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Abstract
Phenological traits of plants, such as flowering time, are linked to growth phase transition.

Thus, phenological traits often influence other traits through the modification of the duration

of growth period. This influence is a nuisance in plant breeding because it hampers genetic

evaluation of the influenced traits. Genetic effects on the influenced traits have two compo-

nents, one that directly affects the traits and one that indirectly affects the traits via the phe-

nological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear

regression models. Consequently, if a phenological trait is modified by introgression or edit-

ing of the responsible genes, the phenotypes of the influenced traits can change unexpect-

edly. To uncover the influence of the phenological trait and evaluate the direct genetic

effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorpo-

rating a nonlinear influence of the phenological trait. We applied the NSE to real data for cul-

tivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length

(CL) as the influenced trait. This showed that CL of the cultivars that showed extremely

early heading was shortened by the strong influence of DH. In a simulation study, it was

shown that the NSE was able to infer the nonlinear influence and direct genetic effects with

reasonable accuracy. However, the NSE failed to infer the linear influence in this study.

When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the

genetic effects more accurately. In such cases, however, by comparing the NSE and OLM

using an information criterion, we could assess whether the nonlinear assumption of the

NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the

NSE in revealing the phenotypic influence of phenological traits.

PLOS ONE | DOI:10.1371/journal.pone.0148609 February 9, 2016 1 / 17

OPEN ACCESS

Citation: Onogi A, Ideta O, Yoshioka T, Ebana K,
Yamasaki M, Iwata H (2016) Uncovering a Nuisance
Influence of a Phenological Trait of Plants Using a
Nonlinear Structural Equation: Application to Days to
Heading and Culm Length in Asian Cultivated Rice
(Oryza Sativa L.). PLoS ONE 11(2): e0148609.
doi:10.1371/journal.pone.0148609

Editor: Paul C. Struik, Wageningen University,
NETHERLANDS

Received: August 30, 2015

Accepted: January 20, 2016

Published: February 9, 2016

Copyright: © 2016 Onogi et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The C source codes
for the NSE and OLM, the phenotypic records, and
the analysis results are provided at https://dataverse.
harvard.edu/dataset.xhtml?persistentId = doi:10.
7910/DVN/SK7JVV.

Funding: This study was supported by JSPS
KAKENHI Grant Numbers 25252002, 14J10661 and
15H04436, and by a grant from the Ministry of
Agriculture, Forestry and Fisheries of Japan
(Genomics for Agricultural Innovation, NVR-0002).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148609&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://dataverse.harvard.edu/dataset.xhtml?persistentId�=�doi:10.7910/DVN/SK7JVV
https://dataverse.harvard.edu/dataset.xhtml?persistentId�=�doi:10.7910/DVN/SK7JVV
https://dataverse.harvard.edu/dataset.xhtml?persistentId�=�doi:10.7910/DVN/SK7JVV


Introduction
Phenological traits of plants, such as flowering time and days to maturity, are tightly linked to
growth phase transition. It is well established that phenological traits have causal influences on
other traits through the modification of the duration of growth period. These causal influences
result in phenotypic correlations between the phenological traits and the influenced traits. For
example, significant phenotypic correlations between the days to flowering and other agro-
nomic traits have been reported for rice [1–4], wheat [5, 6], sorghum [7, 8], meadow fescue [9],
and cotton [10]. The days to maturity in soybean often correlate with other traits including
seed yield [11, 12]. These phenotypic correlations suggest a causal influence of the phenological
traits. However, it is usually unclear to what extent such correlations are explained by the influ-
ence as the correlation also can be generated by genetic factors (pleiotropic effects of genes or
linkage disequilibrium (LD) between monotropic genes) and environmental factors.

The influence of the phenological trait is a nuisance in plant breeding because it hampers
genetic dissection and evaluation of the influenced traits [4]. The genetic effects (major gene
and polygenic effects) on the influenced traits contain two components, one that directly affects
the traits and one that indirectly affects the traits via the phenological trait. These cannot be
distinguished by phenotypic evaluation or by ordinary statistical methods. Consequently, with
respect to genetic dissection, the influence of the phenological trait causes the quantitative trait
loci (QTLs) responsible for the phenological traits to be identified as the candidate QTLs of the
influenced traits [2–4]. However, it is unclear whether the identified QTLs control the influ-
enced traits directly or indirectly (i.e., via the phenological trait). With respect to the genetic
evaluation, because the direct genetic effects on the influenced traits are contaminated by the
effects on the phenological trait, the phenotypes of the influenced traits can change unexpect-
edly when the phenological trait is modified by introgression or editing of the responsible
genes. Thus, uncovering the influence of the phenological trait and purifying the genetic effects
concealed by the phenological trait are important in plant breeding.

The causal relationships between traits can be evaluated statistically using multiple trait
regression models encompassed in structural equation models (SEMs). These are comprehen-
sive regression models for complex and multivariate data. In general, SEMs consist of two com-
ponents: structural equations that describe the relationships between the latent variables, and
measurement equations that combine the latent variables with the observed variables [13]. A
structural equation is characterized by the dependent variables that are used as explanatory
variables for other dependent variables. Such an equation can be used to infer the causal influ-
ence of a trait on other traits. In the case of the phenological trait, the phenotypic values of the
phenological trait are used both as the dependent variables and the explanatory variables of the
influenced traits. An example of a structural equation in which two traits are involved is,
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where yi, P and yi, A are the phenotypic values of line i of the phenological and influenced traits
P and A, respectively, λ represents the magnitude of the influence of the phenological trait, ui, P
and ui, A are the “direct” genetic effects on each trait, and ei, P and ei, A are the residuals. If the
influence λ is not modeled explicitly as in the ordinary regression models, the genetic effect on
trait A is contaminated by the effect on the phenological trait P. That is, we obtain λui, P + ui, A
as the genetic effect on trait A. To date, several studies in plant and animal breeding have used
structural equations to infer the causal influences between traits; for example, between yield
component traits and the yield in wheat [14] and between somatic cell score/mastitis and milk
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yield in dairy cattle [15–17]. However, structural equations have not yet been applied to pheno-
logical traits.

A major drawback of a structural equation, such as illustrated in Eq (1), is that it cannot
consider the nonlinear relationships between the traits. However, phenological traits can have
nonlinear influences. Various environmental factors, including the climatic conditions and the
amount of available nutrition, would change in addition to the timing of growth phase transi-
tions as the phenological traits change. These factors may affect the development or emergence
of other traits in a complex manner. Consequently, these factors can result in the influences of
the phenological traits being nonlinear. In SEMs, parametric [18] and semi-parametric [19]
approaches have been proposed to model the nonlinear relationships between the latent vari-
ables included in the structural equations. A complementary approach is to use basis expansion
such as B-spline [20]. Although, in SEMs, B-spline has been used to model the nonlinearity
between the dependent (endogenous) and explanatory (exogenous) variables [21, 22], it has
not been used for the relationship between the dependent variables.

This study developed a nonlinear structural equation (NSE) to uncover the phenotypic
influence of the phenological traits on other traits and to infer the direct genetic effects on the
influenced traits. The influence was modeled using B-splines to allow nonlinear relationships
between the phenological traits and the influenced traits. We applied our method to days to
heading (DH) and culm length (CL) of the 110 rice cultivars (Oryza sativa L.) evaluated at four
locations. Because DH of rice is linked to the growth phase transition from vegetation to repro-
duction, CL is often influenced by DH. However, the genetic evaluation of CL is usually con-
ducted without considering this influence [23]. Thus, the major gene and polygenic effects on
CL were expected to be “contaminated” by the effects on DH. The objectives of the real data
analysis were to infer the influence of DH on CL and to infer the direct major genes and poly-
genic effects on CL. We also analyzed data sets simulating the real data. The objectives of this
simulation analysis were to assess how accurately the NSE inferred the nonlinear influence of
DH and the direct genetic effects on CL, and to assess the robustness of the inference of the
NSE when the influence was linear or there was no influence.

Materials and Methods

Plant materials
We used 110 japonica rice cultivars including 20 landraces (S1 Table). DH and CL had been
evaluated over multiple years at four locations; at the National Agriculture and Food Research
Organization (NARO) Institute of Crop Science (NICS) in 2004 and 2005; at the National
Institute of Agrobiological Sciences (NIAS) in 2008; at the Food Resources Education and
Research Center (FRERC) of Kobe University in 2009; and at the NAROWestern Region Agri-
cultural Research Center (WARC) over seven consecutive years (2006–2012). Geographical
and climatic information and seedling and transplanting dates are presented in S2 Table. Two
replications per cultivar were available at FRERC and one replication was available at the other
locations. We averaged the phenotypic records across the years at NICS andWARC and across
the replications at FRERC. The Pearson correlation coefficients of the phenotypic values
between the years and the replications were generally high; on average, 0.98 (DH) and 0.93
(CL) (S3 and S4 Tables). Two cultivars, “Norin 18” and “Nihonmasari”, were not evaluated at
NIAS. The cultivar “Yukara” was not evaluated at WARC in 2010. The DH and CL records at
WARC in 2006–2011 were used in our previous study assessing the accuracy of genomic pre-
diction in rice [24]. The measurement methods of the phenotypes are described in that previ-
ous study [24].
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Among the 110 cultivars, seven cultivars (“Kirara397”, “Hoshinoyume”, “Yukihikari”,
“Hayamasari”, “Hatsushizuku”, “Yukara” and “Eiko”) were improved in Hokkaido, which is
the northernmost region in Japan, and two cultivars (“Akage” and “Bozu”) were the landraces
considered to be unique to this region (S1 Table). These cultivars are considered to have little
photosensitivity to adapt to the cold climate of Hokkaido. In fact, they showed extremely short
DH in all the locations used in this study (Fig 1) because the experimental fields were located at
lower latitudes than Hokkaido (S1 Table) and the climates were warmer. We refer to these nine
cultivars as the early-heading cultivars. The early-heading cultivars showed shorter CL than
the other cultivars, suggesting DH had a causal influence on CL in these cultivars. We expected
that the NSE would infer this known influence correctly. However, the influence of DH was
less clear in the other cultivars, and the aim of the proposed method was to infer the unknown
relationship between the traits in these cultivars.

Marker information and major gene genotypes
Genotypes of 3,102 genome-wide bi-allelic markers were available for the cultivars [24]. The
details of DNA extraction, genotyping, and the marker information were provided in the previ-
ous study report [24].

Genotypes of five heading date genes and SD1 had been determined (S1 Table): for Hd6
[25],Hd16 [26], and Hd17 [27], genotypes of a bi-allelic polymorphism were determined for
each gene. Genotypes of two bi-allelic polymorphisms were determined for Ghd7 [28]. For
Hd1, seven haplotypes were constructed from nine polymorphisms. Because “Aikoku” and
“Taichung 65” had unique polymorphisms on the gene, the haplotypes of these cultivars were
unique to them. Because it was difficult to infer the effect of a singleton mutation, we assigned
to the two cultivars the haplotype Hd1.2 consisting of the same polymorphisms except for the
unique polymorphisms. Thus, there were five Hd1 haplotypes in total. The genotypes of three
polymorphisms in the SD1 gene, which were originally harbored by three cultivars, “Reimei”,
“Jikkoku”, and “IR8”, respectively [29], were also determined (S1 Table). The major gene
effects are reported as twice the inferred allele substitution effects. The alleles of “Koshihikari”
were used as the references (i.e., the estimated effect of the “Koshihikari” allele was always
zero).

Nonlinear structural equation
For each cultivar i, the NSE is written as,
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where yi, DH and yi, CL denote the phenotypic values of DH and CL, respectively, L (yi, DH) rep-
resents the phenotypic influence of DH, which is assumed to be a function of yi, DH, xi, DH and
xi, CL are vectors containing the intercepts (1) and the genotypes (0 or 1) of the major gene
polymorphisms of line i, βDH and βCL are vectors containing the regression coefficients, ui, DH
and ui, CL are the additive genetic effects of line i, and ei, DH and ei, CL are the residuals. The phe-
notypic values were adjusted for their mean values such that the averages of yi, DH and yi, CL
were calculated as zero. xi, DH contains the genotypes of all the heading date gene polymor-
phisms (Hd1,Hd6,Hd16,Hd17, and Ghd7), whereas xi, CL contains the genotypes of both the
heading date and SD1 gene polymorphisms. This NSE is illustrated graphically in Fig 2. Hereaf-
ter, we refer to βCL and ui, CL as the direct genetic effects on CL.
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Fig 1. Phenotypic values of days to heading (DH) and culm length (CL) in each location (left panels)
and the trajectories of the influence of DH on CL estimated by the nonlinear structural equation (right
panels). The x- and y-axes of the left panels are DH (d) and CL (cm), respectively. Triangles and solid circles
indicate the cultivars (“Kirara397”, “Hoshinoyume”, “Yukihikari”, “Hayamasari”, “Hatsushizuku”, “Yukara” and
“Eiko”) and the landraces (“Akage” and “Bozu”) adapting to Hokkaido. The x- and y-axes of the right panels
are DH (d) and the influence of DH on CL (cm/d), respectively. The red solid and dashed lines indicate the
posterior means of the influence of DH and the 95% quantile lines of the posterior distributions, respectively.
The dotted lines indicate zero (no influence).

doi:10.1371/journal.pone.0148609.g001
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We applied the cubic spline to model L (yi, DH);

Lðyi;DHÞ ¼
XM
m¼0

Pm�
4
mðyi;DHÞ;

where Pm is the weight of themth basis function �4
m with order four. We setM = 7, indicating

that eight basis functions were included in the model. As the number of basis functions
increased, a more complex (meandering) trajectory could be depicted. However, because it was
unlikely that the phenotypic influences of the phenological traits would become too meander-
ing, we adopted a relatively small number (eight). A basis function of cubic spline is defined
using five consecutive knots. Thus, the total number of knots was 12; the first and last four
knots were arranged repeatedly at the points that were the lower and upper limits of DH,
respectively; these repeated knots defined the boundaries of the B-splines [20], and the remain-
ing four knots were arranged between these two points at equal intervals. The interval separat-
ing these four knots was determined as follows: the smallest yi, DH value was arranged at the
middle between the first point (the point where the first four knots were arranged) and the next
knot. Similarly, the largest yi, DH value was arranged at the middle between the last point (the
point where the last four knots were arranged) and the preceding knot. The positions of the

knots and the knot interval were determined for each location. The definition of �4
m followed

that by Hastie et al. [20].
We also fitted an ordinary bi-trait linear model (OLM) to the data. This did not contain the

term representing the phenotypic influence of DH, i.e., the first term on the right hand side of
Eq (2). Note that, when OLM is fitted to the data when the influence of DH on CL actually
exists, i.e., L (yi, DH) is not equal to zero, the direct genetic effects (βCL and ui, CL) cannot be esti-
mated accurately because the genetic effects on DH (βDH and ui, DH) contaminate the effects on

Fig 2. A graphical representation of the nonlinear structural equation.U and E denote the polygenic
effect and residual error, respectively. The circles for U and E indicate that these nodes are unobservable,
while the rectangles of the other nodes indicate that these are observable. The polymorphisms of the heading
date genes were assumed to affect both days to heading (DH) and culm length (CL), whereas the
polymorphisms on SD1 gene were assumed to affect only CL. The phenotype of DH (yi, DH) was assumed to
influence the phenotype of CL (yi, CL) though the function L, which was modeled using B-spline.

doi:10.1371/journal.pone.0148609.g002
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CL. We compared the NSE and OLM using the widely applicable information criterion
(WAIC) [30]; this is recommended by Gelman et al. [31] to select models in terms of their pre-
dictive ability. Lower WAIC values indicate greater power at predicting the phenotypic values
(yi, DH and yi, CL). The NSE and OLM were each fitted to the data for each location.

Parameter estimation
Parameters were inferred using a Markov chain Monte Carlo (MCMC) method. The prior dis-
tribution of the additive genetic effects was a multivariate normal distribution MVN(0, G�
K), where G is the genetic variance-covariance matrix and K is the genomic relationship matrix
calculated from the genome-wide markers using the A.mat function of the R package rrBLUP
[32, 33]. The prior distribution of the residuals was MVN(0, R� I), where R is the residual var-
iance-covariance matrix and I is an identity matrix with the size of the number of cultivars.
The prior distributions ofG and R were inverse Wishart distributions with four degrees of free-
dom and with scale matrices that were half of the phenotypic variance-covariance matrix,
which resulted in the expectations for these distributions being the same as the scale matrices.
We assigned non-informative prior distributions to the overall means and major gene effects.
The prior distributions of the weights of the basis functions were as follows

P0 e Nð 0; 1000s2
P Þ

P1 e Nð 0; 1000s2
P Þ

Pm e Nð 2Pm�1 � Pm�2; s2
P Þ for m � 2

where N denotes the normal distribution and s2
p is the variance. The prior distribution of Pm

form�2 is equivalent to assuming ðPm � Pm�1Þ � ðPm�1 � Pm�2Þ e Nð 0; s2
p Þ. The prior dis-

tribution of s2
p is a non-informative scaled inverse-chi-square distribution. The weights were

inferred using a Metropolis update procedure, which is illustrated in the Appendix. The other
parameters were inferred using Gibbs sampling, treating the phenotypic values of CL adjusted
for the influence of DH (i.e., yi, CL−L(yi, DH)yi, DH) as the dependent variable [34]. The number
of iterations was 1.1 × 106 with the first 0.1 × 106 iterations discarded as burnin, and the sam-
pling interval was 100. The prior distributions of the OLM were the same as those of the corre-
sponding parameters of the NSE. The parameters of the OLM were inferred using Gibbs
sampling with the MCMC conditions the same as those for the NSE. Major gene effects were
judged to be non-significant if 0 lay within the 0.025 and 0.975 quantiles of the MCMC sam-
ples. The calculation was performed using a program written in C language.

Simulation analysis
To assess the validity and accuracy of the inference by the NSE, we conducted simulation anal-
yses based on the parameter values estimated in the real data analyses. We considered three
simulation schemes. First, the posterior means of the parameters of the NSE (Pm, βDH, βCL, ui,
DH, ui, CL, and R) at each location were used to simulate data sets. By generating random residu-
als using R, 20 data sets were created for each location. We ensured that the yi, DH values cre-
ated did not exceed the lower and upper limits defined by the knots in the real data analyses. In
the second and third schemes, the posterior means of the parameters of the OLM (βDH, βCL, ui,
DH, ui, CL, and R) at each location were used to simulate data sets. In the second scheme, the
influence was assumed to be linear; L (yi, DH) was set to 1.2 for all yi, DH. In the third scheme, it
was assumed that DH did not influence CL, i.e., L (yi, DH) = 0 for all yi, DH. In both the second
and third schemes, 20 data sets were created for each location by generating random residuals
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using R. We analyzed these simulated data sets using the NSE and OLM. The prior distribu-
tions of these methods were determined as described earlier (Parameter estimation).

Results

Phenotypic correlation
Means of the observed DH and CL values and Pearson correlation coefficients between these
traits are presented in S5 Table. DH was generally shorter at WARC than at the other locations
because of the lower latitude and warmer climate (S2 Table). CL at WARC was also shorter
than that at the other locations. The correlation coefficients were relatively high (>0.5) in all
the locations, suggesting phenotypic influence of DH on CL.

Real data analysis
We fitted the NSE to the data at each location. The inferred influence of DH on CL was positive
for the early-heading cultivars at each location (Fig 1). Because the DH and CL values were
adjusted so that their means were zero, the early-heading cultivars had negative DH values.
Thus, the positive estimated influence of DH on CL for the early-heading cultivars indicates
that early heading resulted in short CL. At NICS, however, the influence of DH became nega-
tive as DH increased. At WARC and NIAS, the influence almost vanished at DH� −5 and 0,
respectively. At FRERC, the influence was the most durable and vanished at DH� 10. In sum-
mary, the phenotypic influence of DH on CL was prominent for the early-heading cultivars,
whereas the influence became more vague for the later-heading cultivars.

The positive influence of DH means that the polygenic and major gene effects on CL
inferred using the OLM were contaminated by the effects on DH. The contaminated effects
were expected to be purified using the NSE. In Fig 3, the major gene effects estimated by the
NSE and OLM are compared. The estimated gene effects on DH hardly differed between the
methods. In contrast, differences were observed particularly in the effects on CL estimated for
Hd1.4,Hd1.5, Ghd7_SNP, and Ghd7_Indel. In the results of the OLM, these polymorphisms
have large negative effects on CL. It is reasonable that the effects were negative because the
non-reference alleles at Hd1.5 and Ghd7_SNP were unique to the early-heading cultivars (S1
Table); two early-heading cultivars had the non-reference allele at Ghd7_Indel, and the culti-
vars with the non-reference allele atHd1.4 showed earlier heading at each location (e.g., the
centered DH value was −11.0 on average at NICS). Consequently, these polymorphisms had
large negative effects on CL because of the phenotypic influence of DH on CL. When the influ-
ence of DH on CL was removed using the NSE, the negative effects of these polymorphisms on
CL diminished (Fig 3). This suggests that the phenotypic influence of DH on CL enhanced the
magnitude of these polymorphism effects on CL.

Fig 3 shows a comparison of the polygenic effects of the early-heading cultivars. Similar to the
results for the major gene effects, the polygenic effects on DH hardly differed between the meth-
ods. In contrast, differences were observed in the polygenic effects on CL, particularly in the
seven improved cultivars of the early-heading cultivars; the polygenic effects estimated by the
NSE tended to be greater than those estimated by the OLM. This tendency was reasonable
because of the following reasons: in the results of the OLM, the estimated polygenic effect on CL
consisted of two components, the direct effect on CL (ui, CL in Eq 2) and the indirect effect on CL
via the influence of DH on CL (L (yi, DH) × ui, DH). The latter component was negative because
the polygenic effect on DH (ui, DH) was negative, and the influence of DH on CL (L (yi, DH)) was
positive. Thus, after removing this latter component by modeling the influence of DH on CL
using the NSE, the polygenic effects increased. However, we also observed a contrary tendency in
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Fig 3. Major gene effects and polygenic effects of the early-heading cultivars estimated by the nonlinear structural equation (red) and the ordinary
bi-trait linear model (gray) in the real data analyses.Major gene effects, which were not significant (P < 0.05), are represented by the outlined bars. The
early-heading cultivars include the seven improved cultivars (“Kirara397”, “Hoshinoyume”, “Yukihikari”, “Hayamasari”, “Hatsushizuku”, “Yukara”, and “Eiko”)
and the two landraces (“Akage” and “Bozu”).

doi:10.1371/journal.pone.0148609.g003
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the two landraces of the early-heading cultivars, “Akage” and “Bozu”, which showed lesser effects
on CL in the NSE analyses. We were not able to find any reason to explain this phenomenon.

We compared the NSE and OLM using mean log likelihood and WAIC (Table 1). The
mean log likelihood of the NSE was larger than that of the OLM except at WARC. Similarly,
the WAIC values of the NSE were lower than those of the OLM except at WARC, suggesting
the superior predictive ability of NSE over OLM at all the locations except for WARC.

Simulation analyses
We conducted simulation analyses to assess how accurately the NSE inferred the phenotypic
influence of DH and the direct major gene and polygenic effects on CL. We considered three
simulation schemes that differed in the phenotypic influence of DH on CL: nonlinear influences,
a linear influence (L (yi, DH) = 1.2 for all yi, DH), and no influence (L (yi, DH) = 0 for all yi, DH).
The inferred trajectories of the influence of DH are shown in Fig 4; the correlation coefficients
between the true and estimated L (yi, DH) values are presented in Table 2. The NSE was able to
infer the trajectory of the nonlinear influence accurately, particularly at NICS and NIAS. In
contrast, the NSE failed to detect the linear influence at all the locations (Fig 4). When no influ-
ence was simulated, the inferred trajectories did not greatly deviate from zero at any DH value
(Fig 4).

As the NSE considers the influence of DH on CL in its model, it was expected to infer the
direct major gene and polygenic effects on CL more accurately than the OLM. Indeed, when
nonlinear influences were simulated, this was the case (Table 2). In contrast, when the linear
influence or no influence was simulated, the accuracy of the NSE tended to be inferior to that
of the OLM. The differences in accuracy between these methods were clearly reflected by the
differences in WAIC; the WAIC values for the NSE were clearly lower than those for the OLM
when the nonlinear influence was simulated, whereas the values for the NSE were similar to or
greater than the values for the OLM when simulating the linear influence or no influence.
These results suggest the WAIC was useful for assessing whether the NSE was an appropriate
model for the data sets analyzed.

Discussion
We proposed a NSE, based on B-spline, to infer the nonlinear phenotypic influence of a pheno-
logical trait on other traits. We applied the NSE to DH and CL of cultivated rice and clarified
the trajectories of the influence of DH on CL. The NSE enabled the estimation of direct major
gene and polygenic effects on CL concealed by the influence from DH. The simulation study
showed that the NSE was able to infer the nonlinear phenotypic influence of DH with reason-
able accuracy although the sample size in this study was relatively small (110, in total).

Table 1. Model comparison in real data analysis.

Location Nonlinear structural equation Ordinary bi-trait linear model Delta WAICa

Mean log likelihood WAIC Mean log likelihood WAIC

NICS −572.27 1272.93 −592.11 1310.20 −37.26

NIAS −555.79 1235.35 −573.82 1273.30 −37.95

FRERC −561.08 1249.90 −571.95 1270.40 −20.49

WARC −510.19 1149.77 −507.63 1144.31 5.46

aThe widely applicable information criterion (WAIC) value of the nonlinear structural equation subtracted from that of the ordinary two-trait linear model.

Negative delta WAIC values suggest the superior predictive ability of the nonlinear structural equation.

doi:10.1371/journal.pone.0148609.t001
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However, the NSE failed to infer the linear influence. When no phenotypic influence was simu-
lated, the ordinary multiple-trait linear model, OLM, tended to infer genetic effects more accu-
rately. However, the simulation study also shows the possibility of assessing whether the
nonlinear assumption of NSE was appropriate for the data analyzed by comparing the WAIC
values between the NSE and OLM.

The reason why NSE failed to detect the linear influence is probably related to an issue of
parameter identifiability. In Eq (2), if L (yi, DH) is replaced by a scalar value λ, the parameters λ
and the residual covariance are not identifiable because only a single information source, the
phenotypic covariance between the traits, is available to determine these two parameters. To
ensure identifiability between λ and the residual covariance, a constraint is required. A typical
constraint is fixing the residual covariance to zero, which produces a sufficient rule of parame-
ter identifiability called the “recursive rule” by Bollen [13]. In the NSE, however, the weight
parameter Pm and residual covariance were identifiable without constraints on the residual
covariance. In the real data analysis, the correlation of the MCMC samples between the weights
and the residual covariance was weak; the mean (SD) Pearson correlation coefficients were
−0.19 (0.12), −0.23 (0.09), −0.17 (0.09), and −0.20 (0.12), at NICS, NIAS, FRERC, and WARC,

Fig 4. Trajectories of the influence of the days to heading (DH) on culm length (CL) estimated by the nonlinear structural equation (NSE) in the
simulation analyses.We conducted three simulation schemes: “Nonlinear influence” where the nonlinear influences of DH on CL estimated in the real data
analyses were used to simulate data sets; “Linear influence” where the influence was set to 1.2 for all DH values; and “No influence” where there was
assumed to be no influence (i.e., zero). In each scheme, 20 data sets were simulated using the real data analysis results at each location and analyzed using
the NSE. In each scheme at each location, the estimated trajectories of the influence of DH are superimposed with gray lines, and the true trajectory (value)
of the influence is indicated by the red line. The dashed lines indicate zero (no influence).

doi:10.1371/journal.pone.0148609.g004
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respectively. When the parameters are not identifiable, we usually observe a high negative cor-
relation between the MCMC samples; for example, it can reach −0.996 [35]. Although prior
information can temper identifiability in a Bayesian analysis, it was confirmed that the weight
parameters and the residual covariance were identifiable when a non-informative Wishart dis-
tribution was assigned to the residual covariance; the correlation coefficients were −0.15 (0.10),
−0.10 (0.06), −0.09 (0.03), and −0.21 (0.12), at NICS, NIAS, FRERC, andWARC, respectively.
We speculate that the mechanism for this identifiability of NSE is as follows: when the pheno-
typic influence of DH is nonlinear, the weight parameter values differ from each other. These
weights parameters generate L (yi, DH) values unique to cultivars, which would yield the pheno-
typic covariance between the traits unique to the cultivars. This would increase the information
sources to determine the weights and residual covariance, and would make these parameters
identifiable. In contrast, when the influence was linear, i.e., L (yi, DH) was a single value for all
yi, DH, the phenotypic covariance was a constant among the cultivars. Consequently, the
parameters became unidentifiable, and thus the NSE probably failed to detect the linear trend.
When we simulated data sets with linear influences and no residual covariance, the NSE suc-
cessfully detected the linear trajectory by imposing the constraint of being zero on the residual
covariance (data not shown). The validity of assuming no residual covariance would be case-
dependent. However, we should be cautious about imposing such a strong constraint. In this
study, the estimated residual covariance was positive at all the locations; the posterior means
(SD) were 6.68 (4.66), 6.47 (4.24), 5.23 (3.41), and 4.83 (2.59) at NICS, NIAS, FRERC, and
WARC, respectively. Thus, if the residual covariance is not taken into account, the estimate of
phenotypic influence will be overestimated.

Table 2. Summary of the simulation analysis.

Schemea Location Mean (SD) correlation coefficients between the estimated and true values Mean (SD) delta WAICe

L (yi, DH)b ui, CL
c βCL

d

NSE NSE OLM NSE OLM

Nonlinear NICS 0.97 (0.02) 0.87 (0.02) 0.79 (0.03) 0.95 (0.03) 0.89 (0.03) −76.76 (30.03)

NIAS 0.98 (0.02) 0.85 (0.05) 0.74 (0.06) 0.88 (0.11) 0.31 (0.07) −61.64 (27.10)

FRERC 0.90 (0.10) 0.93 (0.02) 0.87 (0.03) 0.94 (0.05) 0.90 (0.02) −43.95 (18.74)

WARC 0.82 (0.16) 0.89 (0.03) 0.87 (0.03) 0.94 (0.03) 0.90 (0.03) −14.90 (12.05)

Linear NICS 0.65 (0.07) 0.72 (0.05) 0.87 (0.03) 0.89 (0.02) −0.08 (18.80)

NIAS 0.32 (0.11) 0.40 (0.10) 0.83 (0.03) 0.84 (0.02) 6.54 (12.22)

FRERC 0.64 (0.07) 0.64 (0.06) 0.86 (0.04) 0.88 (0.02) −2.17 (8.69)

WARC 0.64 (0.10) 0.67 (0.08) 0.92 (0.03) 0.93 (0.02) 4.76 (11.41)

No influence NICS 0.86 (0.03) 0.88 (0.02) 0.94 (0.04) 0.97 (0.02) 5.03 (11.14)

NIAS 0.81 (0.03) 0.85 (0.03) 0.93 (0.05) 0.97 (0.02) 5.58 (8.18)

FRERC 0.88 (0.02) 0.90 (0.02) 0.90 (0.11) 0.98 (0.01) 0.43 (11.58)

WARC 0.87 (0.03) 0.90 (0.02) 0.96 (0.03) 0.99 (0.01) 3.10 (8.90)

aIn each scheme, 20 data sets were simulated using the results of real data analysis at each location and analyzed using the nonlinear structural equation

(NSE) and the ordinary bi-trait linear model (OLM); Nonlinear, assumed a nonlinear influence of days to heading (DH) on culm length (CL); Linear, L (yi,
DH) was set to 1.2 for all yi, DH; No influence, L (yi, DH) was set to 0 for all yi, DH.
bThe phenotypic influence of DH on CL of each cultivar.
cPolygenic effects of each cultivar on CL.
dMajor gene effects on CL.
eThe widely applicable information criterion (WAIC) value of NSE subtracted from that of OLM.

doi:10.1371/journal.pone.0148609.t002
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In the real data analysis, the WAIC supported the superiority of the OLM only at WARC
(Table 1). If we follow the simulation results, two explanations can be considered: either there
was a linear influence between DH and CL or no influence existed. However, we have con-
cluded that the following explanation is more likely. Because the phenotypic influence as DH
increased vanished earlier at WARC than at the other locations (Fig 1), inference of the influ-
ence of DH on CL using the NSE would not be easy at WARC and inference with the OLM
would not be severely exacerbated by the influence of DH. This explanation was supported by
the results of the simulation scheme that assumed a nonlinear influence. The mean correlation
between the true and inferred L (yi, DH) values was lowest in the simulation for WARC(0.82,
Table 2), suggesting the difficulty of inference using the NSE. Furthermore, the difference in
WAIC values between the methods was lowest at WARC (mean delta WAIS = −14.90,
Table 2), suggesting the relatively better performance of the OLM. In addition, among the 20
replications, we observed a replication with a positive delta WAIC value (9.10), although the
trajectory of the influence of DH was successfully inferred (the correlation between the true
and inferred L (yi, DH) values was 0.92).

In the real data analyses, for all the locations, the inferred trajectories of the phenotypic
influence of DH on CL showed a decreasing trend as DH increased. The influence on the early-
heading cultivars was positive for all the locations, suggesting that early heading shortened the
CL of these cultivars. Only at NICS, the influence became negative as DH increased, suggesting
that later heading was also attributable to shorter CL at this location. Although the exact reason
is unclear, we speculate that the environmental conditions encountered by the later heading
cultivars, such as temperature, solar radiation, and available nutrition, might not be suitable for
growth and/or heading. At the other locations, the influence of DH became less prominent as
DH increased, suggesting that the influence was vague for the late-heading cultivars.

By removing the phenotypic influence of DH, the direct effects of Hd1.4,Hd1.5, Ghd7_SNP,
and Ghd7_Indel on CL decreased (Fig 3). However, these polymorphisms still had non-zero
effects on CL. Although the effects were insignificant for all the locations, this insignificancy
was probably due to the relatively larger posterior variances of the gene effects estimated by the
NSE than by the OLM. Thus, the results from the NSE suggest a possible direct effect of these
polymorphisms on CL. Hd1 is involved in flowering via the regulation of Hd3a [36]. Although
this gene’s involvement on panicle development has been reported [37], there have been no
reports of its direct effect on CL. Our results suggest direct effects but further studies are
required to confirm this. Ghd7 is thought to be involved in flowering by regulating the expres-
sion of Ehd1 and Hd3a [28]. However, the expression of Ghd7 was observed in organs that
seemed unrelated to flowering, such as the stems at booting stage, suggesting the possibility
that Ghd7 is also involved in the growth of the culm by processes other than via modification
of the vegetative period [28]. In addition, Weng et al. [38] reported that Ghd7 regulates the
expression level of the GA2-oxidase gene OsGA2ox6, which controls the plant’s height, suggest-
ing direct effects of Ghd7 on CL. Thus, the non-zero effects of Ghd7_SNP and Ghd7_Indel on
CL are consistent with these previous reports. Among the heading date genes, Hd6 showed sig-
nificant effects on CL in all the locations.Hd6 encodes a casein kinase II α-subunit, and con-
trols the flowering time as an enhancer of the repressor activity ofHd1 toHd3a [25, 39].
Although the involvement of this gene in development and elongation of culm has not been
reported, our results suggest this to be a possibility.

Among the early-heading cultivars, the polygenic effects on CL of the seven improved culti-
vars (“Kirara397”, “Hoshinoyume”, “Yukihikari”, “Hayamasari”, “Hatsushizuku”, “Yukara”,
and “Eiko”) tended to increase by removing the phenotypic influence of DH. Using the estima-
tion results of the major gene and polygenic effects and the nonlinear influence of DH, the NSE
can predict CL when the heading data genes are modified. For example, suppose that the non-
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reference alleles on Ghd7_SNP of the early heading cultivar, “Kirara397”, are modified to the
reference (Koshihikari’s) alleles. When the modified genotype is cultivated at FRERC, DH
would be prolonged for approximately 35 days because of this modification (Fig 3). As a result,
the influence of DH would reduce from 0.60 to 0.48 cm/day and the expected deviation of CL
from the overall mean (92.5 cm, S4 Table) would be 9.9 cm. In contrast, when the results of the
OLM are used, it would be −1.2 cm. This information would be helpful for a finer-scale design
of new genotypes. Although the difference (between 9.9 and −1.2 cm) does not seem large
because of the relatively large posterior variance (uncertainty) of the parameters, the posterior
variance probably decreases as the sample size increases.

Because genetic resources used in plant breeding usually consist of lines/cultivars adapting
to diverse environments, they often show great genetic variation in the phenological traits that
have a major role in local adaptation. Consequently, field experiments at a location cannot
evaluate the genetic effects of the cultivars/lines that do not adapt to the location because they
are masked by the influence of the phenological traits. This phenomenon was observed for the
early-heading cultivars in the present study. However, it is suggested that the genetic effects
concealed by the phenological traits at the target location can be evaluated by applying the
NSE. Thus, the NSE could enhance the value of genetic resource in plant breeding.

Appendix

Metropolis algorithm to infer the weights of the basis function
The weights of the basis function, Pm (0�m� 7), were inferred using the following Metropo-
lis algorithm.

(1) Generate a proposal value P�
m from a normal distribution NðPm; s2

prop Þ where Pm is the

value at the current iteration and s2
prop is set to 0.04.

(2) Accept P�
m with the probability,

min 1;
PðP�

mÞ
PðPmÞ

Y
i

Lðyi;DH ; yi;CLjP�
m; P�m; βDH; βCL; ui;DH; ui;CL;RÞ

Lðyi;DH ; yi;CLjPm; P�m; βDH; βCL; ui;DH; ui;CL;RÞ

" #

where P and L indicate the prior density of Pm and likelihood functions, respectively, and P−m
indicates the weights except for Pm. The likelihood function is illustrated by Eq 37 in [34]. It is
notable that a change of Pm does not affect the likelihood of all the cultivars because the corre-
sponding basis function is 0 if yi, DH is located outside the five knots that define the basis func-
tion. Thus, in the acceptance probability above, we need to evaluate the likelihood only for the
cultivars that are located within the knots.

(3) Replace Pm with P�
m if accepted. In our experience, the acceptance rate was 0.40–0.60.
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