”. Robustness of top-ranked radiomic features were also assessed with respect to MR
scanner strength by statistically comparing the feature values between all 3.0 T and 1.5 T scans (via
Wilcoxon rank sum testing) across both discovery and validation cohorts. Sensitivity of top-ranked
radiomic features with respect to expert annotations was evaluated for a subset of 20 patients (10
each from discovery and validation cohorts) for which 2 radiologists (AP and JG) had independently
provided annotations of the entire rectal wall and lumen. Note that a subset was utilized due to the
fact of time constraints in obtaining a second set of complete expert annotations. Radiomic feature
values computed from each expert annotation (for each of RE and RL) were compared in pairwise
fashion using Wilcoxon ranksum testing (p ≤ 0.05 used as the threshold for significant differences)
as well as the inter-class correlation coefficient (ICC, values closer to 1 indicate higher correlation).
Additionally, overlap between the 2 sets of expert annotations was measured using the dice similarity
coefficient (DSC), for both RE and RL.
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To further evaluate the performance of combining features within FT+S in comparison to FT and
FS individually, each feature set was projected into 3 dimensions via the t-SNE algorithm [59], with
random initialization, 30 nearest neighbors and 1000 iterations by Euclidean metric; using the validation
cohort. As this tool has been shown to optimally preserve non-linear high-dimensional relationships
into lower-dimensional spaces, naturally occurring clusters in the data could be easily visualized via a
3D scatter plot of each t-SNE space. Quantitative evaluation of these clusters was done via consensus
clustering of the three different t-SNE projections using the ConsensusClusterPlus package in R [60,61],
with 1000 iterations of hierarchical consensus clustering (k = 2) by Pearson distance and 80% random
patient resampling between runs. Clustering results were visualized in a consensus cluster heatmap
where the blue shading indicated the frequency with which a pair of patients was clustered together
across all runs. Clustering results were also compared against ypT groupings to quantify the ability of
top features to identify each of the two groups in an unsupervised fashion, within the validation cohort.

5. Conclusions

Restaging rectal cancer after neoadjuvant therapy is currently one of the most significant clinical
challenges, since it provides the possibility of changing the planned surgical treatment based on
accurately determining tumor regression after nCRT. In this work, we presented the first multi-
institutional study for identifying radiomic texture and shape features from routine post-nCRT
T2w MRI that were found to be associated with rectal cancer patients who achieved pathologic
tumor down-staging after chemoradiation. The most relevant features identified were quantitative
measurements of specific heterogeneity patterns and structural distensions of the rectal wall, and the
resulting radiomic model maintained its performance across data from three different institutions as
well as across different magnetic field strengths. This set of radiomic texture and shape descriptors
appear to be driven by intuitive histopathological and physiological differences between pathologic
stage groupings of rectal tumors after nCRT. Future work will include integrating our analysis with
pre-treatment imaging prediction models [62] for a more comprehensive assessment of tumor evolution
after chemoradiation in rectal cancers. We also plan to evaluate the performance of our predictor
in a more prospective setting, as well as across different platforms and implementations to confirm
generalizability of identified radiomic descriptors. These findings potentially hold significant clinical
application as they could be used as a non-invasive tool for post-treatment identification of rectal
cancer patients who could benefit from minimally invasive surgical management, based on more
accurate evaluation of pathologic tumor response after chemoradiation.
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