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ABSTRACT: Compared to all-atom molecular dynamics (AA-
MD) simulations, coarse-grained (CG) MD simulations can
significantly reduce calculation costs. However, existing CG-MD
methods are unsuitable for sampling structures that depart
significantly from the initial structure without any biased force.
In this study, we developed a new adaptive CG elastic network
model (ENM), in which the dynamic cross-correlation coefficient
based on short-time AA-MD of at most ns order is considered. By
applying Bayesian optimization to search for a suitable parameter
among the vast parameter space of adaptive CG-ENM, we
succeeded in reducing the searching cost to approximately 10% of those for random sampling and exhaustive sampling. To
evaluate the performance of adaptive CG-ENM, we applied the new methodology to adenylate kinase (ADK) and glutamine binding
protein (GBP) in the apo state. The results showed that the structural ensembles explored by adaptive CG-ENM could be
considerably more diverse than those by conventional ENMs with enhanced sampling such as temperature replica exchange MD and
long-time AA-MD of 1 μs. In particular, some of the structures sampled by adaptive ENM are relatively close to the holo-type
structures of ADK and GBP. Furthermore, as a challenging task, to demonstrate the advantages of the CG model with lower
calculation cost, we applied our new methodology to a larger biomolecule, integrin (αV) in the inactive state. Then, we sampled
various structural ensembles, including extended structures that are apparently different from inactive ones.

■ INTRODUCTION

To elucidate the dynamic behavior of conformational changes
in biomolecules, it is important to understand their
mechanisms of function to facilitate applications in drug
discovery and medical treatment. Experimental and in silico
simulation approaches have been used to investigate the
functional mechanisms. However, even with the development
of experimental technologies related to structural analysis such
as X-ray crystallography, electron cryomicroscopy, and nuclear
magnetic resonance, tracking a series of in-solution behaviors
remains challenging.1 With simulations, calculation costs can
be prohibitive. Concretely, even utilizing the specialized high-
speed supercomputer ANTON,2 all-atom molecular dynamics
(AA-MD) simulations cannot calculate the entire process of
spontaneous large-scale structural changes in macromolecules,
such as the lever-arm motion of the myosin motor,3 which
ranges from milliseconds to seconds, within a realistic
calculation time. Alternatively, coarse-grained (CG) MD
simulation techniques4−6 such as the elastic network model
(ENM) of Tirion7 and an off-lattice Go model such as
AICG,8−10 in which only the degrees of freedom of the Cα
atom for each residue are considered, can reproduce the
dynamics of biomolecules with lower calculation costs. By
applying the multiple-basin11 and domain motion-enhanced

(DoME)12 potential, in which experimental structures prior to
(initial) and following (target) conformational change are used
as references, CG-MD has succeeded in reproducing the large-
scale conformational changes between the initial and target
structures of macromolecules such as the transporter AcrB.13

However, under the condition that only the initial structure is
given, CG-MD retains the critical limitation of being unable to
efficiently explore target structures that are structurally distant
from the initial conformation. In particular, the structures
sampled by conventional CG-ENM tend to be trapped or
localized around the initial and reference structures.7,14,15

To overcome these problems, in this study, we developed a
new adaptive CG-ENM that can effectively explore the target
structure and sample various structural ensembles based on the
initial structure without using any structural information of the
target. The basic concept behind our method is that an
appropriate assignment of interactions with different strengths
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between residue pairs, which constitute the building blocks of
an ENM, will enable wider sampling while maintaining the
overall structure. In this study, we attempt to determine the
appropriate weights for this adaptive elastic network from the
dynamic cross-correlation coefficient map (DCCM)16,17 based
on the results of a short AA-MD starting from a given initial
structure. One of the limitations of this strategy is the existence
of numerous candidates for the weights of the adaptive
network, rendering it difficult to determine the appropriate
parameters. Therefore, this study introduces a parameter
search based on Bayesian optimization (BO)18−20 to search
efficiently for suitable parameter candidates for structural
sampling. As a result, we searched for a suitable parameter set
for adaptive ENM by applying BO yielding drastically reduced
exploring cost, being approximately 10% of the cost required
by random sampling (RS).
To evaluate the performance of adaptive ENM, we applied

our methodology to the apo-state structure of two kinds of
proteins, adenylate kinase (ADK)21 and glutamine binding
protein (GBP),22 that also have other structural states as a holo
state. The results reveal that the structural ensembles sampled
by adaptive CG-ENM are considerably more diverse than
those sampled by the temperature replica exchange MD
(TREMD)23 of conventional CG-ENM and those sampled by
conventional AA-MD for 1 μs order. In particular, some of the
structures sampled by adaptive CG-ENM resemble the target
holo-type structure.
Finally, as a challenging task, to demonstrate the advantages

of the CG model with lower calculation cost, we applied our
new methodology to a larger biomolecule, integrin (αV), in a
V-shaped inactive state.24 After efficiently exploring a suitable
parameter set with BO, we successfully sampled various
structural ensembles, including V-shape bent and extended
structures, assumed to be similar to one in the active state.
However, the whole x-ray crystal structure in an active state
remains unresolved.24

■ MATERIALS AND METHODS
Our new adaptive CG-ENM can be achieved according to the
flowchart shown in Figure 1 and consists of three main steps as
follows. In step 1, short-time AA-MD starting from the initial
structure with the evaluation of DCCM for each residue pair is
conducted to capture the dynamic domains25 composed of the
rigid and flexible domains in the protein easily. In step 2, the
suitable parameter set for adaptive CG-ENM is efficiently
searched by BO to enhance the fluctuation of flexible parts and
the variety of sampled structural ensembles while maintaining
an average Q-score higher than 0.8, which indicates that the
protein system is significantly stable (see Supporting
Information S1 for a detailed explanation of the Q-score). In
step 3, productive simulation using adaptive CG-ENM under
suitable parameters is performed for efficient and broader
conformational sampling.
Conducting Short-Time AA-MD Simulations and

Calculating DCC Maps. Short-time AA-MD simulations of
nanosecond order should be conducted as the first step in
adaptive CG-ENM. In this study, we chose the apo-state
structures registered in PDB as initial structures for ADK21 and
GBP22 (IDs 4AKE (Figure 2A) and 1WDN (Figure 2B),
respectively) and the inactive-state structure in PDB as the
initial structure for integrin. Starting from PDB structures in
the apo state and in the inactive state, we applied GROMACS
(version4.6.5)26 with the AMBER ff99SB-ILDN force field27

incorporating energy minimization and equilibrated AA-MD to
conduct five productive AA-MD simulations at the NPT
ensemble (temperature, 298 K; pressure, 1 atm) for nano-
second order (maximum, 50 ns), with the coordinate frames
saved every 2 ps. The details of the AA-MD simulation
protocol are provided in Supporting Information S2. Using five
equilibrium AA-MD trajectories in the NPT ensemble, a
dynamic cross-correlation coefficient map (DCCM),16 repre-
senting the correlation of fluctuation between all residue pairs,
was calculated. The dynamic cross-correlation coefficient for
the residue pair between i and j is defined by the following
equation

=
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where ri⃗ is the coordinate of residue i and ⟨ri⃗⟩ is the time-
averaged coordinate after all frames sampled by MD are
aligned to the reference (initial PDB structure). Thus, Cij
indicates the correlation of the deviation vectors from the
mean structure. In this work, concretely, the five short AA-MD
trajectories were concatenated to provide a single Cij value for
each residue pair. The probability distributions of root-mean-
square displacement (RMSD) vs initial structure for five short
AA-MD trajectories quite resemble each other and are

Figure 1. Flowchart of adaptive CG-ENM for efficient conformational
sampling. Conformational sampling of the new adaptive CG-ENM
comprised three steps: (1) evaluation of the DCCM based on short-
time AA-MD, (2) efficient exploration of a suitable parameter set
using BO, and (3) broader conformational sampling via productive
CG-MD simulations.
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significantly narrower than the broader ensemble sampled by
adaptive CG-ENM (as seen in Figure S1). The DCCM is
expected to extract the dynamic domains that constitute the
regions of rigid and flexible domains in the target biomolecule.
Construction of New Adaptive CG-ENM and Efficient

Exploration of Suitable Parameter Sets by BO. The force
field for our new adaptive CG-ENM is expressed by the
following equation, which is similar that for ordinary Tirion-
type CG-ENM7

∑= −
<

E K r r( )
i j

ij ij ij
0 2

(2)

where Kij (kcal/(mol Å2)) and rij (Å) are the spring constant
and the distance between the ith and jth residue pair in a given
structure and rij

0 is the distance in the reference (initial PDB)
structure for the corresponding pair. Whereas the spring Kij in
ordinary Tirion-type CG-ENM is constant (Kij = KT = 10) in
the default parameters of CafeMol version3.2 as described in
Supporting Information S3, the spring Kij in adaptive CG-
ENM is set according to the value of DCC for the
corresponding pair as follows
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where strong interaction, Ks, is assigned for residue pairs with
higher correlation (>cs) and weak interaction, Kw, is assigned

for those with weaker correlation (>cw), whereas no spring is
applied to residue pairs whose DCC value cij is lower than cw.
This may potentially lead to the realization of a broader range
of structural sampling compared with that from ordinal Tirion-
type CG-ENM, in which only static information of the
reference PDB is considered by the distance threshold = 6.5 Å
for the native contact pair. A detailed explanation of the native
contact pair of the Tirion-type ENM is provided in Supporting
Information S3. In ordinal Tirion-type CG-ENM, by taking
account of only static information of the reference structure,
the strong-constant spring is assigned for the native contact
residue pair even with significantly weaker interaction. So,
specifically, it is assumed that ordinal Tirion CG-ENM may
seldom reproduce the dissociation process of two adjacent
domains in the reference structure even if the interaction of the
boundary area between corresponding two domains was quite
weak. By contrast, in our adaptive CG-ENM, either weak or no
springs are assigned for residue pairs if these DCC values,
reflecting the interaction strength of corresponding pairs
suitably, are lower. Therefore, it is expected that adaptive
CG-ENM has the potential to generate a broader conforma-
tional sampling such as interdomain motion compared with
ordinal Tirion CG-ENM.
Depending on the parameter set related to the spring

constants (Ks > Kw) and dynamic cross-correlation thresholds
(1 ≥ Cs > Cw ≥ 0), the adaptive CG-ENM may qualitatively
exhibit various sampling behaviors. We aim to search efficiently
and determine a suitable parameter set with adaptive CG-ENM
to realize many varieties of structural ensembles, including
structures distant from the reference, while stably preserving
the structure within each domain of the system. In this study,
we focus on the wide range of four-dimensional parameter
space defined by Ks, Kw = 1, 2, ..., 10 and Cs, Cw = 0.1, 0.2, ...,
1.0, under the conditions of Ks > Kw and Cs > Cw. Because the
combination number within the defined parameter space (Ks,
Kw, Cs, Cw) is significantly large (2025 in total), we applied the
BO method,18 a representative machine learning technique, to
efficiently explore the suitable parameter set and reduce the
search cost.
At the initial stage of BO, we randomly chose a parameter

set (Ks, Kw, Cs, Cw). As the target function FBO for BO, we
adopted the measurement defined by the following equation

χ= ⟨ ⟩ × ⟨ ⟩ − × [ ]F Q Q q( ) Var RMSDBO 0 (4)

where ⟨Q⟩ is the time-averaged Q-score28 (based on the initial
structure), which stands for domain stability (see Supporting
Information S1 for a detailed explanation of the Q-score), χ(x)
is a step function (χ(x) = 1 for x > 0, otherwise 0), and
Var[RMSD], which indicates the variety of sampled structures,
is the time variance of the root-mean-square displacement
(RMSD) between the sampled structure and reference
structure. We set the Q-score threshold as q0 = 0.8, which is
a relatively high value. Therefore, it is expected that the
parameter set that realizes a higher target function would
enable the exploration of various structures while maintaining a
stable domain structure.
The target function FBO for each parameter set selected by

BO is evaluated using a trajectory of adaptive CG-MD
simulations for 107 steps at each corresponding parameter set
(see Supporting Information S4 for details regarding CG-MD
simulations with underdamped Langevin dynamics). To search
for a better parameter set that realizes a higher target function

Figure 2. Reference structures of the two proteins and DCCM (cij)
for corresponding systems. (A and B) Initial structures for ADK and
GBP for the apo state registered in PDB, respectively. Experimentally
suggested domains are shown in different colors: NMP (orange), LID
(blue), and core (magenta) for ADK; small (magenta) and large
(orange) for GBP. (C and D) Color map of DCC in the plane of all
residue pairs evaluated based on the short AA-MD trajectories for
ADK and GBP, respectively. The higher (lower) correlation cij for
residue pairs i−j is reflected by the color in DCCM being closer to red
(blue), whereas a color close to green indicates almost no pair
correlation (cij ∼ 0).
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FBO, CG simulation and BO based on its trajectory were
sequentially executed until the target function converged.
In this research, COMBO/PHYSBO,29 a publicly available

program, was used to implement BO.
Broader Conformational Sampling via Productive

CG-MD Simulation of Adaptive ENM with the Appro-
priate Parameter Set. In step 3 of the adaptive CG-ENM, a
productive CG-MD simulation with an appropriate parameter
set tuned by BO is conducted for broader conformational
sampling. In this study, for ADK and GBP, a productive
simulation by adaptive CG-MD with the respective parameters
(Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 0.6) and (10.0, 8.0, 0.8, 0.6)
searched by BO was conducted for 107 steps using under-
damped Langevin dynamics at T = 300 K and dt = 0.2. To
analyze the sampled structure ensemble, as shown in Sampling
Performance of New Adaptive CG-ENM and Comparison
with Conventional CG-ENM and AA-MD section, 5000
structures taken every 2000 steps from one trajectory were
used. Furthermore, to compare the sampling performance of
adaptive CG-ENM with that of other sampling methods, we
prepared the structural ensembles using conventional long-
time AA-MD for 1 μs and the ensemble of conventional CG-
ENM with default parameters sampled by the enhanced
sampling algorithm (TREMD), the simulation protocols for
which are presented in Supporting Information S2, S3, and S5.

■ RESULTS AND DISCUSSION
First, we show that the structural domains, which are
consistent with experimentally suggested domains to some
extent, could be revealed from DCCM evaluated using short-
time AA-MD simulations of at most nanosecond order for the
targets (ADK and GBP). Then, we discuss the various
parameter dependencies of adaptive CG-ENM and the
significant improvement of the parameter searching efficiency
obtained by applying BO. Subsequently, we demonstrate that
the performance of structural exploration by adaptive CG-
ENM with an appropriate parameter set explored by BO is
significantly better than those of long-time AA-MD and
original CG-ENM with TREMD, which is a typical enhanced
sampling method. Finally, as a challenging task, to demonstrate
the advantages of the CG model with lower calculation cost,
we applied our new methodology to a larger biomolecule,
integrin (αV), in an inactive state.
Evaluation of DCCM Based on Short-Time AA-MD

Simulations. Using the short-time AA-MD trajectories for at
most nanosecond order, we evaluated DCCM for all residue
pairs of ADK (Figure 2C) and GBP (Figure 2D).
Experimentally, ADK and GBP are suggested to be composed
of three and two domains, respectively: NMP-binding (residue
ID: 30−59), LID (residue ID: 122−159), and core (all of the
other residues) domains for ADK21 and small (residue ID:
90−180) and large (all the other residues) globular domains
for GBP.22 In Figure 2A,B, each domain for ADK and GBP in
the apo state is shown in a different color. From Figure 2C,D,
it can be observed that the regions (clusters) with high
correlation values in the DCC map correspond well to each
domain region experimentally suggested in both protein
systems. This indicates that the analysis of DCC based on
short-time AA-MD for at most nanosecond order succeeds in
appropriately discriminating between the rigid and flexible
domains of the target proteins.
In the case of GBP, several DCC maps were also evaluated

by varying the time length of the all-atom MD trajectories used

for the analysis of DCC from 0.01 × 5 to 50 ns × 5. From
Figure S2, DCCMs appear to converge sufficiently at used-time
lengths longer than 1.5 ns × 5. The similarity (correlation
coefficient) between DCCM for 1.5 ns × 5 shown in Figure
2D and that for 50 ns × 5 shown in Figure S2 (H) is
significantly high (approximately 0.82). Therefore, we
conclude that the short-time AA-MD for at most nanosecond
order is sufficient to capture the information related to the
domain and structural fluctuations.

Parameter Dependence of Adaptive CG-ENM. De-
pending on the parameter set (Ks, Kw, Cs, Cw), the adaptive
CG-ENM is expected to exhibit various sampling behaviors.
For the adaptive CG-ENM of ADK and GBP with two extreme
cases, (Cs, Cw) = (0.2, 0.1) and (1.0, 0.9), we investigated the
colored map of the assigned interaction strengths Kij in the
residue pair plane and the time evolution of RMSD from the
initial structure and Q-score, as shown in Figures S3 and S4,
respectively. From panels A and D of these figures, we can
observe that for progressively smaller Cs and Cw values, more
springs are densely applied, and the system increasingly
stabilizes (Q-score ∼ 1) and tends to be more strongly
trapped around the reference structure (RMSD ∼0).
Conversely, as shown in panels B and E, with larger Cs and
Cw values the assigned spring density decreases significantly,
with the entire system structure appearing to become unstable
and ultimately almost unfolding (Q-score < 0.5). Adaptive CG-
ENM with the moderate parameter set (Cs, Cw) = (0.8, 0.6)
appears to enable various structural samplings with higher
RMSD variance while stably preserving the structure within
each domain of the system (Q-score > 0.8), as shown in panels
C and F of Figures S3 and S4.
We also checked the contour plot FBO score, consisting of

the mean of the Q-score and the variance of RMSD, on the two
types of two-dimensional planes defined by (Cs, Cw) and (Ks,
Kw) under limited conditions in which either (Ks, Kw) or (Cs,
Cw) is fixed at a specific value. Figure S5A (ADK) and Figure
S6A (GBP) show that a higher FBO tends to be realized in the
localized region on the (Cs, Cw) plane, whereas no systematic
and clear dependence of FBO is observed on the (Ks, Kw) plane
(Figures S5 and S6, panel B). Therefore, the application of BO
is essential to optimize the FBO score efficiently, which exhibits
complicated parameter (Ks, Kw, Cs, Cw) dependence.

Efficient Exploration of the Suitable Parameter Set
for Adaptive CG-ENM by Applying BO. For step 2 of the
new adaptive CG-ENM (Figure 1), it is necessary to search
efficiently for a suitable parameter set (Ks, Kw, Cs, Cw) from a
wider parameter space. Because exploring a suitable parameter
set with a simple exhaustive search algorithm and RS is
computationally expensive and impractical, we applied the BO
algorithm to reduce the search cost. To realize a broader
structural ensemble by adaptive CG-ENM, it is necessary that
many structural varieties that are distant from the initial
structure should be frequently sampled and explored while
preserving the stability of the entire structure, including each
rigid domain, to some extent. For this purpose, as a target
function FBO of BO, we adopted a score composed of the time
average of the Q-score and the variance of RMSD, as described
in the Materials and Methods section. In this study, starting
from randomly selected initial parameter set by applying the
BO algorithm, suitable parameter sets of adaptive CG-MD,
(Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 0.6) and (10.0, 8.0, 0.8, 0.6),
for ADK and GBP are selected, respectively.
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To accurately evaluate the performance of the parameter
searching methods, such as RS and BO, we repeated 30 trials
using randomly selected initial parameter sets and averaged the
score ⟨FBO⟩. Figure 3 shows the sampling iteration number
dependence of the averaged score over 30 trials. For both ADK
(A) and GBP (B), compared with the score obtained by RS,
the score ⟨FBO⟩ by BO appeared to reach 90% of the optimal
value smoothly and to converge before the sampling iteration
number reached a maximum of 50−100. Within a small
iteration number (approximately 100), the converged score
produced by BO tended to be significantly higher than that by
RS.
As shown in Figure 4, we also investigated the probability of

finding at least one “successful” parameter, where the
frequency of CG sampling structures with RMSD values
from the target holo structure below a certain threshold is
finite. In this study, as target structures for ADK and GBP, we
chose the experimentally resolved PDB structures in the holo
state (PDB-ID = 2ECK and 1GGG), as shown in Figures 5C
and 6C, respectively. We set 5.0 and 4.5 Å as thresholds of the
successful parameter related to the RMSD value, being smaller
than 85% of the RMSD value between the initial (apo) and
target (holo) structure: 7.2 and 5.3 Å for ADK and GBP,
respectively. With ADK, at least one successful parameter
could be found through 55 sampling iteration times,
representing 1/37 and 1/5 of the search cost using exhaustive
search and RS. In the case of GBP, a parameter could be found

following 89 iterations, affording a reduction to 1/23 of the
exhaustive search and 1/8 of RS cost. For both proteins, the
successful parameter could be identified within a maximum of
100 times by applying BO, representing <10% of the
calculation cost of the exhaustive search method.
To investigate convergence (speed) of the score under the

same condition for Figure 3, we also checked the sampling
iteration number “i” dependence of the averaged improvement
of score: ⟨FBO

(i) − FBO
(i−1)⟩ over 30 trials, as shown in Figure S7.

Whereas the value of FBO seems to improve sometimes even
around iteration numbers 60−100, the most part of the score
improves significantly in the first half of 100 iteration numbers:
the improvement of score ⟨FBO

(i) − FBO
(i−1)⟩ in the first half of 100

iterations tends to be quite higher than the corresponding one
in the last half of 100 iterations frequently, as seen in Figure S7.
The quite similar qualitative tendency could also be confirmed
in sampling iteration number (i) dependence of the raw
improvement of score FBO

(i) − FBO
(i−1) for each 30 trial of the BO

procedure, as shown in Figure S8. Therefore, this suggests that
through the BO procedure, the target score tends to converge
sufficiently in approximately 100 iterations.
For ADK, the sampling iteration number dependence of the

probability of finding a successful parameter by BO appears to
be relatively similar to the dependence of the probability by
RS. This tendency occurs for ADK because the number of
successful parameters that meet the condition related to the
RMSD threshold, 5.0 Å in all combinations of parameter space,

Figure 3. Sampling iteration number dependence of the averaged score ⟨FBO⟩ in exploring suitable parameter sets by Bayesian optimization (BO)
and random sampling (RS). (A) Result for ADK and (B) result for GBP. In each panel, the blue and orange lines correspond to the average score
by BO and RS, respectively. The dashed line indicates the optimum value of score FBO: 10.63 for ADK (A) and 4.30 for GBP (B).

Figure 4. Sampling iteration number dependence of the probability to find at least one successful parameter. (A) Result for ADK and (B) result for
GBP. In each panel, the blue and orange lines correspond to the probability afforded by BO and RS, respectively.
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is significantly larger (204/2025) than the corresponding
number (80/2025) for GBP. Therefore, if the RMSD
threshold for the success parameter is reduced in ADK, the
probability of finding the success parameter will decrease
significantly from 204/2025 and the difference of search
efficiency between BO and RS is expected to become more
significant.
Here, it should be emphasized that it is assumed to be

generally difficult to determine the best score uniquely for
broader and better sampling because there may be multiple
criteria and various measurements to indicate sampling
goodness quantitatively. In this research, as one of the
candidates for sampling performance measurement, we
adopted (presented) a score function FBO, which is defined
by eq 4, to aim for broader sampling while ensuring that the
domain structure remains as stable as possible. In some cases,

there may be some parameter sets with higher score FBO;
however, we assume that these are all good parameters in the
sense that they satisfy (achieve) the original purpose
qualitatively and sufficiently.
In this study, we demonstrated that the efficiency of the

parameter search can be improved drastically by applying BO
compared with RS and exhaustive search methods. However,
some calculations are still required for BO. In the future, by
applying adaptive ENM to various proteins and constructing a
machine learning predictor based on accumulated data, an
appropriate parameter range for target proteins is expected to
be predicted without any exploration cost.

Sampling Performance of New Adaptive CG-ENM
and Comparison with Conventional CG-ENM and AA-
MD. From Figure 5A, it can be seen that the structural
ensemble sampled by adaptive CG-ENM (gradated green

Figure 5. Comparison of the new adaptive ENM with conventional ENM and AA-MD for ADK. (A) Comparison of structural ensembles sampled
by adaptive ENM, conventional ENM, and AA-MD (50 ns and 1 μs) in the PCA plane, of which PC1 and PC2 axes are defined by the ensemble
using adaptive CG-MD. Sampling points for adaptive ENM, ENM(TREMD), and AA-MD (50 ns and 1 μs) are colored green, magenta, blue, and
orange, respectively. In particular, green gradation for sampling points of adaptive ENM depends on the Q-score (holo). Reference (apo) and target
(holo) structures are colored light green (square) and red (triangle), respectively. (B) Time evolution of RMSD vs target: holo, Q-score (apo), Q-
score (holo), and Rg for adaptive ENM, conventional ENM, and AA-MD (50 ns and 1 μs). The red dashed line for RMSD represents the certain
threshold of RMSD for a successful parameter; i.e., 5.0 Å, whereas the green and red dashed lines for Rg correspond to Rg for apo and holo states,
i.e., 19.5 and 16.3 Å, respectively. (C) structural comparison between initial (apo state as the reference), target (X-ray structure for the holo state),
and representative structures sampled by adaptive CG-ENM (S1−S5). The sampling point for each structure (S1−S5) is shown in panels (A) and
(B) for adaptive ENM using a black “x”. RMSD and Q-score based on holo and Rg values are added to each snapshot.
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according to the Q-score based on the holo structure) for ADK
is sufficiently broader than the ensemble of ENM by TREMD
(magenta) and those by conventional AA-MD for 50 ns (blue)
and 1 μs (orange) in the PCA plane, where the vector of PC12
is defined by the ensemble of structures sampled by adaptive
CG-ENM. The structures sampled by other methods (AA-MD
and conventional CG-ENM by TREMD) are projected onto
the plane defined by the PC12 vector originating from the
ensemble of adaptive CG-ENM. To compare the variety of
ensembles quantitatively, we evaluated the surface area of the
bounding box for each ensemble in the PCA plane using
convex-hull algorithms,30 as shown in Table 1. The surface area
for adaptive CG-ENM is significantly larger than that for
conventional CG-ENM by TREMD and that for conventional
AA-MD of 1 μs. Notably, the significance of structure diversity
sampled by adaptive CG-ENM does not depend on how the

PCA axis is placed, as shown in Table S1. From Figure 5B for
the panel of adaptive CG-ENM, we can confirm that the
broader structural ensemble, including structures that are
distant from the initial state, is explored while stably preserving

Figure 6. Comparison of the new adaptive ENM with conventional ENM and AA-MD for GBP. (A) Comparison of structural ensembles sampled
by adaptive ENM, conventional ENM, and AA-MD (50 ns and 1 μs) in the PCA plane, of which the PC1 and PC2 axes are defined by the
ensemble via adaptive CG-MD. Sampling points for adaptive ENM, ENM(TREMD), AA-MD (50 ns and 1 μs) are colored green, magenta, blue,
and orange, respectively. In particular, green gradation for sampling points of adaptive ENM depends on the Q-score (holo). Reference (apo) and
target (holo) structures are colored light green (square) and red (triangle), respectively. (B) Time (frame) dependence of RMSD vs target
structure, Q-score (apo), Q-score (holo), and Rg for adaptive ENM, conventional ENM, and AA-MD (50 ns and 1 μs). The red dashed line for
RMSD represents the certain threshold of RMSD for a successful parameter; i.e., 4.5 Å, whereas the green and red dashed lines for Rg correspond to
Rg for apo and holo states, i.e., 19.0 and 17.5 Å, respectively. (C) Structural comparison between initial (apo state as the reference), target (X-ray
structure for the holo state), and representative structures sampled by adaptive CG-ENM (S1−S5). Sampling points for each structure (S1−S5) are
shown in panels (A) and (B) for adaptive ENM using a black x. RMSD and Q-score based on holo and Rg values are added to each snapshot.

Table 1. Surface Area of the Bounding Box for Structural
Ensemble Points Explored by Each Model in the PC12
Plane Defined by the Eigenvector of Adaptive CG-ENMa

adaptive
CG-ENM

conventional
CG-ENM by
TREMD AA-MD (50 ns) AA-MD (1 μs)

ADK 1.00 3.18 × 10−3 5.26 × 10−2 7.79 × 10−2

GBP 1.00 3.76 × 10−4 1.11 × 10−2 1.04 × 10−2

aThe surface areas of the bounding boxes for AA-MD and
conventional CG-ENM by TREMD are normalized by that of
adaptive CG-ENM.
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the entire structure (i.e., the time average of the Q-score (apo)
is significantly higher than 0.8). Furthermore, adaptive CG-
ENM succeeds in sampling structures that are close to the
target structure in the holo state, where the RMSD value is
<5.0 Å, as shown in Figure 5B. The RMSD value of the
structure closest to the holo structure sampled by adaptive CG-
ENM is 3.8 Å, which is significantly smaller than the RMSD
between the initial (apo) and target (holo) structures. From
Figure 5C, we can confirm that many varieties of structures,
including not only apolike and hololike structures (S2 and S1)
but also fully extended structures such as S3 and S4, were
sampled broadly.
A similar qualitative tendency related to the structural

exploration performance of adaptive CG-ENM could also be
confirmed in other protein systems, such as GBP, as shown in
Figure 6 and Table 1: the structural ensemble sampled by
adaptive ENM is significantly broader than that obtained by
other methods. In particular, adaptive CG-ENM for GBP
succeeds in sampling frequently structures that are close to the
target structure in the holo state, where the RMSD value is
<4.5 Å, as shown in Figure 6B. (The RMSD value of the
structure closest to the holo sampled by adaptive CG-ENM
was 4.0 Å.) The results suggest that adaptive CG-ENM for
relatively small globular protein may enhance the diversity of
structural sampling compared with other methods such as AA-
MD and conventional CG-ENM with TREMD.
Even with other suitable parameter sets (Ks, Kw, Cs, Cw) =

(7.0, 5.0, 0.9, 0.6) and (8.0, 6.0, 0.7, 0.6) tuned by BO for
ADK and GBP with other initial conditions, the variety of
sampled structural ensembles explored by adaptive CG-ENM
is robustly richer than those by conventional CG-ENM by
TREMD and conventional AA-MD of 1 μs, as shown in Figure
S9. Furthermore, the significance of the diversity of structures
explored by adaptive CG-ENM is retained even when
compared with conventional CG-ENM, in which the spring
constant is weakened by 0.1-fold of the default value, as shown
in Figure S10.
With reference to panel B of Figures 5 and 6, it should be

noted that with adaptive CG-ENM, the broader structural
ensemble, which results in various RMSD and Rg values, can be
realized not by “just” breaking contact interaction between
arbitrary residue pairs but by preserving Q-score high
appropriately; the Q-score (apo and holo) with adaptive CG-
ENM seems to be not so inferior to the one obtained with AA-
MD (1 μs). This suggests that when sampled with adaptive
CG-ENM, intradomain structures remain reliable and are
similar to the corresponding domains in apo and holo.
From Figures 5A, 6A, S11, and S12, we can extract a rough

tendency related to the distribution of sampled structures by
adaptive CG-ENM for ADK and GBP; in the region closer to
apo and holo, such as representative models S1 and S2, the
values of Q-holo and Q-apo tend to be higher. By contrast, in
the larger PC1 area where model S3 exits, RMSD vs holo
becomes higher. Especially, ADK forms an extended structure,
like model S3 in the higher PC1 area where Rg also becomes
higher. The potential energy of the system seems to be
distributed almost uniformly and has no evident dependence
on the location in the PC1−2 plane.
In addition, the detailed structure of model S1 with smaller

RMSD vs target (holo) sampled by adaptive CG-ENM was
investigated for ADK and GBP (Figures S13 and S14,
respectively). Concretely, the probability distributions of the
Cα pairwise distance (panel A) and Cα distance matrix (panel

B) for all residue pairs were investigated for model S1, apo, and
holo. The results showed that in the case of ADK, both the
probability distribution and the distance matrix for S1 were
significantly closer to the ones for target holo than the ones for
apo, whereas in GBP, both the probability distribution and the
distance matrix for model S1, holo, and apo were quite similar
to each other with similar high correlation coefficients (Table
S2). In the case of GBP, by focusing on a limited distance
matrix with only ligand-binding-pocket residues (residues
colored in red in panel C of Figure S14) as shown in panel-
D of Figure S14, the binding pocket structure of S1 seems to
be significantly similar to holo than apo; correlation coefficient
is 0.85 between S1 and apo, and 0.90 between S1 vs holo
(here, the ligand-binding-pocket residue is defined as a residue
in which a heavy atom is present at a distance <6.5 Å from the
ligand (glutamate) in GBP of the holo state). From the
snapshot for model S1, apo, and holo in panel C of Figures S13
and S14, we can confirm that the Cα distances for S1 (20.0
and 9.6 Å) between representative residue pairs 40−149 for
ADK and 50−118 for GBP are more similar to the
corresponding distances for holo (20.3 and 7.5 Å) than the
ones for apo (39.8 and 18.7 Å).
For representative structures S1−S5, we also investigated the

probability distributions of the Cα pairwise distance for the
entire system (panel A) and for each intradomain, core, LID,
and NMP domains for ADK (panel B in Figure S15), and large
and small domain for GBP (panel B in Figure S16). From
panel A in the figures, it can be confirmed that there was no
significant difference of distribution between the entire S1−S5
of GBP, whereas distributions for the entire S1−S5 of ADK
were different from each other, reflecting the difference in
global topology. On the other hand, from panel B in the
figures, the Cα pairwise distributions for sampled structures
S1−S5, especially for small distance (<5 Å), appeared to be
quite similar to ones for reference (apo) and target (holo)
structures regardless of the domain. This means that the
realistic and reliable intradomain local structure, which is
similar to apo and holo, is held stably even in a broader
structure ensemble with adaptive CG-ENM. In addition, from
the probability distribution of the intradomain within a
distance <8−10 Å, it can be seen that the local structure of
the small domain in GBP and those of NMB and LID domains
in ADK were also maintained in the almost same way as apo
and holo structures, whereas the distributions for other
intradomains showed model dependence. This suggests that
the structural diversity of S1−S5 is due to localized changes in
the specific domain such as the core domain in the case of
ADK and the large domain in the case of GBP.
The adaptive CG-ENM sampling for ADK and GBP

provides significantly large doughnut-shaped ensemble plots
in the PC1−PC2 plane, as seen in panel A of Figures 5 and 6.
To comprehend the origin of this shape, we constructed the
average structure “AV” using structure ensembles with adaptive
CG-ENM. Furthermore, we modeled the neighborhood
structures (V1, V2, V3, V4) by adding small perturbations
along either of the eigenvector for PC1 or PC2 to average
structure: AV. In the PC1−PC2 plane, the coordinates of AV
and the perturbated structures {V1, V2, V3, V4} are at {(0, 0),
(−1, 0), (1, 0), (0, −1), (0, 1)} for ADK and {(0, 0), (−0.5,
0), (2, 0), (0, −2), (0, 0.5)} for GBP. These modeled
structures, {AV, V1, V2, V3, V4}, seem to be located in the
central cavity region of a donut-shaped ensemble on the PC1−
PC2 plane, as seen in panel A of Figure S17 for ADK and
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Figure S18 for GBP. From panel D of Figure S17 and panel E
of Figure S18, it can be seen that the part of the LID domain
for ADK and the small domain of GBP in the modeled
structures (AV and V1−V4) are significantly condensed and
shrunk. Owing to these partial condensations of the domain
structure, the energies of AV and V1−V4 for ADK and GBP
are much higher than the ones for whole sampled structures by
adaptive CG-ENM and its representative structures S1−S4, as
seen in panels B and C of Figures S17 and S18, respectively.
Therefore, it is assumed that the energetically higher
condensed structures such as AV and V1−V4 near the center
of the cavity region could not be spontaneously sampled by
adaptive CG-ENM and result in a donut-shaped ensemble in
the PC1−PC2 plane.
We also compared adaptive CG-ENM with another two

sampling methodologies that can realize modeling hololike
structure from apo conformation.31,32 A detailed discussion
related to the comparison of sampling performance with other
sampling methods is provided in Supporting Information S6.
Application of the New Adaptive CG-ENM to Larger

Protein System Integrin αV. Our main motivation to
develop the new adaptive CG-ENM was that conducting AA-
MD simulations for larger proteins is highly expensive.
Therefore, to demonstrate the advantages of the adaptive
CG-ENM, we applied our new methodology to a larger
biomolecule, the extracellular segment of integrin αV, with a
size of 927 residues except for gap regions (the residue size of
αV is about 5 times larger than the size of ADK and GBP). As
shown in Figure 7A, the V-shape bent structure of integrin αV

in the inactive state has been resolved by X-ray crystal
structural analysis (PDB-ID = 1JV2);24 integrin αV is mainly
composed of five domains: β-propeller (residue ID: 1−438),
thigh domain (residue ID: 439−592), linker (residue ID:
593−601), calf-1 domain (residue ID: 602−738), and calf-2
domain (all other residues).
First, using the short-time AA-MD trajectory that is

generated by concatenating five trajectories of production
AA-MD for 1.5 ns with different initial velocities, we evaluated
a DCCM for all residue pairs of integrin αV in the active state
(Figure 7B) (see the detailed procedure of AA-MD for integrin
in Supporting Information S7). From Figure 7B, it can be
observed that the regions with high correlation values in the
DCCM correspond well to each domain region experimentally
suggested in integrin. This indicates that the DCC analysis
based on short-time AA-MD for at most nanosecond order
succeeds in appropriately extracting the domain structure even
for a larger system such as integrin.
Second, by applying the BO algorithm with a target function

FBO as mentioned in the Materials and Methods section, we
identified a suitable parameter set (Ks, Kw, Cs, Cw) = (7.0, 1.0,
1.0, 0.8) from a wider parameter space, the combination
number of which is 2025. For the larger system (integrin), to
accurately evaluate the performance of the parameter searching
methods, such as RS and BO, we also conducted investigations
similar to ones for ADK and GBP; we repeated 30 trials using
randomly selected initial parameter sets and averaged the score
⟨FBO⟩. Figure 8 shows the sampling iteration number

dependence of the averaged score over 30 trials. Even for
the larger system, integrin, compared with the score obtained
by RS, the score ⟨FBO⟩ by BO appeared to smoothly converge
before the number of sampling iterations reached a maximum
of 50−100. Within a small iteration number (approximately
100), the converged score produced by BO tended to be
significantly higher than that produced by RS.
Third, a productive simulation using adaptive CG-ENM

under a suitable parameter set (Ks, Kw, Cs, Cw) = (7.0, 1.0, 1.0,
0.8) was performed to demonstrate the sampling performance
of our new methodology. From Figures 9A and S21, it can be
seen that the structural ensemble sampled by adaptive CG-
ENM (green) for integrin is sufficiently broader than the

Figure 7. Reference structures of larger protein integrin αV for the
inactive state registered in PDB and DCCM (cij). (A) Experimentally
suggested domains are shown in different colors: β-propeller, green;
thigh, magenta; linker, gray; calf-1, orange; and calf-2, blue. (B)
Colored DCCM in the plane of all residue pairs evaluated based on
the short AA-MD trajectories for integrin in the inactive state.

Figure 8. Sampling iteration number dependence of the averaged
score ⟨FBO⟩ in exploring suitable parameter sets by Bayesian
optimization (BO) and random sampling (RS) for integrin αV. The
blue and orange lines correspond to the average scores by BO and RS,
respectively.
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ensemble of ENM by TREMD (magenta) and those by
conventional AA-MD for 50 ns (blue) in the PCA plane, where

the vector of PC12 is defined by the ensemble of structures
sampled by adaptive CG-ENM. To compare the variety of

Figure 9. Comparison of the new adaptive ENM with conventional ENM and AA-MD for integrin αV. (A) Comparison of structural ensembles
sampled by adaptive ENM, conventional ENM, and AA-MD (50 ns) in the PCA plane, of which PC1 and PC2 axes are defined by the ensemble
using adaptive CG-MD. Sampling points for adaptive ENM, ENM(TREMD), and AA-MD (50 ns) are colored green, magenta, and blue,
respectively. In particular, green gradation for sampling points of adaptive ENM depends on the Q-score (ref). Reference structures in the inactive
state are colored light green (square). (B) Time evolution of RMSD vs reference (ref), Q-score (ref), angle (between two vectors that represent the
direction of the long axis of the thigh domain by γ571 − γ470 and calf-1 domain by γ619 − γ602), and Rg for adaptive ENM, conventional ENM, and
AA-MD (50 ns). The green dashed lines for angle and Rg correspond to ones for the reference structure, i.e., 51.9° and 39.5 Å, respectively. (C)
Structural comparison between initial (inactive state as reference) and representative structures sampled by AA-MD (A1 and A2) and adaptive CG-
ENM (S1−S9). The sampling point for each structure (S1−S9, A1−A2) is shown in panels (A) and (B) for adaptive ENM and AA-MD using a
black x and triangle. The Cα distance between two residues, 82−764, is depicted by a black arrow in the S1 snapshot, whereas two vectors (γ571 −
γ470 and γ619 − γ602) for the angle of V-shape integrin are depicted by yellow arrows.
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ensembles quantitatively, we evaluated the surface area of the
bounding box for each ensemble in the PCA plane, as shown in
Table 2. The surface area for adaptive CG-ENM was

significantly larger than that for conventional CG-ENM by
TREMD and that for conventional AA-MD. From Figure 9B
for the panel of adaptive CG-ENM, it can be confirmed that
the broader structural ensemble, including structures that are
distant from the initial state, with various RMSDs, angles
(between two vectors that represent the direction of the long
axis of the thigh domain by γ571 − γ470 and calf-1 domain by
γ619 − γ602, where the subscript of the coordinate vector
represents the residue ID), and Rg values, is explored while
stably preserving the entire structure (the Q-score is
significantly higher than 0.9). From Figure 9C, we can confirm
that many varieties of structures, including not only reference-
like (S7) but also fully extended structures such as S1−S3 with
an angle of around 180°, were sampled broadly. This suggests
that by implementing adaptive CG-ENM, efficient and broader
conformational sampling could be realized even for signifi-
cantly larger systems like integrin.
Potential and Limitations of Adaptive CG-ENM. Here,

we mention the prospect of achieving a wider sampling with
adaptive CG-ENM by assigning interactions (spring) accord-
ing to the value of DCCM based on short-time AA-MD
trajectories. Generally, in the biomolecule, the flexible region
such as the loop and hinge and the boundary region between
interdomains tend to have weak interactions and are likely to
dissociate sometimes. However, by only conventional AA-MD,
it is difficult to sample the entire process starting from the
dissociation of interdomains to large-scale relative motion of
multiple domains or hingelike motion because the character-
istic time of the corresponding process is assumed to be longer
than several microseconds to milliseconds. On the other hand,
even with short AA-MD of the order of nanoseconds, the
significant difference of DCC between the rigid intradomain,
which is stabilized by strong interactions, and interdomain
boundary with potential dissociation due to weaker interaction
is expected to be sufficiently detected, because DCCM could
reflect the localized fluctuation between residues. Therefore, by
either weakening or cutting the spring (interaction) between
the interdomain boundary with lower DCC based on short-
time AA-MD, broader sampling is expected to be enhanced,
which includes interdomain dissociation and large-scale
motion, the time scale of which may be more than several
microseconds to milliseconds.
The type of AA-MD force field may influence the sampling

performance of adaptive CG-ENM. For example, the
AMBER94 force field tends to stabilize α helix more easily
than other force fields.33 Therefore, if by AA-MD with the
AMBER94 force field, a stable helix was formed in the hinge,

which is the important key region for large-scale structural
changes, DCC for the corresponding region may be over-
estimated due to its rigidity of α helix. In this case, it may be
difficult for adaptive CG-ENM simulations to reproduce large-
scale conformational changes because a stronger spring would
be assigned to residue pairs within the key area in adaptive
CG-ENM owing to higher DCC. However, because the time
scale of AA-MD for evaluation of DCCM is quite short (at
most nanosecond order), the stable α helix is assumed to be
seldom formed. Therefore, it is expected that the influence of
the type of AA-MD force filed on sampling efficiency will not
be so critical for broader sampling with adaptive CG-ENM.

■ CONCLUSIONS
To explore various structures, including those distant from the
initial structure extant without any biased force, we developed
a new adaptive CG-ENM, in which the interaction strength is
assigned depending on DCCM based on the short-time AA-
MD trajectory starting from the initial structure. To evaluate
the performance of adaptive CG-ENM, we applied the new
methodology to ADK and GBP in the apo state. We found that
nanosecond-order AA-MD trajectories were sufficient to reveal
and discriminate between the rigid and flexible domains of
protein systems such as ADK and GBP through DCCM-based
analysis. By applying the BO algorithm to search for a suitable
parameter set among the vast parameter space of adaptive CG-
ENM, we succeeded in reducing the searching cost to
approximately 10% of that required by RS and exhaustive
sampling. Furthermore, the structural ensembles explored by
adaptive CG-ENM could be considerably more diverse than
those by long-time AA-MD of 1 μs and by conventional ENM
even with enhanced sampling via TREMD. In particular, some
of the structures sampled by adaptive ENM did not
significantly differ from the target structure in the holo state
of ADK and GBP. Finally, as a challenging task, to demonstrate
the advantages of the CG model with lower calculation cost,
we applied our new methodology to a larger biomolecule,
integrin (αV) in the V-shape inactive state. After efficiently
exploring suitable parameter set with BO, we sampled various
structural ensembles, including not only V-shape bent
structures but also extended structures.
In this study, in several structures sampled by adaptive CG-

ENM, there is a rare probability that the distance between Cα
residues will be <3.8 Å. If AA models were reconstructed based
on this sampled CG model, an atomistic collision may occur
locally. Therefore, in the future, it will be necessary to develop
a refined adaptive CG-ENM model that will prohibit sampling
the structures with local collision much as possible by applying
the excluded volume interaction to Cα residues. To reduce the
probability of atomistic collision in sampled structures, it is
also conceivable to increase the threshold related to the Q-
score, q0 = 0.8, as high as possible. In future work, by applying
software for reconstruction of the AA model, such as
PD2ca2main34 and SCWRL4,35 to the explored structures
provided by adaptive CG-ENM, it is expected that some
reconstructed structures could inform and contribute to
practical experiments such as the prediction of an unresolved
metastable state.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01074.

Table 2. Surface Area of the Bounding Box for Structural
Ensemble Points of Integrin Explored by Each Model in the
PC12 Plane Defined by the Eigenvector of Adaptive CG-
ENMa

adaptive
CG-ENM

conventional CG-ENM by
TREMD AA-MD (50 ns)

integrin 1.00 1.65 × 10−3 5.60 × 10−2

aThe surface areas of the bounding boxes for AA-MD and
conventional CG-ENM by TREMD are normalized by that of
adaptive CG-ENM.
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Additional methods including the Q-score: contact
fraction of native contact pairs, all-atom molecular
dynamics (AA-MD) simulation, conventional coarse-
grained (CG)-ENM, CG-MD simulation with under-
damped Langevin dynamics, temperature replica ex-
change MD (TREMD) of conventional CG-ENM,
comparison with two enhanced sampling methodologies,
detailed information related to the AA-MD procedure
for integrin αV in the inactive state, and data related to
model performance and application (PDF)
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