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1 | INTRODUCTION

Pecan [Caryaillinoinensis (Wangenh.) K. Koch] is an important woody
nut crop and had raised great attentions these years for its high

Abstract

Carya illinoinensis is rich in phenolic metabolites such as tannins and flavonols, but
both the composition and the distribution of these nutritional constituents in most
pecan organs were still unclear. In this experiment, a comprehensive qualification
and quantification of phenolic metabolites in eight organs of pecan were conducted
for the first time. Ninety-seven phenolic metabolites were identified, in which twelve
were identified for the first time in pecan, including a series of ellagitannins with high
molecular weight. Hydrolysable tannin was the dominant kind of phenolic metabo-
lites in pecan. The metabolic profiles of tannins in pecan were extended. Thirty-three
phenolic metabolites were quantified, among them the highest content was ellagic
acid pentose in testa. From this experiment, we can see that the distribution of phe-
nolic metabolites in pecan was organ-specific, tannins tend to accumulate in pecan
testa with both diverse structures and high contents, while flavonols tend to accu-
mulate in organs such as branch, bark, or leaf. Among all organs, testa contained the
highest content of phenolics, which might play important roles in protecting pecan
kernel from diseases and insects. A massive phenolic metabolites' matrix in differ-
ent pecan organs was built in this experiment, which should be useful for related
researches in the future and help provide a theoretical basis for using these organs
as functional foods.
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phenolic contents (Zhang, Peng, & Li, 2015). It is reported that tree
nuts are among the best sources of natural antioxidants and the
content of antioxidants in pecan nut ranked as the highest of tree
nuts (Wu et al., 2004). Phenolics in pecan kernel were reported to
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have excellent antioxidant capacities (Biomhoff, Carlsen, Anderson,
& Jacobs, 2006; de la Rosa et al., 2014; Prado et al., 2014; Flores-
Cordova et al., 2017; Hilbig, Alves, et al.,, 2018; Jia et al., 2018;
Robbins, Gong, Wells, Greenspan, & Pegg, 2015; de la Rosa, Alvarez-
Parrilla, & Shahidi, 2011; Villarreal-Lozoya, Lombardini, & Cisneros-
Zevallos, 2007), daily consuming of pecan nut is good to chronic
diseases like inflammatory (Robbins, Greenspan, & Pegg, 2016), hy-
perlipoidemia (Dominguez-Avila et al., 2015), and can protect human
brain, blood, and liver from the damage of oxidant (Dominguez-Avila
et al., 2015; Miiller et al., 2013; Reckziegel et al., 2011). Phenolic
metabolites in other organs of pecan trees also play critical roles in
the defense of pathogens, injuries, and environment stresses. Such
as metabolites in pecan leaves might play important roles in the re-
sistant of scab (Lei et al., 2018).

The most important part of pecan is by no means the edible part
of the fruit-the kernel. Pecan fruit consists of pericarp and the seed
(nut). The seed includes the inner flesh kernel and the brown pellicle
wrapped around the flesh which was called testa. The epicarp and
mesocarp were undivided in pecan and together they formed the
shuck, while the shell is the endocarp. Besides kernel, other organs
of pecan trees also have different values and can be used. Pecan
shell is the by-product of food industry. Pecan shells aqueous ex-
tract can protect mice from oxidative damage induced by cigarette
smoke exposure and reduced the locomotor activity and anxiety
symptoms induced by smoking withdrawal (Reckziegel et al., 2011),
it also has hepatoprotective activity against ethanol-induced liver
damage (Miller et al., 2013). The oxidative properties of margarines
supplemented with pecan nutshell extracts, rosemary extract, and
butylated hydroxytoluene (BHT) were investigated, while pecan
nutshell extracts had equally effects with the other two antioxi-
dants and may be considered as a natural product replacement for
the synthetic antioxidant BHT (Engler Ribeiro, de Britto Policarpi,
Dal Bo, Barbetta, & Block, 2017). The antiproliferative and antitu-
mor activity of pecan shells and their relationship with phenolics
were also investigated (de la Rosa et al., 2014; Hilbig, Policarpi, et al.,
2018). Chopped pecan shells were used for making tea in Brazil
and were thought to have the diuretic and digestive effects (Prado
et al., 2014; Engler Ribeiro et al., 2017). Flavonols in pecan bark and
leaf were reported to have antidiabetic and hepatoprotective actives
(Abdallah, Salama, Abd-elrahman, & El-Maraghy, 2011; Gad, Ayoub,
& Al-Azizi, 2007). Many pecan organs besides kernel have the poten-
tial of being used in food or health food industry. The bioactives of
phenolics in different pecan organs had attracted interests and had
been investigated, but the composition and the distribution of these
phenolic constituents in most pecan organs were still unclear.

Similar to walnut, pecan also belongs to waste-heavy materials
for that about 70% of the fruit weights are shells and shucks (Han
et al., 2018). Harvesting pecan nuts produced a lot of shucks, while
cracking pecan nuts produced huge amount of shells. Pecan trees
tend to produce excessive male inflorescence, which easily led to
the over consume of tree nutrition. Remove over-bearing male in-
florescence can protect the tree and will produce by-products.

Pruning and grafting will also produce by-products such as leaves,

branches, and sometimes barks. Active phenolics were contained
in these by-products, but their compositions were not well under-
stood. A comprehensive metabolic investigation of phenolics in vari-
ous organs of pecan is needed for better utilization of each part. On
the other side, the distribution of secondary metabolites in plants
is organ-specific. They usually share the same upstream metabolic
pathway. And then, due to the differences in enzymes activity or
type of each organ, these metabolites tend to have different syn-
thetic and catabolic rates or have different chemical modification
reactions such as methylation or glycosylation, which led to diverse
structures to play diverse functions. So, a comprehensive metabolic
investigation of phenolics in different pecan organs is also needed
for better understanding of the organ-specific distribution of these
active metabolites in pecan.

By far, the phenolics in pecan were mostly studied in kernels
(Gong & Pegg, 2017; Jia et al., 2018; Robbins et al., 2015; Robbins,
Ma, Wells, Greenspan, & Pegg, 2014; de la Rosa et al., 2011), while
studies in shell (Hilbig, Alves, et al., 2018), leaf (Gad et al., 2007,
Ishak, Ahmed, Abd-Alla, & Saleh, 1980; Lei et al., 2018), and bark
(Abdallah et al., 2011) were much less. There is no report of the rest
of the organs. The ultra-high-performance liquid chromatography
coupled with hybrid linear ion trap and Orbitrap mass spectrometer
(UHPLC-LTQ-Orbitrap MS") is the newest mass technic which has
many advantages such as high sensitives and accuracies, while using
ultra-high-performance liquid chromatography coupled with triple
quadrupole mass spectrometer (UHPLC-QQQ-MS") can get a better
result of quantity. In this paper, we used these methods of both rapid
identification and accuracy quantification to get a comprehensive
survey of the distribution of phenolic metabolites in various pecan

organs.

2 | MATERIALS AND METHODS
2.1 | Materials and chemicals

Eight different organs of pecan, including kernel (without testa),
testa, shell, shuck, leaf, branch, bark, and flower (male inflorescence),
were collected in October 2018 (except the flower were in May
2019) at the scientific orchards of the Institute of Botany, Jiangsu
Province and Chinese Academy of Sciences. Samples were collected
from healthy adult trees of cultivar “Pawnee.” Six biological repli-
cates were prepared for each organ, and each biological replicate
contained samples from three trees. After transported back to the
laboratory, the testa was peeled manually from the surface of ker-
nels and was stored at -70°C, so as samples of other parts. Before
use, all samples were powdered and homogenized in liquid nitrogen
with mortars and pestles.

Menthol, acetic acid, n-hexane, acetonitrile (HPLC grade), and
formic acid were purchased from ANPEL Laboratory Technologies.
Standard reference compounds, including (+)-catechin, ellagic acid,
and quercetin, were purchased from Nanjing Spring & Autumn
Biological CO., Ltd.
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2.2 | Sample extraction

Samples were extracted according to the methods of Regueiro
et al. (2014) and Robbins et al. (2014) with slight modifications. The
whole experiment was carried out in a dark room illuminated by a
red light. Pecan samples (500 mg) and 1 ml mixed solution of metha-
nol/water/acetic acid (70/29.5/0.5, v/v/v) were placed together in a
10-ml centrifuge tube, ultrasonic extracted for 5 min on ice bath, and
centrifuged at 8,000 g for 10 min at 4°C (Hettich, Andreas Hettich
GmbH & Co. KG). The supernatants were transferred into clean cen-
trifuge tubes. Then, the mixed solutions were added again into the
tubes with the kernel residues and ultrasonic extracted again with
the same method. The supernatants were combined, and 1 ml n-hex-
ane was added, vortexed for 1 min, centrifuged at 8,000 g for 5 min
at 4°C for the purpose of defat. This defat process was also repeated
again. The methanol layers were collected, combined and stored at

-20°C until further analysis.

2.3 | UHPLC-LTQ-Orbitrap MS" qualification

The phenolic metabolites were separated through an ACQUITY
UPLC HSS T3 column (2.1 mm x 100 mm, 1.8 pm, Waters) on
the Dionex Ultimate 3000 UHPLC system (Thermo Scientific)
at 35°C. The mobile phases were 0.1% (v/v) formic acid (A) and
acetonitrile (B), conducted as optimized procedure: 0-1 min,
95% A; 1-5 min, 95%-83% A; 5-12 min, 83%-70% A; 12-15 min,
70%-58% A. The flow rate was 0.4 ml/min, and the injection vol-
ume was 2 pl. The qualification was performed on the connected
LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific)
equipped with an electrospray ionization source (ESI) source. The
parameters were set as follows: capillary voltage, 3 kV; source
temperature, 120°C; desolvation temperature, 350°C; cone volt-
age, 50 V; cone gas flow, 50 L/hr; desolvation gas flow, 600 L/
hr; Rutin was used as the lock mass. The mass range was m/z
100-2,000.

2.4 | UHPLC-QQQ-MS" quantification

The quantification of phenolic metabolites was performed on the
Waters Acquity UPLC system (Waters, Corp.) using the same column
and chromatographic conditions as used in previous qualification.
Phenolic metabolites were quantified on the AB SCIEX Triple Quad
6500 plus (AB SCIEX Corp.) equipped with an ESI source. The MS
was conducted under multi reaction monitoring (MRM) mode, and
the parameters were set as follows: capillary voltage, 3.5 kV; source
temperature, 150°C; desolvation temperature, 400°C; cone voltage,
50 V; cone gas flow, 50 L/hr; desolvation gas flow, 1,000 L/hr; col-
lision gas flow, 0.15 ml/min. The declustering potential and collision
energy were set to match the MRM of each marker. The dwell time
was automatically set by the MultiQuant software. The raw data

were processed with MultiQuant 3.0.2 software.

2.5 | Total phenolic content

The total phenolic content was measured according to the meth-
ods of our previous report (Jia et al., 2018). Briefly, methanol ex-
tract (10 pl) was mixed with 2 ml of 7.5% (w/v) sodium carbonate and
2.5 ml of 10% (v/v) Folin-Ciocalteu regent, and put in water bath
at 50°C for 15 min in the dark. The reaction solutions were cooled
to room temperature, and then, the absorbance was measured at
760 nm using UV spectrophotometer (Shimadzu UV-2100, Shimadzu
Corporation). Ellagic acid was used as standard reference, and the
results were expressed as milligrams of ellagic acid equivalents (EAE)
per gram of defatted kernel weight (mg EAE g’i). The bland solution
was made by pure methanol and treated along with samples under
the same protocol. All samples were measured in triplicates on three

biological replicates.

2.6 | Antioxidant capacities

2.6.1 | 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free
radical scavenging assay

The antioxidant capacities were firstly measured by the DPPH free
radical scavenging assay according to the methods of previous re-
port (Jia et al., 2018). Briefly, 4 ml of DPPH radical solution (39.43 mg
DPPH in 1 L methanol) was mixed with 10 ul of methanol extract and
kept in dark for 30 min. Then, absorbance was measured at 515 nm
with UV spectrophotometer. The bland solution was made by pure
methanol and treated along with samples under the same protocol.
All samples were measured in triplicates on three biological repli-
cates. Absorbance of blank was subtracted from each sample. Trolox
was used as standard reference, and the results were expressed
as pmol trolox equivalents (TE) per gram of defatted kernel weight
(umol TE g™h.

2.6.2 | 2,2'-Azino-bis (3-ethylbenzothiazoline-6-
sulphonic acid) diammonium salt (ABTS) free radical
scavenging assay

Then, the antioxidant capacities were measured by the ABTS free
radical scavenging assay according to previous reports of Salvador,
Podesta, Block, and Ferreira (2016) and Prado et al. (2013). Briefly,
38.36 mg of ABTS was dissolved in 10 ml deionized water to get the
ABTS™ solution (7.0 mM). Then, the ABTS ™ solution was mixed with
2.45 mM potassium persulphate solution on the ratio of 1:1 (v/v).
The mixture was kept under dark for at least 16 hr and diluted with
ethanol to absorbance of 0.70 + 0.05 at 734 nm with UV spectro-
photometer before use. Then, 40 pl methanol extracts of samples
were mixed with 2 ml ABTS™ solution, and the absorbance was
measured at 734 nm after rested still for 6 min. The bland solutions
were made by pure methanol and treated along with samples under

the same protocol. All samples were measured in triplicates on three
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FIGURE 1 Pecan organs analyzed for phenolic metabolites. (a) K, kernel; T, testa; SL, shell; SK, shuck; BK, bark; BH, branch; L, leaf; F,
flower (male inflorescence); (b) Principal component analysis of the phenolic metabolites (performed with peak areas). n = 5 except testa

(n = 4) and flower (n = 6)

biological replicates. Absorbance of blank was subtracted from each
sample. Trolox was used as standard reference, and the results were
expressed as pmol trolox equivalents per gram of defatted kernel
weight (umol TE g’l).

2.7 | Method validation and statistical analysis

Commercial standard compounds were used to validate the linear-
ity, precision, repeatability, and stability of the optimized method.
At least six appropriate concentrations of standard solution in dupli-
cate were prepared to obtain the linearity. The LOD (limit of detec-
tion) and LOQ (limit of qualification) for each analyte were acquired
at a S/N of 3 and 10, respectively. Six injections of mixed standard
solutions, including the highest, middle, and lowest concentration
of linearity, were used to assess the precision and reproducibility.
Six independent replicates were studied for each sample solution.
Sample stability was assessed by analyzing it at O, 2, 4, 8, 12, and
24 hr. The accuracy of the method was performed by adding the
corresponding marker compounds with high (120% of the known
amounts), middle (same as the known amounts), and low (80% of
the known amounts) levels to 0.25 g of samples analyzed previously.
Triplicate experiments were performed at each level. The average
recoveries were estimated by the formula: recovery (%) = [(amount
found - original amount)/amount added] x 100 (Zhang et al., 2019).
The MS data were processed by the Xcalibur (version 4.1) software,
and PCA was performed by the SPSS (version 18.0) software.

3 | RESULTS AND DISCUSSION
3.1 | Method validation

The liquid chromatographic method had been optimized, and the
final parameters were chosen under the consideration of both sepa-
ration resolution and analytical efficiency. Commercial standard
compounds were used to verify the optimized analytical method

(Table S1). Results showed that the method had good linearity over

wide ranges with regression coefficients (r?) over .99. The LOD
and the LOQ were 0.0009 pg/ml and 0.0029 pg/ml for catechin,
0.0008 pg/ml and 0.0026 pg/ml for ellagic acid, 0.0008 pg/ml and
0.0028 pg/ml for quercetin, respectively. The precision, repeatabil-
ity, and stability of the method were also studies using standard
compounds (Table S2). The low relative standard deviations (RSDs)
demonstrated that this method is precise, repeatable, and stable and

can be used in the following experiment.

3.2 | lIdentification of phenolic metabolites in
different pecan organs

A total of 97 phenolic metabolites have been identified from 8 pecan
organs, including 57 hydrolysable tannins, 19 condensed tannins, 1
complex tannin, 18 flavonols, and 2 other compounds (Figure 1a,
Table 1). There were significant differences in the numbers of me-
tabolites identified in different pecan organs (Table 1). The number
of phenolic compounds identified from leaves was largest among
all organs, followed by testa, while the least phenolic compounds
were identified from shells. This result showed the difference in the
complexity of phenolic compounds among different pecan organs,
similar result can be seen in the principal component analysis (PCA)
too (Figure 1b). The samples of testa and leaf were far from the oth-
ers, which showed the specificity of phenolic compounds in these
organs. The samples of kernel, shell, branch, and bark were close
to each other, which showed the similarity of composition between
them. The phenolic compositions of kernel were quite different from
those of testa. Of the 97 phenolic metabolites, 30 were found in all

organs, 34 in only one organ, and 21 in only two organs (Table 1).

3.2.1 | Identification of hydrolysable
tannins and their distribution

The major phenolic compounds identified were hydrolysable tan-
nins, accounting for about two-thirds of the total number (Figure 2).
Peak 74 with molecular ion at m/z 300.9998 ([M-H]") was identified
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FIGURE 2 UHPLC-LTQ-Orbitrap MS total ion current chromatograms in negative ion mode of eight pecan organs
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as ellagic acid by comparing its fragments with previous reports and
its tp value with standard compound. Ellagic acid pentose (peak 59)
and ellagic acid rhamnoside (peak 85) can be assured by the frag-
ment ion at m/z 301, which represent the ellagic acid aglycone, and
a loss of 132 Da (pentose) and 146 Da (deoxyhexose) in the MS2
spectrum. Methyl ellagic acid derivatives (peaks 69, 76, 83, and 90)
can be recognized by the ions at m/z 315 and loss of a methyl group,
while two sequential losses of methyl groups gave evidence of peak
92 to be dimethyl ellagic acid derivative. According to the fragment
pattern, peak 92 was assigned as dimethyl ellagic acid rhamnoside,
while this is the first report of this compound in pecan. Peak 83 had
the same molecular weight (MW) of 447 with peak 85, but their frag-
ment patterns were different. Peak 83 showed fragment ions at m/z
315 ([M-H-132]", loss of pentose) and 300 ([M-H-132-15]", loss
of pentose and methyl group), indicated that it was methyl ellagic
acid pentose. All these compounds except peak 69 were found in
all organs.

Hexahydroxydiphenoyl (HHDP) group is a basic structure of ella-
gitannins. HHDP-glucose (peaks 1, 2, and 3, [M-H]", m/z 481) were
identified in all organs and they eluted really fast (Figure 2). Seven
metabolites (peaks 9, 12, 13, 15, 18, 23, and 55) were identified as
pedunculagin/casuariin isomer (bis-HHDP-glucose) according to the
corresponded precursor ion at m/z 783 ([M-H]"), with its fragmenta-
tion ions at 481 ([M-H-302]", loss of HHDP) and 301 ([M-H-482]",
loss of HHDP-glucose). These metabolites also distributed in all or-
gans. Peak 6 ([M-H]", m/z 915) was tentatively assigned as ptero-
carinin B, which possessed one more pentose than pedunculagin/
casuariin isomer. This ellagitannin had been found in Pterocarya ste-
noptera and walnut before (Fukuda, Ito, & Yoshida, 2003; Nonaka,
Ishimaru, Azuma, Ishimatsu, & Nishioka, 1989); it was found in sam-
ples of leaves and branches in this experiment, this is the first report
in pecan.

Gallotannins had also been found in the earlier eluents. The
deprotonated molecular ions at m/z 331.0647 and the fragments at
169 indicated that peaks 4 and 5 contained gallic acid and hexose
moieties. Peak 4 had only been detected in leaf sample, while peak 5
only in male inflorescence sample.

More hydrolyzed tannins identified in pecan were more com-
plicated and mixed with both HHDP and galloyl groups. Peaks 42
and 44 ([M-H]", m/z 469) were identified as valoneic acid dilactone,
which contained one ellagic acid moiety (m/z 301 in MS? spectrum)
and one gallic acid moiety (loss of 168 in MS? spectrum) conju-
gated with C-C bond. They were found only in pecan leaves in this
experiment.

Metabolites detected at m/z 585 (peaks 88 and 91) and m/z 599
(peaks 93, 95, 96, and 97) were assigned as ellagic acid galloyl pen-
tose and methyl ellagic acid galloyl pentose, respectively.

On the basis of HHDP-glucose (m/z 481), metabolites with one
to three galloyl substituents were found at m/z 633 (peaks 31 and
35), 785 (peaks 25 and 38), and 935 (peaks 34, 50, 64, and 67) and
were assigned as strictinin/isostrictinin isomer, tellimagrandin |, and
casuarinin/casuarictin isomer. This is the first report of casuarinin/

casuarictin isomer in pecan. Casuarinin and previous mentioned

casuariin were first isolated from Casuarina stricta (Okuda, Yoshida,
Ashida, & Yazaki, 1982), and they were widely distributed in many
species including Juglandaceae families (Okuda, Yoshida, Hatano,
Yazaki, & Ashida, 1980) and were building blocks of C-glycosidic tan-
nins (Okuda, Yoshida, Hatano, & Ito, 2009).

On the basis of pedunculagin/casuariin isomer (bis-HHDP-glu-
cose, m/z 783), metabolites with one and two galloyl substituents
were found at m/z 933 (peaks 17, 40, 48, and 54) and 1,085 (peaks
78 and 82) and were assigned as glansrin C and eucalbanin A/cornu-
siin B isomer. Glansrin C and eucalbanin A/cornusiin B isomer had
been detected from walnut before (Regueiro et al., 2014), and this is
the first report of these two tannins in pecan. Peaks 19, 22, and 37
produced [M-H] ions at m/z 951 and had similar series of ions at m/z
783, 633, 481, and 301 in MS? spectrum, indicated they contained
an extra group of gallic acid and they were assigned as praecoxin A/
platycariin isomer.

One more galloyl group linked to the HHDP unit will form valo-
neoyl, tergalloyl, or macaranoyl groups (Okuda et al., 2009). Peaks 7
and 8 had the deprotonated molecularion ((M-H]") at m/z 649.0694,
with its fragments at m/z 605 ((M-H-44]", loss of carboxyl), 481([M-
H-168]", loss of gallic acid) and 301, were identified as valone-
oyl-glucose, though tergalloyl-glucose or macaranoyl-glucose were
also possible. Through analysis of the fragmentation patterns, peaks
51 and 58 ([M-H]", 1,103) can be assigned as rugosin C/glansrin
A isomer which contained one more valoneoyl group on the basis
structure of strictinin/isostrictinin isomer. This is the first report of
rugosin C/glansrin A isomer in pecan.

Peaks 26 and 29 generated [M-H]™ ions at m/z 1,067 and gave
fragment ions at m/z 933 ((M-H-134]", loss of pentose) showed the
existence of an extra pentose on the basis of glansrin C. Combined
this information with literature reports, they were determined to
be pterocarinin A. This compound had been found in walnut before
(Regueiro et al., 2014), while this is the first report in pecan.

Several ellagitannins were identified through their doubly
charged ions ([M-H]%) which were confirmed by the isotopic
peaks (Figure 3), such as peak 32 showed [M-2H]* ion at m/z
707.0638 indicated its MW of 1,415. Meanwhile, the fragment
jons at m/z 1,114, 934, 783, 633, 481, and 301 in MS? spectrum
showed that it was composed of two ellagitannins, casuarinin/ca-
suarictin isomer, and HHDP-glucose (Figure 4). This ellagitannin
was identified as tris-O-degalloyl rugosin F isomer and was found
in pecan testa and kernel in this experiment. Peaks 45 and 49 gen-
erated doubly charged ions at m/z 858.0762 [M-2H]?" and similar
fragment ions at m/z 933, 783, 633, 481, and 301. This meant that
these ellagitannins had a MW of 1,717 and were composed of two
structures, tellimagrandin | and glansrin C, so they were identified
as reginin A/D isomer. This ellagitannin was found only in pecan
testa in this experiment. The MW of peak 70 is the highest among
the peaks we identified. Its doubly charged ion was found at m/z
934.0767 [M-2H]?", indicating that its MW was 1,869. Through
the analysis of fragment ions, it was found that this ellagitannin
was composed of tellimagrandin | and eucalbanin A/cornusiin B

isomer, so it was identified as heterophylliin D. All these high MW
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FIGURE 3 The doubly charged ions of heterophylliin D (a), reginin A/D isomer (b), and tris-O-degalloyl rugosin F isomer (c)
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FIGURE 5 Deduced metabolic pathway of part of the hydrolysable tannins in pecan organs. Different colors of metabolites represented
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ellagitannins were reported the first time in pecan. Through this
study, the tannin profile and each route of tannin metabolic path-
way of pecan had been expanded (Figure 5), which laid a founda-

tion for future researches and uses.

3.2.2 | Identification of condensed tannins and their
distribution

A series of condensed tannins were identified in these organs.
Peak 27 (t, = 5.28 min) was assured as (+)-catechin, the basic build-
ing blocks of CTs, by the molecular ion at m/z 289.0726 and com-
paring with commercial standard. This compound was found in all
organs. The (epi)catechin gallate (peak 79) was only found in testa
at 8.79 min in minimum quantity and cannot be found in other or-
gans. There were two kinds of linkage between the building blocks
of procyanidins, in which B type is more common because of less
space resistant. Five metabolites (peaks 20, 21, 24, 43, and 52)
were identified as procyanidin dimer B linkage (PD2B) according to
the deprotonated molecular ion at m/z 577 ([IM-H]") and the frag-
ment ion at m/z 289 ([M-H-288, loss of a catechin moiety]’). Peaks
20 and 43 were found in all organs. Two metabolites (peaks 72 and
89) were identified as procyanidin dimer A linkage according to the
molecular ion at m/z 575 ([M-H]’), two hydrogen atoms less than
PD2B. They can only be found in branch, testa, and bark. Peak 14
was also procyanidin dimer but contained one (epi)catechin and
one (epi)gallocatechin. Procyanidin trimer (peaks 10, 30, and 46),
tetramer (peaks 33, 36, and 47), and pentamer (peaks 53, 62, and
71) were also identified, in which pentamer were only found in

shuck.

3.2.3 | ldentification of flavonols and their
distribution

Allflavonoid metabolites identified in this experiment were flavonols,
and most of them were eluted in the later part of elutes. There were
three types of flavonol aglycones, quercetin, azaleatin, and caryatin,
which contained their identical fragment ions at m/z 301, 315, and
329 in the MS? spectrum, respectively. One tricky problem about
flavonol identification in pecan is they have similar MW with el-
lagic acid, methyl ellagic acid, and dimethyl ellagic acid derivatives.
Luckily, the high-accuracy MW can solve these problems.

For example, the high-accuracy MW of peaks 56 and 60 ((M-H]"
477.10) can help us discriminated them from peaks 69 and 76 ((M-H]~
477.06), their structures were determined as azaleatin hexoside
instead of methyl ellagic acid hexoside according the MW and the
fragment ions at m/z 315. It is reported that the galactosides eluted
earlier than its corresponding glucosides (Abad-Garcia, Berrueta,
Garmon-Lobato, Gallo, & Vicente, 2009), so peak 56 was tentatively
assigned as azaleatin galactose, and peak 60 was tentatively assigned
as azaleatin glucoside. Ishak et al. had isolated a series of azaleatin

glycosides from pecan branch including glucoside, rhamnoside,

arabinoside, diglucoside, and rutinoside (Ishak et al., 1980), and their
structures were elucidated with NMR method, so this is the first re-
port of azaleatin galactose in pecan, and this is also the first report
of azaleatin glucoside in pecan bark.

The high-accuracy MW also helped us to identify peak 81 (exper-
imental MW 433.0792) and 84 (experimental MW 433.0784) to be
quercetin pentose (C,,H,0, ,, theoretical MW 433.0771) instead of
ellagic acid pentose (peak 59, C,,H,,O,,, theoretical MW 433.0407).
Similarly, peaks 73, 75, and 77 were assigned as quercetin hexosides
(C,4H,00,,, theoretical MW 463.0877) according to their high-ac-
curacy MW 463.09, instead of ellagic acid hexoside (C,,H,,O,,,
theoretical MW 463.0513). Peaks 57, 61, 66, and 68 ([M-H]", 615)
were assigned as quercetin galloyl hexoside instead of ellagic acid
galloyl hexoside. A series of quercetin glycosides had been isolated
from pecan leaves and elucidated with NMR method, including glu-
coside, rhamnoside, arabinoside, galactoside, and galloyl galactoside
(Abdallah et al., 2011; Gad et al., 2007; Ishak et al., 1980).

The molecular ion at m/z 329 and the fragment ions at m/z 314
and 301 of peak 87 were consistent with the dimethyl ellagic acid
(C¢H1oOg, theoretical MW 329.0297) which had been reported in
pecan kernel, but the experimental MW of 329.0671 denied this
deduction, instead it complied with caryatin (C17H14O7, theoretical
MW 329.0661).

The high-accuracy MW of both peaks 63 and 86 were 447.09,
suggested their molecular formula to be C,,H,,0,,. Combined with
information of fragment ion at m/z 315, peak 63 can be tentatively
assigned as azaleatin arabinoside, which had been previously re-
ported in pecan branches (Ishak et al., 1980). Peak 86 had the same
molecular formula but different structure, the fragment ion at m/z
301 suggested it contained a quercetin aglycone and a rhamnoside;
therefore, it was assigned as quercetin rhamnoside, which had been
reported in pecan leaves (Gad et al., 2007). Azaleatin arabinoside
had been found in branch and bark, while quercetin rhamnoside
had been found in all organs. So, there were four peaks (peaks 63,
83, 85, and 86) had similar MW of 447, but their structures were all
different with each other, which were azaleatin arabinoside, methyl
ellagic acid pentose, ellagic acid rhamnoside, and quercetin rham-
noside. With powerful tools of both the high-accuracy MW and the
fragment patterns in MS? spectrum, we can discriminate complicate
phenolic metabolites with similar structures in pecan organs clearly
and efficiently.

Flavonoids reported in pecan previously were all isolated from
pecan leaves, branches or barks, their structures were elucidated
by NMR methods, so this is the first report of identifying them in
other organs and this is also the first report of identifying them
with LCMS method. Through comprehensive survey of pecan or-
gans, some distribution patterns of flavonols in pecan were found
(Figure 6). The flavonol aglycones quercetin, azaleatin, and caryatin
found in pecan have similar structures, methylation of the 6-hydroxy
group of quercetin forms azaleatin, and further methylation of the
3-hydroxy group of azaleatin forms caryatin. A lot of flavonols can
only be found in bark, leaf, or branch, especially azaleatin derivatives

and caryatin derivatives. These results might indicate that more
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FIGURE 6 The distributions of
flavonols in pecan organs. K, kernel;
T, testa; SL, shell; SK, shuck; BK, bark;
BH, branch; L, leaf; F, flower (male
inflorescence)
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methylations might occur in organs which had more chances to face
biotic stresses like insects or diseases.

3.2.4 | ldentification of other phenolic
compounds and their distribution

The structure of peaks 28 and 41 ([M-H]", 1,207) was much special,
they were identified as complex tannins, which means a flavonol-
based motif linked with ellagitannins through C-C bond (Okuda
et al., 2009). By analysis of the fragmentation pattern, they were
identified as stenophyllanin A/B isomer, which contained two
HHDP, one galloyl and one epicatechin groups. This is the first re-
port of this complex tannin in pecan. Brevifolin carboxylic acid (peak
39) and neochlorogenic acid (peak 16) were also assigned according
to their high-accuracy MWs, fragmentation patterns and compared
with literature reports (Regueiro et al., 2014). Neochlorogenic acid
was found only in pecan leaf in this experiment, and this is the first

report of this compound in pecan.

3.3 | Content

In order to get more accurate result, we use the UHPLC-QQQ-MS"
equipment with MRM mode to carry out the quantitative analysis
(Table 2). The precursor and product ions of selected compounds
for MRM quantification were showed in Table S3. Catechin and el-
lagic acid were quantified with standard compounds. Other pheno-
lics were semi quantified with catechin and ellagic acid according

to their structural characteristics, which means that ellagic acid

derivatives using ellagic acid as reference, while condensed tannins
and flavonols using catechin.

Several phenolics' contents were really high in pecan, such as
ellagic acid pentose in testa (2,882.85 nug/g), ellagic acid rhamnoside
in branch (2,590.89 ug/g) and testa (1,727.29 ug/g), HHDP-glucose
in testa (1,161.76 ug/g), and caryatin in branch (1,156.38 ug/g).

The predominant phenolics in different pecan organs were dif-
ferent, such as the top five phenolics in pecan testa were ellagic acid
pentose (2,882.85 ug/g), ellagic acid rhamnoside (1,727.29 ug/g),
HHDP-glucose (peak 3, 1,161.76 pg/g), HHDP-glucose (peak 1,
957.46 pg/g) and pedunculagin/casuariin isomer (1,161.76 nug/g),
while the top five in bark were caryatin (665.17 pg/g), methyl ellagic
acid (42.56 pg/g), methyl ellagic acid glucose (14.15 ug/g), ellagic
acid pentose (9.65 pug/g), and ellagic acid rhamnoside (4.80 ug/g),
but ellagic acid pentose was one of the top five phenolics in all
organs.

The total content of hydrolysable tannins was significantly
high in pecan testa (9,786.08 ug/g), branch (3,871.19 ug/g), leaf
(1,949.78 ug/g), and kernel (1,261.41 pg/g), but low in bark and shuck.
The total content of condensed tannins was much lower than that of
hydrolysable tannins, their content was varying from 190.71 pg/g to
1.79 ng/g, highest content appeared in testa, while lowest in flower.
Combined with previous qualification results, we can see that tan-
nins tend to accumulate in pecan testa with both diverse structures
and high contents.

The distribution of flavonols was much different with tannins,
they were the prevailing phenolics in branch (1,223.18 nug/g), bark
(667.80 ng/g), and leaf (308.64 ug/g), but rare in testa (10.04 ug/g)
and kernel (3.29 pg/g). This result consisted with previously re-

ports while most flavonols were isolated and identified firstly from
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(Continued)

TABLE 2

Phenolic

Peak
No.

Flower

Leaf

Branch

Bark

Shell Shuck

Testa

Kernel

metabolites

0.20 +£0.05
5.27 +0.50

0.33+0.15

1,156.38 + 378.92

0.69 +0.11

665.17 + 127.07
0.17 £ 0.01

6.23 +0.83
5.38 + 1.59

16.19 +14.73
0.11 + 0.06

1.04 +1.00
0.44 +£0.11

2.30+1.59
0.07 + 0.07

Caryatin

87
75

57.33 £ 9.57

Quercetin

hexoside

23.61 +3.37

250.46 + 31.17

66.04 +4.90

3.10 + 0.40 0.48 +0.25 4.86 +1.18 2.46 +0.39

0.38+0.13

Quercetin

86

rhamnoside

29.15

16.47 667.80 1,223.18 308.64

16.96

3.29 10.04

Total content of

flavonols

592.20

9,986.83 1,139.55 284.49 750.95 5,101.41 2,274.75

1,278.04

Total content of

phenolics quantified

with LCMS

XU ET AL

24.96 + 5.74

26.00 + 2.95

23.72 +2.52 11.79 + 3.30

4.84 +0.90

44.00 +5.91

132.27 + 24.87

11.39 + 5.08

Total phenolic content
(mg EAEg™)

547.28 + 127.39 496.82 + 190.15

721.54 + 64.70

416.54 + 179.51 243.38 + 28.32

271.81+16.48

109.63 + 25.03

269.21 + 863.34
439.00 + 90.36

3

435.93 + 624.49

2

71.49 +20.43

DPPH (umol TE g%)
ABTS (pmol TE g™

119.02 + 125.70

s

407.17 + 324.07 1

1,

020.05 +175.43

1,

,860.77 3,

493.96 + 1

8,

182.85 + 27.13

+4.52

pecan branch, bark or leaves (Abdallah et al., 2011; Gad et al., 2007;
Ishak et al., 1980). The highest content among flavonols appeared
at 1,156.38 pg/g of caryatin in branch, followed by 665.17 ug/g of
caryatin in bark and 250.46 ug/g of quercetin rhamnoside in leaf.
Combined with previous results, we can see that flavonols tend to
accumulate in organs such as branch, bark, or leaf in pecan with both
diverse structures and high contents.

The total content of all phenolics quantified with LCMS was
highest in testa, so were the TPC and antioxidant capacities
(Table 2), all these results indicated that pecan testa contained
high concentration of phenolics. Such high concentration of
phenolics plays important roles in protecting pecan kernel from
invasion of diseases and insects. The total content of phenolics
quantified with LCMS was lowest in shuck, so was the TPC. The
TPC and antioxidant capacities of pecan shell were also relatively
high, which is consistent with previous results. At present, the re-
search on antioxidant capacities of pecan is limited to kernel and
shell (Biomhoff et al., 2006; de la Rosa et al., 2011, 2014; Prado
et al,, 2013, 2014; Flores-Cordova et al.,, 2017; Hilbig, Alves,
et al., 2018; Jia et al., 2018; Robbins et al., 2015; Villarreal-Lozoya
et al., 2007; Wu et al., 2004). Although there were some differ-
ences among different research results due to the differences of
producing areas, varieties, and extraction methods, the antioxi-
dant capacities of shell were higher than that of kernel in all re-
ports, about 5-7 times of that of kernel. In this experiment, we
separated the testa from kernel, which provided a more accurate

result of different pecan organs.

4 | CONCLUSIONS

The composition and distribution of phenolic metabolites in eight
different pecan organs were analyzed for the first time. A rapid
qualitative method of LTQ-Orbitrap MS and an accurate quantita-
tive method of QQQ MS were established. Ninety-seven phenolics
were identified from eight pecan organs. Twelve phenolics were
identified for the first time in pecan, including dimethyl ellagic
acid rhamnoside, pterocarinin B, glansrin C, casuarinin/casuarictin
isomer, pterocarinin A, eucalbanin A/cornusiin B isomer, rugosin
C/glansrin A isomer, stenophyllanin A/B isomer, tris-O-degalloyl
rugosin F isomer, reginin A/D isomer, heterophylliin D, and neo-
chlorogenic acid. With the help of high-accuracy MW, phenolic
metabolites with similar MW and structures in pecan organs can
be discriminated more clearly and accurately. Because the previ-
ous researches were mainly focused on pecan kernels, so this is the
first report of many phenolic metabolites in other organs. The con-
tents of thirty-three phenolics were determined under MRM mode.
Combined with the previous qualification, the compositions of
phenolic metabolites in different pecan organs were more clearly.
A massive phenolic metabolites' matrix in different pecan organs
was built in this experiment, which should be useful for related re-
searches in the future and help provide a theoretical basis for using

these organs as functional foods.
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