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Background. Because of the finite size of the development sample, predicted probabilities from a risk prediction
model are inevitably uncertain. We apply value-of-information methodology to evaluate the decision-theoretic impli-
cations of prediction uncertainty. Methods. Adopting a Bayesian perspective, we extend the definition of the expected
value of perfect information (EVPI) from decision analysis to net benefit calculations in risk prediction. In the context
of model development, EVPI is the expected gain in net benefit by using the correct predictions as opposed to predic-
tions from a proposed model. We suggest bootstrap methods for sampling from the posterior distribution of predic-
tions for EVPI calculation using Monte Carlo simulations. We used subsets of data of various sizes from a clinical
trial for predicting mortality after myocardial infarction to show how EVPI changes with sample size. Results. With a
sample size of 1000 and at the prespecified threshold of 2% on predicted risks, the gains in net benefit using the pro-
posed and the correct models were 0.0006 and 0.0011, respectively, resulting in an EVPI of 0.0005 and a relative EVPI
of 87%. EVPI was zero only at unrealistically high thresholds (>85%). As expected, EVPI declined with larger sam-
ples. We summarize an algorithm for incorporating EVPI calculations into the commonly used bootstrap method for
optimism correction. Conclusion. The development EVPI can be used to decide whether a model can advance to vali-
dation, whether it should be abandoned, or whether a larger development sample is needed. Value-of-information
methods can be applied to explore decision-theoretic consequences of uncertainty in risk prediction and can comple-
ment inferential methods in predictive analytics. R code for implementing this method is provided.

Highlights

e Uncertainty in the outputs of clinical prediction models has largely been approached from a purely statistical
perspective.

e In decision theory, uncertainty is associated with loss of benefit because it can prevent one from identifying
the most beneficial decision.

e This article extends value-of-information methods from decision theory to risk prediction and quantifies the
expected loss in net benefit due to uncertainty in predicted risks.

® Value-of-information methods can complement statistical approaches when developing or validating clinical
prediction models.
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Introduction

A risk prediction model can be seen as a mathematical
function that maps an individual’s characteristics to their
predicted risk of an event, enabling risk-stratified treat-
ment decisions. The development of a risk prediction
model is typically based on individual-level data from a
finite sample. As such, the resulting predictions are
inherently uncertain. In practice, uncertainty in predic-
tions is often ignored, and a deterministic function is
advertised as the final model. For example, the proposed
model can be the set of (penalized) maximum likelihood
estimates of coefficients in a classical regression frame-
work or the final state of a machine-learning model such
as an artificial neural network. Such determinism in pre-
dictions might have stemmed from the need to use the
model at the point of care, where it is most practical to
make decisions based on a single good estimate of risk.
Notwithstanding such practicality, uncertainty in predic-
tions remains relevant: had we used another sample for
model development, we could have arrived at a different
model, a different predicted value for the patient, and
thus potentially a different treatment decision.

The topic of the development sample size in risk pre-
diction is a subject of active research. Recent develop-
ments on sample size calculations have focused on
meeting prespecified criteria on prediction error! or on
overall calibration performance such as mean calibration
or the degree of optimism in predictions.>® The ade-
quacy of the development sample of a given size has also
been investigated in terms of the stability of predictions.*
Despite targeting different objectives, such approaches
are fundamentally concerned with the accuracy of pre-
dictions from a purely statistical perspective. Given that
risk prediction models are used for patient care, of ulti-
mate relevance is to what extent such uncertainty affects
the outcome of treatment decisions. This perspective of
prediction uncertainty is not sufficiently investigated.

We are motivated by the approach taken in the field
of decision analysis to tackle a similar problem. In
informing policy decisions about the adoption of new
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interventions, decision-analytic (e.g., cost-effectiveness)
models are developed that quantify the net benefit (NB)
of each competing intervention at the population level.’
Such models are based on uncertain input parameters
such as treatment effect or costs of disease management.
Thus, the resulting NB projections are uncertain. The
impact of such uncertainty is that the intervention that is
identified as having the highest expected NB might not
be the one with the highest true NB. Consequently,
uncertainty is associated with an expected loss in NB.
The expected value of this loss, termed the expected
value of perfect information (EVPI), can be quantified
from the output of a probabilistic decision-analytic
model.® This approach and its extensions, broadly
referred to as value-of-information analysis,” provide a
fully decision-theoretic framework for quantifying the
impact of uncertainty in health policy making.®

In this work, we extend the definition of EVPI from
decision analysis to the development phase of risk pre-
diction models, with the aim of quantifying the expected
loss in NB due to uncertainty in estimating model para-
meters from a finite development sample. This provides
a decision-theoretic approach to the question that natu-
rally arises after the development of a risk prediction
model: whether the model is “good enough” and can
advance to the next stage of research, whether it should
be abandoned, or whether more evidence is needed to
decide.”'?

Net Benefit Calculations for Risk Prediction Models

The NB approach for evaluating the utility of risk pre-
diction models has gained significant popularity because
of its rigorous decision-theoretic underpinning as well as
its relative ease of calculation.!' To turn a continuous
predicted risk to a binary action (treat or not treat), one
needs to specify a context-dependent treatment threshold
on predicted risks. Such a threshold should ideally be
informed by the relative weight of clinical consequences
of false-positive (harm) versus true-positive (benefit) clas-
sifications. Vickers and Elkin showed that this threshold
acts as an exchange rate between true- and false-positive
outcomes, enabling the calculation of NB.'! Imagine a
decision maker (e.g., a guideline development team after
consulting a patient group about their preferences) con-
cludes that patients with acute myocardial infarction
(AMI) should receive a more aggressive treatment if their
30-d risk of mortality is >2% and no such treatments if
the predicted risk is <2%. The group is ambivalent
between treatment and no treatment if the predicted risk
is precisely 2%. Such ambivalence indicates that the deci-
sion maker equates the benefits associated with a 2%
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chance of true positive to be equal to the harms associ-
ated with a 98% chance of false positive. This itself means
the benefit of a true-positive diagnosis is 49 times the
harm of a false-positive diagnosis. This enables the calcu-
lation of NB in true-positive units net of harms in false-
positive units. Generalizing this approach, at threshold
value of z, the NB can be calculated as

NB(z) = P(True Positive) — P(False Positive) ] z

Here, z/(1 — z) represents the relative weight of a false-
positive versus a true-positive classification and thus cap-
tures the harm-benefit tradeoff at this threshold. In prac-
tice, the NB is often calculated for a plausible range of
thresholds.

Imagine we have a proposed model based on a devel-
opment sample of » independent observations. Let
;= (X;) be the predicted risks for the ith patient in this
sample with covariate pattern X;, and Y; be the corre-
sponding observed binary outcome. At a threshold value
of z, the ith patient contributes /(m;>z)Y; to the prob-
ability of true positive and I/(7;>z)(1 — ¥;) to the prob-
ability of false positive. The NB of the proposed model
can be consistently estimated as''

n

NByodet (2) = %Z{I(m>z) r--n—l}

i=1

The NB of the model should always be compared with
that of at least 2 alternatives: treating none and treating
all. We use the “opt-in” definition of NB and set the
default decision to be treating no one, with NB = 0.’
The decision to treat all is equal to assuming each indi-
vidual is positive, whose NB can be consistently esti-
mated as

n

NBa(z) =S - -m =)

i=1

If there are preexisting models applicable to this decision
context, their NB should also be compared with the NB
of the model. However, to facilitate the developments
and without loss of generality, we assume the proposed
model is the only relevant risk prediction algorithm.
Evaluating a model in the same sample in which it is
developed might result in optimistic conclusions about
its performance.'> A commonly employed method for
correcting for such optimism is the Harrell’s bootstrap. '
This approach involves obtaining a bootstrap sample
from the development data set, fitting a new model in

this sample, and calculating the NB (or other metrics)
for the new model in the same bootstrap sample as well
as in the original sample and then recording the differ-
ence. Repeating these steps many times and averaging
the differences will provide an estimate of optimism. This
approach is based on the notion that the difference
between the performance of the model in the bootstrap
sample and in the original sample is an almost unbiased
estimate of the difference between its performance in the
original sample and in the generating population.'*

A Bayesian Approach toward NB Calculation

Value-of-information analysis is a strictly Bayesian para-
digm as it treats the unknown true associations as ran-
dom entities for which we have partial information.®
Here, the random entity of interest is the “correct” (i.e.,
strongly calibrated'®) model, indexed by a set of unknown
parameters 6, that for the ith individual returns the correct
risk pg;=p(X;,0), the average risk among all individuals
with the same covariate pattern X;. Let P(6|D) be the pos-
terior joint probability density function of model para-
meters that represents our knowledge about the parameter
values of the correct model after observing the develop-
ment data D. The Bayes’s rule P(6|D)*P(0)P(D|6) indi-
cates that our knowledge is influenced by the information
from the development sample (P(D|f)) and any prior
knowledge on the correct model (P(6)).

The crucial next step is to recognize that if the correct
risks are available, we can replace the observed response
Y; with the correct risk pg; for estimating the NB of the
proposed model. At a threshold value of z, the ith person
with a predicted risk of 7r; and correct risk of py; has a
probability of I(m;>z)py; for being a true positive and
I(m;>z)(1 — py;) for being a false positive. Thus, if the
true value of 6 is known, we can consistently estimate the
NB of the model as

z

NBioder(2; ) = %Xn:{l(ﬂ'PZ) [Pei - (1 —Pez‘)—} }

=1 l—z

This equation is similar to the equation for ]@model, only
that the ¥ column is replaced with predicted risks from
the correct model. As we do not know the true value of
0, in our Bayesian framework, estimating NB at thresh-
old z requires taking the expectation with respect to
P(6|D):

mmodel(z) = EONBmodel(Z; 0)

Unlike the conventional estimator for NB, this estimator
is the posterior mean in a Bayesian framework, and the
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frequentist notion of optimism is not directly applicable
to it: rather than being based on a single value of 0 that
might provide an overly good fit to the data, it is the
average of NB estimates across the distribution P(6|D).
Again, using the risk prediction model is not the only
option, as we can also either forgo treatment for all or
provide treatment to all. The former has zero NB, and
the NB for the latter, if the true value of 6 is known, can
be estimated consistently as

n

1 z
NBui(z;0) = ;Z{pm = (L=po) 7—]
P

which is, again, the same as ]@au, with the Y column
replaced by correct risks. The expected NB of treating all
is

Wa”(z) = EgNBa]](Z; 9)

The EVPI

If we know the correct model, the optimal decision is to
use it, instead of the proposed model, for prediction.
Indeed, no decision that is based on candidate predictors
is more efficient than giving treatment only to those
whose correct risk, based on such predictors, is above
the threshold. If the true 6 is known, the NB of such an
optimal strategy can be estimated consistently in the
sample as

z

1 n
NBar(2:0) = > 1(por>2) [por = (1 = por) 7—|.
i=1

Again, we do not know the true value of 6 and instead
know about its likely values through P(6|D). The
expected NB under perfect information is therefore

NByax(z) = EgNByax (23 0).

On the other hand, without knowing the correct model,
the best we can do is to decide whether to use the model,
treat no one, or treat all based on their expected NB.
The expected NB under current information is therefore
max{O,Wmodel(z),Wa”(z)}.

The difference in expected NB with perfect informa-
tion compared with current information is the expected
gain due to knowing the correct model (or expected loss
due to not knowing the correct model), which we call the
EVPI for model development:

EVPI(Z) = Wmax(z) — max{O,W,,mde,(z), ﬁa”(z)}.

EVPI is a nonnegative scalar quantity that is in the same
unit as the NB for risk models, and its higher values indi-
cate higher expected loss due to prediction uncertainty.

Relative EVPI

The scale of NB in risk prediction is domain specific,
unlike in decision analysis, where NB is typically in the
universally interpretable monetary units. As such, the
numerical value of EVPI here is the most interpretable in
comparison with the expected NB that the model pro-
vides. To facilitate this comparison, we suggest a relative
version of EVPI. Without using any model, we can
choose between treating none or treating all, a decision
that confers an expected NB of max{O7 ﬁa”(z)}. This is
the “baseline” benefit without any risk stratification.
Against this baseline, the expected incremental NB
(ANB) of using the proposed model is

ANBcurr‘ent information (Z) = maX{O, mmodel (Z), ﬁall (Z> }
—max{0, NBy(z)}.

Similarly, the expected ANB with knowing the correct
risks is

ANBperfect information (Z) - Wmax(z> - max{O, mall(z)}~

The EVPI is the difference between the 2 terms. We sug-
gest the relative EVPI (EVPI,) as their ratio:

EVPIr (Z) _ ANBpe;ffect information (Z) )

ANBcurrent information (Z )

This quantity is >1 and can be expressed in percentages.
An EVPI. of 1 +a means that against the baseline strat-
egy of not using any model, the expected gain in NB with
the use of the correct model is @ X 100% higher than the
expected gain in NB with the use of the proposed model.
The EVPI, is + when the denominator is zero but the
numerator is positive. This indicates that under current
information, the proposed model is not expected to pro-
vide extra NB, but the correct model is. Thus, further
development might be justified. EVPI, is undefined when
the numerator (and thus the denominator) is zero, but
the conclusion is obvious in this case: the correct model
and, therefore, the proposed model are not expected to
provide extra NB over the default decisions, regardless
of current uncertainties.
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A Generic Algorithm for EVPI Calculation Based
on Bootstrapping

The Bayesian estimators in the previous sections require
taking expectations with respect to P(6|D), the posterior
distribution of correct model parameters. A fully para-
metric Bayesian model development approach enables
the specification of P(|D) given the development data
and any prior information. Alternatively, in the conven-
tional likelihood maximization approach in classical
regression modeling, P(6|D) can be derived from the
likelihood function. For example, the vector of maximum
likelihood estimates of regression coefficients and their
estimated covariance matrix from a logistic model specify
a multivariate normal distribution as the posterior distri-
bution of regression coefficients under an improper, flat
prior. The expectations can then be evaluated using Monte
Carlo simulation with repeated sampling from P(6|D).

A more flexible approach is to obtain samples from
P(6]D) via bootstrapping. A Bayesian interpretation of the
bootstrap enables one to consider a parameter estimate that
is derived from a bootstrapped sample as a random draw
from the posterior distribution of the parameter given the
original sample.'® A Bayesian bootstrap of a sample of n
1.i.d. observations is obtained by drawing a random vector
of weights (wy,wy,...,w,) from a Dirichlet(n;1,1,...,1)
distribution.'® One way to generate such weights is drawing
n—1 standard uniform random variables uy,...,u, |,
ordering them, and calculating the weights as w; = u;—
u;_1, where uy = 0 and u, = 1.'°

The ordinary bootstrap can also be seen as assigning
weights to the sample, with weights coming from
Multinomial(n;1/n, . .., 1/n). The similarity of such weight-
ing approaches has resulted in the ordinary bootstrap being
also interpreted in a Bayesian view, as in the imputation of
missing data.'” Such a bootstrap-based value-of-information
approach for decision analysis has been previously proposed,
where the Bayesian and ordinary bootstraps and parametric
methods generated very similar results.'®

This bootstrap-based approach for sampling from
P(6]|D) provides more flexibility than fully parametric
methods, for example, by enabling the incorporation of
variable selection and shrinkage and other stochastic
steps such as the imputation of missing predictor values.
As well, this approach can be embedded with relative
ease within the bootstrap-based algorithm for optimism
correction. A generic algorithm for EVPI calculation
alongside exemplary R code is provided in Table 1. An
R package for implementing this methodology (with
exemplary code for bootstrap, likelihood-based, and
parametric Bayesian approaches for EVPI calculation) is
available from https://github.com/resplab/VolIPred.

Case Study. Prediction of Mortality after AMI

Identifying the risk of immediate mortality after an AMI
can enable stratification of more aggressive treatments
for high-risk individuals. GUSTO-I was a large clinical
trial of multiple thrombolytic strategies for AML'> We
used data from this study to create a risk prediction
model for 30-d mortality after AMI (the primary end-
point of the trial). GUSTO-I’s sample size of 40,830 is
larger than typical sizes of development samples in most
practical contexts, resulting in a low level of prediction
uncertainty.”’ This provides an opportunity for simulat-
ing development samples of smaller sizes that are more
typical and studying how EVPI changes as the sample
size varies. To start, we assume that we have access to
data for only 1000 patients. We randomly selected, with-
out replacement, 1000 individuals from the full sample
of GUSTO-I to create such an exemplary development
data set. Thirty-day mortality risk was 7.0% in the full
sample and 6.7% in this subsample.

In line with previous studies using this data set,
our candidate predictors included Killip score (an indica-
tor of heart failure), age, blood pressure, pulse, infarc-
tion location, preexisting hypertension, and diabetes. To
mitigate the risk of overfitting, we fitted a logistic model
via the least absolute shrinkage and selection operator
(LASSO), with 10-fold cross-validation to find the opti-
mum shrinkage. Table 2 provides the coefficients of the
proposed model. Three candidate predictors were shrunk
to zero (not selected) in the final model. To demonstrate
uncertainty in regression coefficients, we also report the
bootstrap-based 95% confidence intervals and the pro-
portion of bootstraps in which each predictor was
selected by LASSO. Confidence intervals, optimism cor-
rections, and EVPI calculations were based on 1000
bootstraps. Computations were performed in R develop-
ment environment (with glmnet package for LASSO).>

The optimism-corrected c-statistic of the proposed
model was 0.758. Figure 1 is the “decision curve” that
depicts the optimism-corrected empirical NB (@model) of
the model (red) alongside those of treating none (gray)
and treating all (black). The Bayesian estimator for NB
(NB,uodei» blue curve) is also provided. Ordinary and
Bayesian bootstraps generated nearly identical results.

Figure 2 depicts the expected incremental NB under
current and perfect information (left panels) and EVPI
(right panels) at the entire range of thresholds. Results
are generated using both ordinary and Bayesian boot-
straps, which were very similar. Interpreting the results
based on the ordinary bootstrap, at the exemplary
threshold of 0.02, the expected NB of treating all was
0.0478, while the expected NB of the model was 0.0484.

21,22
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Table 1 Generic Algorithm (Left) and an Exemplary R Implementation (Right) for the Bootstrap-Based EVPI Calculations®

1. Using the proposed prediction model, #Step 0: We develop a simple risk prediction model as an example
generate the predicted risks for each library(MASS)
individual in the development sample data(birthwt)
(71; s) n <- dim(birthwt)[1]
Z <- 0.2 #This is the risk threshold
2. Fori = 1tosome large N (e.g., model <- glm(low ~ age + lwt, family=binomial(link='logit'), data= birthwt)
1,000)® and for any threshold z in [0,1]  #Step 1:
2.1 Obtain a (Bayesian) bootstrap pi <- predict(model, type='response') #Predicted risks
sample from the development data ~ #5tep 2:
set and perform model NBmodel <- NBall <- NBmax <- rep(0,1000)
development (potentially including ~ for( in 1:1600)
variable selection and shrinkage). { S
2.2 Apply the new model to calculate ep <
PPy L . . bsdata <- birthwt[sample(1:n, n, replace = T),]
the predicted risks in the
bsmodel <- glm(low ~ age + lwt, family=binomial(link='logit'), data=bsdata)
development sample (pg; ). oo S :
. #Step 2.2: p is a random draw from the distribution of correct risks
2.3 Estimate NByogdei(2), NBan(z), and . . . .
SN . 8 p <- predict(bsmodel, newdata = birthwt, type='response')
NB,uax(z) for this iteration using #Step 2.3
th? Predmted risks from the NBall[i] <- mean(p-(1-p)*z/(1-z)) #NB of treating all
orlgma.l (7 s) and the new (py; s) NBmodel[i] <- mean((pi>z)*(p-(1-p)*z/(1-z))) #NB of using the model
model in the deVelOpment s.ample NBmax[i] <- mean((p>z)*(p-(1-p)*z/(1-z))) #NB of using the correct risks
(see the relevant equations in the }
text). #Step 3
o ENBall <- mean(NBall); ENBmodel <- mean(NBmodel); ENBmax <- mean(NBmax)
3. Let NByuouer(z) = average(NBooqer (2)); #Step 4

let NByy(z) = average(NBq(z)); let
NBuax(z) = average(NByqx(z)), with the

EVPI <- ENBmax-max(@,ENBmodel,ENBall)
EVPIr <- (ENBmax-max(@,ENBall))/(ENBmodel-max(®,ENBall))

average taken across all the iterations
of the For loop.

4. Calculate (absolute and relative)
EVPI(z).

“Expected value of perfect information (EVPI) calculations using methods alternative to the bootstrap are provided in https://github.com/

resplab/VolPred.

®In general, the number of iterations should be high enough such that the Monte Carlo standard error around EVPI is small compared with its

point estimate.

Thus, the best decision under current information is to
use the proposed model, with an expected ANB of
0.0006 (black curve in the top-left panel). The expected
NB under perfect information was 0.0489, corresponding
to an expected ANB of 0.0011 (red curve in the top-left
panel). Thus, the EVPI is 0.0489 — 0.0484 = 0.0005.
The relative EVPI at this threshold is 0.0011/0.0006 =
1.87. That is, knowing the correct prediction model is
expected to confer 87% more NB compared with the
proposed model. The EVPI is nonzero unless the thresh-
old is unrealistically high (>0.85). The largest gain is
obtained within the 0.1-0.3 range. The Bayesian boot-
strap generated similar results (EVPI at 0.02 threshold:
0.0005, relative EVPI at this threshold: 1.82).

Figure 3 demonstrates how EVPI changes with sample
size in GUSTO-I at the exemplary thresholds of 0.01,
0.02, 0.05, and 0.10. We started with n = 250 observa-
tions and doubled it at each step. For each step, the EVPI
(top) and relative EVPI (bottom) were, respectively, the

average and median of 10 independent simulations. Both
metrics indicated a diminishing gain with larger samples.
The median relative EVPI was +oo for threshold values
of 0.01 and 0.02 at n = 250 and also at n = 500 for the
0.01 threshold. On the other hand, for the model based
on the entire GUSTO-I data, the impact of uncertainty
was minimal, with EVPI < 0.00001 and relative EVPI =
1.004 at 0.02 threshold. Results of proof-of-concept
simulation studies on how EVPI changes with other sam-
ple or model characteristics (event probability, model
calibration, and discrimination) are provided in the Sup-
plementary Material.

Discussion

Creating a risk prediction model based on a finite devel-
opment sample means the resulting predictions are inevi-
tably uncertain. The management plan of a patient based
on such predictions might be different from the decision
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Table 2 Regression Coefficients for the Proposed Model

Predictor Coefficient® Probability of Selection 95% Confidence Interval
(Intercept) —1.273 1.00 —6.833,2.744
Age (y) 0.050 1.00 0.021, 0.076
AMI location (other) 0.259 0.55 —0.034, 1.488
AMI location (anterior) . 0.40 —0.220, 0.521
History of previous AMI 0.184 0.63 —0.058, 0.842
Systolic blood pressure” —0.070 0.94 —0.104, 0.000
Killip score >1 (yes v. no) 0.704 0.97 0.000, 1.277
Pulse (low)* 0.026 0.75 0.000, 0.038
Pulse (high)* 0.40 0.000, 0.034
History of hypertension 0.31 —0.587, 0.259
History of diabetes 0.38 —0.218, 0.664

AMI, acute myocardial infarction.

“Those denoted by °.” are not selected by LASSO.

°This variable was modeled as min(X,100).

“Pulse was modeled using a linear spline with a knot location at 50.

Net benefit
0.02 0.03 0.04 0.05

0.00 0.01

T T T T T T
0.0 0.2 04 0.6 0.8 1.0

Threshold

Figure 1 Optimism-corrected (red) net benefit (NB) of the
proposed model and its Bayesian estimator (blue), compared
with the NB of treating all (black) and treating none (gray).
The Bayesian estimation is based on the Bayesian bootstrap
(see the relevant section in the text). The optimism correction
and Bayesian estimates are based on 1000 bootstraps.

that would have been made had the correct risks been
known. As such, prediction uncertainty can result in the
loss of NB. We extended the value-of-information meth-
odology from the decision analysis to the development
phase of the risk prediction models and applied the defi-
nition of EVPI to this context. The proposed develop-
ment EVPI is a scalar metric that quantifies, for a given
risk threshold, the expected loss due to uncertain predic-
tions, with the loss being defined on the same NB scale
as is commonly used to assess the utility of the risk pre-
diction models."" In a case study using data from a clini-
cal trial, we demonstrated how EVPI can be calculated

and interpreted, for example by determining the range of
thresholds within which obtaining a larger development
sample could potentially be warranted. We also showed
how EVPI behaves when the development sample size is
increased. We proposed relative EVPI as a scale-free
metric and outlined a generic bootstrap-based algorithm
for EVPI calculations that can be embedded within
established algorithms for quantifying the optimism of
risk prediction models.

How should these developments be used in practice?
Once the risk model is developed, the investigators need
to decide whether the model is good enough to go to the
next stage (i.e., validation), the model should be aban-
doned, or further model development is required.’ Classi-
cal arguments in decision theory stipulate that under the
conditions of risk neutrality and the absence of irrecover-
able costs associated with implementing a health technol-
ogy, the “adoption decision” and “research decision” are
independent: it is solely the expected NB that should
determine whether to adopt the model or not,** while
value-of-information metrics determine whether further
evidence (e.g., obtaining a larger development sample) is
required. However, model developers as scientists gener-
ally have a preference against seeing their discoveries pro-
ven incorrect or harmful,?> and patients, care providers,
and the general public are on average risk averse.’*>” As
well, there are significant irreversible costs associated
with implementing a risk stratification algorithm only to
abandon it later (updating guidelines, incorporating the
model into electronic health records). Consequently,
uncertainty and the resulting potential for harm become
relevant when deciding whether a model should advance
to the next stage.
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Figure 2 The incremental net benefit curves under current (black) and perfect (red) information (left) and expected value of

perfect information (EVPI; right).

If risk behaviors in the given clinical domain are to be
considered, one can update the decision criterion and
value-of-information equations with explicit formulation
of risk attitudes.”® However, in the early phases of model
development, investigators might be unwilling to make
such judgment calls. We think in this phase what is the
most helpful is general guidance on whether the expected
loss due to prediction uncertainty is low enough that jus-
tifies moving toward model validation. In this context, a
zero EVPI indicates that the currently identified best
decision is the correct one in this patient population.
Similarly, a low EVPI indicates that the potential for
harm with current information is small. Such results can
motivate model developers to focus on the next stage
(e.g., depending on the NB of the model, abandon the
model, or move to validation). On the other hand, when
the EVPI is large, one should not proceed before an
updated model based on a larger development sample is
produced. This invokes the question of what value of
EVPI is large enough to warrant further model

development. Although this is context specific, during
the development phase it might make sense to specify
thresholds on EVPI as general guidance. For example,
an expected loss that is similar to the expected gain by
using the proposed model (i.e., relative EVPI ~2) can
be interpreted as the presence of substantial uncertainty
and potential for harm. Such a threshold on EVPI can
be more relatable than thresholds on statistical metrics
such as calibration or shrinkage, whose implications for
medical decisions are less clear. This approach can thus
potentially lead to stronger consensus among stake-
holders and defendable recommendations by authorities
who formulate best practice standards in predictive
analytics.

The EVPI as defined in this work represents the uncer-
tainty due to the finite development sample, resulting in
uncertainty in the regression coefficients of the prediction
model. Importantly, this EVPI does not represent the
value of knowing the true risk for each individual, which
is also a function of predictors that are unknown,
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Figure 3 Change in expected value of perfect information
(EVP]) (top) and relative EVPI (bottom) as a function of
sample size. Results were generated based on randomly
obtaining samples, without replacement, of a given size.
Results are the average (top) and median (bottom) of 10
independent simulations for each sample size. We discarded
data sets with fewer than 8 events as the glmnet optimizer does
not reliably converge with too few events. For relative EVPI,
the regular bootstrap at 0.01 threshold had a value of 9.7 at
sample size 1000; all other truncated lines (reaching >2.0)
indicate that the median value was +o at smaller sample sizes.

unmeasured, or intentionally left out of the model. It also
does not include uncertainty due to the potentially sys-
tematic differences between the development and the tar-
get population (related to external validation which is
discussed below). However, modifications of this defini-
tion are conceivable that can bring other sources of
uncertainty into consideration. Consider, for example,
that there is a strong predictor in the development sample
that is intentionally excluded because of difficulty in mea-
suring it in practice. If in the Monte Carlo bootstrap
algorithm for producing draws from P(6|D) one includes

this predictor in regression models, the resulting EVPI
combines the expected loss due to the finite development
sample and due to not including the predictor. Similarly,
if there are predictors with missing values, incorporating
the process of imputing such missing values within
Monte Carlo iterations means that the resulting EVPI
represents the loss due to the finite development sample
and due to missing data.

The Bayesian inference underlying EVPI calculations
is based on the assumption that the prior distribution
P(6) and the data model P(D|6) are compatible with the
true data-generating mechanism. Under these assump-
tions, Bayesian posterior distributions are guaranteed to
be calibrated (in contrast with the frequentist inference
where a correct model structure by no means prevents
overfitting).”> These assumptions are similar to the
assumptions that enable value-of-information calcula-
tions in decision analysis: that the model structure is cor-
rect and the probability distributions correctly specify
our uncertainty about the values of input parameters. It
is indeed improbable that these assumptions are fully
met in practice, as both decision-analytic and risk predic-
tion models are simplifications of reality. Nonetheless,
value of information in decision analysis is justified
based on the working assumption that a model that is
good enough for calculating NB is also good enough for
quantifying uncertainty around it. We think this assump-
tion is generally a reasonable one in risk modeling. Nev-
ertheless, this framework should be used with caution
with black-box algorithms such as machine learning
models. Given that such models typically have many free
parameters, the cost of model misspecification can be
high. In general, to what extent value-of-information
quantities are robust against departures from correct
model specification needs to be studied.

The application of value of information in risk predic-
tion can be a fruitful endeavor on many fronts. An
important area of inquiry is the application of this con-
cept to external validation of risk prediction models.
Unlike during model development when the ultimate
goal is to identify the correct model, in external valida-
tion, the goal is to evaluate whether a prespecified model
performs well and thus using it will be beneficial. The
expected gain by perfectly knowing if a prespecified
model is net beneficial in a new population is different
from the expected gain by knowing the correct model in
this population. As such, the validation EVPI is distinct
from the development EVPI proposed in this article and
needs to be pursued independently. Further, the expected
value of sample information is a related metric in deci-
sion analysis that quantifies the expected gain in NB
from conducting a specific study with a given design and
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sample size.® Defining the equivalent of this metric for
risk prediction seems feasible and an immediate exten-
sion of the proposed framework. NB calculations have
been extended from risk prediction models to models
that aim at predicting the benefit of specific interven-
tions,*® and value-of-information methods can conceiva-
bly be extended to such context.

Contemporary approaches toward evaluating uncer-
tainty in risk prediction target prediction error, calibra-
tion, or stability. Despite significant contributions, these
metrics are statistical in nature, as they do not relate pre-
diction uncertainty to the outcome of medical decisions.
Evaluating the NB of a risk prediction has complemented
purely statistical approaches for the assessment of risk
prediction models, in a way that is considered a break-
through in predictive analytics.” We think the assessment
of uncertainty in such models can also be augmented
with a decision-theoretic perspective.
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