
GigaScience, 6, 2017, 1–10

doi: 10.1093/gigascience/gix082
Advance Access Publication Date: 23 August 2017
Data Note

DATA NOTE

Proteomic landscape of the primary somatosensory
cortex upon sensory deprivation
Koen Kole1,2,†, Rik G.H. Lindeboom3,†, Marijke P.A. Baltissen3,
Pascal W.T.C. Jansen3, Michiel Vermeulen3, Paul Tiesinga2

and Tansu Celikel1,∗

1Department of Neurophysiology, 2Department of Neuroinformatics, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University, Heyendaalseweg 135, 6525 HJ, Nijmegen, the Netherlands and
3Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert
Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
∗Correspondence address. Tansu Celikel, Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University,
Heyendaalseweg 135, 6525 HJ, Nijmegen, the Netherlands. Tel: +31 024 36 52633; Fax: +31 024 36 52633; E-mail: celikel@neurophysiology.nl
†Equal contribution

Abstract

Experience-dependent plasticity (EDP) powerfully shapes neural circuits by inducing long-lasting molecular changes in the
brain. Molecular mechanisms of EDP have been traditionally studied by identifying single or small subsets of targets along
the biochemical pathways that link synaptic receptors to nuclear processes. Recent technological advances in large-scale
analysis of gene transcription and translation now allow systematic observation of thousands of molecules simultaneously.
Here we employed label-free quantitative mass spectrometry to address experience-dependent changes in the proteome
after sensory deprivation of the primary somatosensory cortex. Cortical column- and layer-specific tissue samples were
collected from control animals, with all whiskers intact, and animals whose C-row whiskers were bilaterally plucked for
11–14 days. Thirty-three samples from cortical layers (L) 2/3 and L4 spanning across control, deprived, and first- and
second-order spared columns yielded at least 10 000 peptides mapping to ∼5000 protein groups. Of these, 4676 were
identified with high confidence, and >3000 were found in all samples. This comprehensive database provides a snapshot of
the proteome after whisker deprivation, a protocol that has been widely used to unravel the synaptic, cellular, and network
mechanisms of EDP. Complementing the recently made available transcriptome for identical experimental conditions (see
the accompanying article by Kole et al.), the database can be used to (i) mine novel targets whose translation is modulated
by sensory organ use, (ii) cross-validate experimental protocols from the same developmental time point, and
(iii) statistically map the molecular pathways of cortical plasticity at a columnar and laminar resolution.
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Data Description
Context

Sensory experience shapes neural circuits throughout life via
experience-dependent plasticity (EDP). Changes in neural cir-
cuits, in turn, allow the brain to adapt to recent sensory, motor,
and perceptual experiences of animals in their ever-changing
environments.

The rodent barrel cortex, a subfield of the primary so-
matosensory cortex, processes sensory information originating
from whiskers. Each cortical (barrel) column receives the ma-
jority of its sensory input from 1 (so-called principal) whisker,
anatomically delineating the neural circuits associated with
each whisker. Taking advantage of this organizational principle,
previous studies have shown that targeted deprivation of select
whiskers results in weakening of the sensory evoked responses
in synaptic projections originating from barrel cortical layer (L)4
and targeting L2/3 in an experience-dependent manner [1, 2]. In
contrast, corresponding projections in the neighbouring sparing
whiskers’ cortical columns are strengthened [3]. The molec-
ular mechanisms of EDP, however, are still largely unknown.
Understanding how sensory experience shapes neuronal
circuits will benefit from systematic analysis of the transcrip-
tome and proteome following altered sensory experience. In
an accompanying manuscript, we have provided a snapshot
of the transcriptomic changes after 11–12 days of long sensory
deprivation resolved across cortical columns and layers [4].
The database presented herein employs the same sensory
deprivation protocol but focuses on the proteomic changes
across cortical layers of L4 and L2/3 in columnar resolution.

Methods

Animals
All experimentswere performed in accordancewithNational In-
stitutes of Health Guidelines for the Care and Use of Laboratory
Animals and were approved by the Animal Ethics Committee of
the Radboud University in Nijmegen, the Netherlands. Pregnant
wild-type mice (C57Bl6; Charles River, stock number 000664)
(RRID:NCBITaxon 10090) were kept at a 12-hour light/dark cy-
cle with access to food ad libitum. Cages were checked for birth
daily. Experience-dependent plasticity was induced as described
previously [4]. Briefly, at P12, C-row whiskers were plucked
under isoflurane anaesthesia while control animals were not
plucked but anaesthetized and handled similarly (Fig. 1A). An-
imals across groups were housed together with their mothers
until tissue collection at P23-P26.

Slice preparation and sample collection
Tissue samples were collected from acute brain slices as de-
scribed before [4]. In short, pups were deeply anaesthetized us-
ing isoflurane and perfused with ice-cold carbogenated slicing
mediumbefore 400-μmthalamocortical slices [1] were prepared.
Slices were incubated in carbogenated aCSF at 37◦C for 30 min-
utes before they were transferred to a holding chamber contain-
ing carbogenated aCSF at room temperature. Slices remained
in this chamber until cortical layers and columns were isolated
within ∼5–40 minutes.

For sample isolation, slices were placed under a microscope
equipped with Dodt gradient contrast, used for visualization of
the granular segments of the live neocortical tissue, such as the
L4 in the barrel cortex. Visualized cortical columns (A-E) were
separated from each other using a pulled pipette (Sutter In-
struments P-2000), tip size of ∼5 micrometers, serving as a mi-

croneedle. Layers (L) 2/3 and L4were isolated based on the estab-
lished contrast criteria commonly used in electrophysiological
analysis of barrel cortical neurons in acute slices [1, 2].

In the barrel cortex, cortical columns can be grouped by
their relative distance to each other. Cortical columns B and
D, for example, are named as the first-order neighboring corti-
cal columns in respect to the C row column. Similarly, A and E
row columns constitute the second-order neighboring columns.
To increase the sample yield and have single animal resolu-
tion for the proteomic mapping, we pooled the samples within
each layer across B and D, and A and E columns. Immedi-
ately after dissection, tissue samples were placed in Eppendorf
tubes, snap-frozen in liquid nitrogen, and stored at –80◦C until
further use.

In the control group, tissues were collected from 3 separate
mice (biological replicates) whereas the deprived group con-
sisted of 4 animals. Only C-row layers were sampled in the
control animals as the comparison across the C-rows between
control and deprived animals allowed us to directly address
the molecular changes associated with the whisker depriva-
tion. Due to the small tissue sizes, obtaining successful liquid
chromatography–mass spectrometry (LC-MS) runs was techni-
cally challenging. Thus, not all laminar samples from all corti-
cal columns are retained for the full analysis (see Supplemen-
tary Table S1 for the distribution of samples across groups). In
addition to these biological replicates, we ran 10 of the samples
a second time, providing 10 technical replicates.

Lysate preparation and protein digestion
Samples were prepared for mass spectrometry using the filter-
aided sample preparation (FASP) method, as described before
(Fig. 1B) [5]. Briefly, mouse brain tissues were homogenized in
lysis buffer (4% w/v SDS, 100 mM Tris/HCl and 0.1 M DTT, pH
7.6) and incubated at 95◦C for 3 minutes. To shear DNA and re-
duce sample viscosity, samples were ultrasonicated. Samples
were then clarified by centrifugation, after which the proteins
in the extract were denatured using urea buffer (8M urea, 0.1 M
Tris/HCl, pH 8.5) and centrifuge-filtered using 30 kDa filters (Mi-
crocon YM-30). After washing with urea buffer (pH 8.0), proteins
were alkylated with iodoacetamide, followed by washing with
ammonium bicarbonate. Trypsin (Promega Cat#V5280) was ap-
plied to digest the extracted proteins. The resulting peptides
were then collected by centrifugation and desalted using C18
(Empore) StageTips. Given the small sample size, protein yield
was not determined before moving on to mass spectrometry.

Mass spectrometry
Tryptic peptides were separated on an Easy-nLC 1000 (Thermo;
RRID:SCR 014993) using a 214-minute-long gradient of acetoni-
trile (7–30%) followed bywashes at 60%, followed by 95% acetoni-
trile for 240 minutes of total data collection. Mass spectra were
collected on a LTQ-Orbitrap Fusion Tribrid mass spectrometer
(Thermo; RRID:SCR 014992) in data-dependent top-speed mode
with dynamic exclusion set at 60 seconds. Precursor MS spec-
tra were acquired at an m/z range of 400–1500 at a resolution of
120.000 and a target value of 300 000 ions per full scan in the
Orbitrap. MS/MS spectra were acquired in HCD mode using 35%
collision energy, and fragmentation spectra were recorded in the
ion trap.

Data processing
Raw data were analysed using MaxQuant (RRID:SCR 014485)
version 1.5.1.0 with match-between-runs, label-free quantifica-
tion, and intensity-based absolute quantification (iBAQ) enabled.

https://scicrunch.org/resolver/RRID:NCBITaxon_10090
https://scicrunch.org/resolver/RRID:SCR_014993
https://scicrunch.org/resolver/RRID:SCR_014992
https://scicrunch.org/resolver/RRID:SCR_014485
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Figure 1: Overview of the experimental setup, sample collection, and data organization. (A) Pups were bilaterally spared or deprived of their C-row whiskers between
P12 and P23-P26. Whisker deprivation, i.e., plucking, was repeated every third day to ensure that there was no regrowth of the whiskers. (B) Proteins were dena-

tured and purified, followed by on-filter digestion into tryptic peptides, which were subsequently desalted on C18 StageTips and sequenced on a mass spectrometer.
(C) Organization of data files in the database. Colours correspond to the colour code codes in Figs 2, 3, and 5, as well as the MS output file in the Supplementary Data.
Sample codes of 5 digits (e.g., A2.1.1.2) indicate a technical replicate of the sample listed above it (e.g., A2.1.1). See Supplementary Table S1 for mapping of samples to
mouse IDs.
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Dependent peptides were enabled to perform an unbiased
search againstmodifications on the identified peptides. The Ref-
Seq protein sequence database downloaded on 28 June 2016
was used to identify proteins. Identified proteins were filtered
for reverse hits and common contaminants. Contaminant pro-
teins were determined by the MaxQuant software suite and in-
clude proteins that are often introduced during a typical mass
spectrometry experiment such as keratins and trypsin. All other
processing was performed in MATLAB (RRID:SCR 001622) or R
(RRID:SCR 001905) programming languages.

Data validation and quality control
Peptides were assigned to protein groups based on shared pep-
tide sequences, the majority of which consist mainly of unique
peptide sequences (71%) (Fig. 2A). Razor peptides (i.e., peptides
that can be assigned to more than 1 protein but are assigned
to the protein group with the most other peptides, i.e., Occam’s
razor principle) on average made up 13% of the designated pro-
tein groups; non-unique peptides on average constituted 16%.
When testing how much of the total and theoretically observ-
able protein sequence length was identified by the analyses,
we observed for most proteins a good coverage of the theoret-
ically observable peptides (44% on average) (Fig. 2B). Complete
sequence coverage is never achieved, likely because of the re-
maining tryptic peptides being too long or too short to be mea-
sured by mass spectrometry. Since high numbers of peptide
modifications and adducts can interfere with accurate protein
quantification, we assessed the types of peptide modifications
that we could observe on the identified peptides (Fig. 2C and
D). Peptide modifications may occur in vivo but more likely arise
during the sample preparation steps. Reassuringly, the majority
of peptides (98.33%) were found to be unmodified. For 0.96% of
the peptides, we found a modified form with an unannotated
mass shift, while 0.65% of peptides were modified and had a
mass shift that could be annotated to a known peptide modi-
fication (Fig. 2C). In total, we could identify 25 different types
of peptide modifications (Fig. 2D). Of these, the top 3 modifi-
cations were deamidation (38.94%), oxidation (15.53%), and loss
of ammonia (15.48%), which are all common peptide modifica-
tions. Next, we addressed the data quality for individual sam-
ples, which showed that on average 23 489 unique amino acid
sequences (ranging from 13 095 to 72 418) could be identified per
sample (Fig. 2E); the majority of these (>98%) could be assigned
to regular protein groups, excluding reverse hits, contaminants,
or peptides identified only by modification. The reverse hit rate
(i.e., false discovery rate) or the number of proteins that could
only be identified based on a modified peptide was never higher
than 0.7%, suggesting high confidence of protein identification.
Additionally, the number of potential contaminants was low for
all samples (minimum, 29; first quartile, 33; median, 35; mean,
34.52; third quartile, 36; maximum, 38), suggesting high sample
purity (Fig. 2F).

Of the designated protein groups (i.e., protein groups with
a posterior error probability [PEP; confidence of peptide iden-
tification] of <0.01, n = 6245), more than 3000 could be reli-
ably identified in all of our samples (Fig. 3A and B); peptides
in 4676 protein groups could be identified with high confidence
(PEP < 0.0002). Of all identified proteins, 90% of the total pro-
tein content (as determined by intensity-based absolute quan-
tification) [7] was contained in the 979 most abundant proteins
(Fig. 3C). In this dataset, we identified and quantified proteins
over 5 orders of magnitude, suggesting high sensitivity even at
low protein concentrations.

To estimate the variance in protein quantification across
samples, we averaged the number of identified peptides per pro-
tein group, which showed similar distributions across experi-
mental groups (Fig. 3D). Additionally, we have performed 2 dif-
ferent normalizations: (i) averaging the LFQ intensity and copy
number of each protein (as quantified according to the “pro-
teomic ruler” approach [6], which uses the signal intensities of
measured histones as an internal normalization) across samples
within groups (Fig. 3E and F, respectively), and (ii) calculating
the total LFQ intensity or protein mass across proteins within
each sample and averaging across independent samples within
a group (Fig. 3G and H, respectively). In the former, we included
only those proteins that had a protein copy number of non-0.
The results showed that, independent of the method of quan-
tification, the experimental groups were similar to each other,
suggesting that comparisons within protein groups between ex-
perimental groups should not be hampered by systematic dif-
ferences in (inferred) protein abundances. Calculating the total
mass of identified proteins per cell (by dividing inferred pro-
tein copy numbers per cell by Avogrado’s number and multi-
plying by protein mass in kDa) showed that L2/3 cells on aver-
age contain 18.42 ±0.78 picograms of identified protein; this was
12.29 ±1.28 picograms in L4 cells (P = 0.0004, Student’s t test)
(Fig. 3H). The number of identified proteins averaged per group
across layers did not differ (P = 0.6964, unpaired Student’s t test).
Since protein identification rates are likely to be independent
from cortical layer identity, these results suggest that the total
protein levels per cell are lower in L4. To investigate how the 2
quantification methods (i.e., LFQ and proteomic ruler approach)
correspond, we examined the correlation between LFQ inten-
sities and protein copy numbers (Supplemental Fig. S1). The
correlation (R2) between the 2 quantification methods ranged
from 0.76 to 0.80, suggesting good consensus of protein abun-
dance estimation.

We then assessed the distributions of molecular mass (kDa)
and amino acid sequence length of the proteins identified in our
samples. On average, proteins were 71.65 ±82.77 kDa in mass
(Fig. 4A) and had a mean length of 643.63 ±745.27 amino acids
(Fig. 4B). To exclude any bias in protein abundance estimation
based on protein length, we plotted mass or sequence length
against LFQ intensities or estimated protein copy number [5].
This showed only weak, if any, correlations (R2 values < ∼0.005)
between LFQ intensity or copy number and peptide mass or
length, suggesting that proteins of all sizes are equallywell iden-
tified (Fig. 4C, D, E, F).

Next, we examined the variance between samples by calcu-
lating the coefficient of variation (CV) of inferred protein copy
numbers (Fig. 5A) [6]. About 73% of proteins showed a CV of 45%
or less on average.We then employed principal component anal-
ysis (PCA), which showed that 72.5% of variance was explained
by PC1 and 2 and that samples were clustered mostly by cortical
layer (Fig. 5B and C). These analyses were repeated for identi-
fied peptides for each protein group in individual samples, us-
ing different cut-offs of identified peptides (Fig. 3D). When no
cut-off was used (i.e., including proteins identified by at least 1
peptide) (see Fig. 3D for the distribution across all groups), on
average 73.88% of proteins showed a CV of 30% or less (Sup-
plemental Fig. S2A); With a cut-off of 10 identified peptides, a
CV of 15% or less was found for 70.74% of proteins (Supple-
mental Fig. S2B). PCA using both of these cut-offs showed that
samples clustermostly around C column–derived samples. Prin-
cipal components (PCs) 1 and 2 explained 77.6% and 86.5% of
variance, depending on the cut-off value used (Supplemental
Fig. S2C–F).

https://scicrunch.org/resolver/RRID:SCR_001622
https://scicrunch.org/resolver/RRID:SCR_001905


Proteome of the barrel cortex 5

(A) (B)

(C) (D)

(E) (F)

Figure 2: Overview of protein groups, sequence coverage, and peptide modifications. (A) Stack representation of designated protein groups with the mean contents
of unique, razor, and non-unique peptides represented in blue, yellow, and red, respectively. (B) Sequence coverage of identified proteins was plotted as total protein
sequence coverage against coverage of theoretically observable peptides (as determined by MaxQuant). (C) All identified peptides. (D) Identified peptide modifications
with an annotated mass shift. (E) Submitted and identified MS spectra and uniquely identified amino acid sequences per sample. (F) Peptide and protein group

identification confidence per sample. Colour coding corresponds to the experimental groups’ in Fig. 1C.
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(A)

(E)
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Figure 3: Quantification of protein groups across all samples. Control/deprived, C column; first-order spared, B/D columns; second-order spared, A/E columns (see
Fig. 1). (A) Number of observations per protein group in the entire dataset. (B) Confidence of protein group identification across samples. (C) Protein content versus
identified protein groups. For every protein group, all measured iBAQ values are plotted in grey, with the median value in black. (D) Averages and variances of peptides

per protein group in each experimental group. (E) Box plot of LFQ intensity averages across samples within each group. (F) Box plot of protein copy numbers per cell
(inferred as in [6]) averaged across samples within experimental groups. (G) Summed LFQ intensities averaged within experimental groups. (H) Total mass of identified
proteins per cell, averaged within experimental groups. The inferred protein copy number per cell was divided by Avogrado’s number (6.0221409 × 1023) and then
multiplied by the protein mass in kilodaltons (kDa), yielding the total mass of identified proteins per cell.

Since our dataset contains several technical duplicates, we
asked how well they correlate with the biological replicates and
compared identified peptides per protein group and protein copy
numbers of biological and technical replicates (Fig. 6). Biological
samples and their direct technical replicates were highly corre-
lated (R2 ≥ 0.89) (Fig. 6A–C, a and c), which was also found for the
remaining pairwise comparisons (R2 ≥ 0.90) (Supplemental Figs
S3 and S4). These results suggest that samples are highly com-
parable in terms of peptide and protein counts and that the se-
quential nature ofmass spectroscopy does not systematically, or
in statistically appreciably fashion, bias protein quantifications,
at least in our samples.

Re-use potential

The current dataset provides a proteomics view of the
experience-dependent plasticity in the mouse barrel cortex.
Since barrel cortex is a popular model system where sen-
sory processing and experience-dependent plasticity are stud-

ied from molecules to behavior (e.g., [1–3, 8, 10, 12, 13]), this
resource should help to identify some of the molecular under-
pinnings of cortical plasticity. Given the relatively high anatom-
ical resolution at which samples were collected, the current
dataset would also be beneficial in the understanding of molec-
ular constituents of cortical laminar identity and function. It
should be noted, however, that the collected samples contain
the entirety of the cellular population, i.e., are not cell type–
specific. Signals originating from all cell types are thus aver-
aged, which should be considered by researchers reusing this
dataset. The cellular complexity of the samples studied herein
will be particularly useful for those efforts aiming to identify
the neuronal as well as the non-neuronal basis of experience-
dependent plasticity.

A combinatorial approach between proteomics and tran-
scriptomics (e.g., RNA sequencing) [4] is a promising outlook
that could help to identify those molecular targets that are
essential for reorganization of neural networks following sen-
sory deprivation. Proteomics data can help broaden the scope
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(E) (F)
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(C) (D)

Figure 4: Protein quantification is independent from peptide mass or length. Distributions of (A) molecular mass and (B) amino acid sequence length; smaller and
shorter proteins are the most prevalent. When plotting peptide mass or length against protein LFQ intensity (C, D) or protein copy number (inferred as in [6]) (E, F),
weak (if any, see R2 values on figurines) correlations are observed, suggesting that protein abundance estimation is not biased by peptide mass or length (also see
Fig. 2B).

of findings from transcriptomics studies as they can provide
novel insights into post-transcriptional regulation of protein
expression, the time course of protein expression (since pro-
teins typically have a longer half-life than RNAs), and post-
translational modifications that could orchestrate specific pro-
tein functions.

Only a few studies are available that focus on large-scale
molecular changes in neural circuits following sensory depri-
vation [9–10]. As large-scale molecular techniques are becom-
ing more accessible, studies employing them to investigate the
molecular bases of plasticity are likely to follow suit. The phe-
notype of EDP in the barrel cortex depends heavily on the exper-
imental approach used (e.g., enrichment vs deprivation, single
whisker experience vs whole row deprivation, developmental
time points) [12, 13]. The current dataset should prove useful to
validate, expand, and compare the findings of molecular studies
employing different protocols. Moreover, comparing our dataset
with those obtained from other brain regions (e.g., visual cortex,
auditory cortex) would help to determine where previously ob-
served differences in plasticity across different brain [13] regions
might arise.

Availability of the supporting data

Data supporting this work are available in the GigaScience re-
spository, GigaDB [14]. The raw mass spectrometry proteomics
data have been deposited in the ProteomeXchange Consortium
via the PRIDE partner repository [15] with the dataset identifier
PXD005971.

Additional files

Supplemental Figure S1. Correlation between LFQ and protein
copy numbers. Scatter plots of LFQ values (x-axis) and inferred
protein copy numbers [6] (y-axis), showing a linear correlation
between the 2 quantification methods (R2 > 0.75).

Supplemental Figure S2. Variance quantification of individ-
ual samples. (A, B) Cumulative plots of the coefficient of vari-
ance in the number of identified peptides in each experimental
group. Including proteins with at least 1 identified peptide (A),
CVs of 30% or less are found in ∼74%. With an increased cut-off
(10 peptides),∼70% of proteins show aCV of 15% or less (C). (C, D)
Principal component analysis using numbers of identified pep-
tides per protein. With a cut-off of 1 identified peptide, ∼78% of
variance is explained by PC 1 and 2 (B); this is ∼87% when a cut-
off of 10 identified peptides is used (D). (E, F) Cumulative plots
of showing the percent variance explained by each PC. With a
cut-off of 1 identified peptide (C), the first 5 PCs explain ∼83% of
the variance; using a cut-off of 10 peptides (F), this is ∼91%.

Supplemental Figure S3. Distribution of peptides per protein
group in biological and technical replicates. Scatter plots of iden-
tified peptides per protein group from biological and techni-
cal replicates (see Fig. 1C for coding). Red-bordered graphs in-
dicate pairwise comparisons between biological samples and
their direct technical replicate; graphs with black borders con-
tain the remaining comparisons. Overall, a strong linear corre-
lation is observed in pairwise comparisons (R2 = 0.95 ±0.01), in
particular between biological and technical replicate pairs (R2 ≥
0.96 ±0.01). Scale bars correspond to 100 peptides per protein
group.
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(A)

(B)

(C)

Figure 5: Variance quantification of individual samples. (A) Cumulative plot of the coefficient of variation of the inferred protein copy numbers [6] per cell and per
experimental group. On average, ∼73% of proteins show a CV of 45% or less. (B) PCA based on inferred protein copy numbers per cell. PC 1 and 2 explain ∼73% of

variance, and samples cluster mostly based on cortical laminar origin. (C) Cumulative plot of percent variance explained by each PC. The first 5 PCs explain 85% of the
variance.
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(A) (a) (b) (c) (d)

(B)

(C)

Figure 6: Matrix of correlation coefficients of biological and technical replicates. Data from (A) all biological samples and their corresponding replicates combined

across experimental groups and cortical layers, (B) L2/3, and (C) L4. (a, b) Scatter plots showing peptides per protein group (a) or protein copy numbers (inferred copy
numbers per cell (b)) [6] for biological samples (x-axis) and their technical replicates (y-axis). (b, d) Histograms showing differences in identified peptides per protein
group (b) or protein copy numbers (d) between biological and technical replicates. Note that across all samples, the variations between the biological sample and the
technical replicas are small, with Pearson R2 values between 0.89–96.

Supplemental Figure S4. Copy number distribution of biolog-
ical and technical replicates. Log-log plots show protein copy
numbers from biological and technical replicates. Pairwise com-
parisons between biological samples and their direct technical
replicate are indicated by red borders; black borders indicate the
remaining comparisons. As in Supplemental Fig. S2, pairwise
comparisons show high correlations between individual sam-
ples (average R2 = 0.90 ±0.01), which are highest for biological
and technical replicate pairs (R2 = 0.93 ±0.03).

Supplemental Table S1. Origin and distribution of samples.
Colours correspond to those in Fig. 1C. Samples that were run
once are marked X, technically duplicated samples are marked
XX.

Supplemental Table S2. R commands for PCA analysis and
plots.
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