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T echnological advances have led to innovative insulin delivery systems for patients with type 1 diabetes mellitus. In particular, 
the combination of miniature engineering and software algorithms contained in continuous subcutaneous insulin infusion (CSII) 
system pumps provide the user and the healthcare practitioner with an opportunity to review and adjust blood glucose (BG) levels 

according to system feedback, and to modify or programme their regimen according to their needs. While CSII pumps record a number 
of data parameters such as BG level, carbohydrate intake, activity and insulin delivered, these data are generally ‘locked in’ and can 
only be accessed by uploading to a cloud-based system, thus information is not contemporaneous. The Cellnovo Diabetes Management 
System (Cellnovo, Bridgend, UK) allows data to be transmitted securely and wirelessly in real time to a secure server, which is then 
retrieved by an online platform, the Cellnovo Online platform, enabling continuous access by the user and by clinicians. In this article, the 
authors describe a retrospective review of the patient data automatically uploaded to the Cellnovo Online platform. Baseline clinical and 
demographic characteristics collected at the start of pump therapy are shown for all patients, and BG data from a sub-cohort of patients 
who have been using the system for at least 6 months and who take and record an average of three BG level tests per day are presented 
to demonstrate glycaemic data over time. 
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An effective basal-bolus regimen is the gold standard in type 1 diabetes 

mellitus (T1DM) management as it most closely resembles physiological 

beta-cell pancreatic insulin secretion. Multiple daily injections (MDI) are 

commonly used to deliver insulin; however, where these fail to manage 

glycated haemoglobin (HbA1c) within defined parameters, continuous 

subcutaneous insulin infusion (CSII, also known as pump therapy) is 

the recommended alternative.1–3 Clinical evidence from several meta-

analyses of randomised, controlled trials of glycaemic control with MDI 

compared with CSII have showed a significant improvement in mean 

HbA1c levels with insulin pump therapy.4–6 In addition, the improvement 

was greater for patients with higher initial HbA1c.6,7 Where meta-analysis 

studies have not demonstrated a reduction in hypoglycaemic events8,9 the 

reduction in the number of severe hypoglycaemic events demonstrated 

a benefit in the insulin pump therapy group compared with MDI.6

The main advantage of CSII is the flexibility of the basal insulin response 

to glycaemic variability compared with a basal insulin injection. The basal 

rate delivered with the pump can be adapted to varying need during the 

day based on features of the pump such as a bolus calculator,10,11 activity 

tracking and food library.12 The threshold-suspend13,14 and continuous 

glucose monitoring features automatically stop the pump when pre-set 

parameters are reached, thereby lowering the risk of hypoglycaemia. 

Consequently, the glycaemic profile can be adapted to mitigate 

glycaemic outcomes such as nocturnal hypoglycaemia or the ‘dawn 

phenomenon’.2,15 Patch pumps have demonstrated the same glycaemic 

control as tethered pumps,16,17 coupled with an improvement in quality of 

life and patient satisfaction.18,19

The Cellnovo Diabetes Management System (Cellnovo, Bridgend, UK) 

is the world’s first mobile diabetes management system, comprising a 

patch pump for accurate insulin delivery,20 an activity monitor, a mobile-

enabled wireless touch-screen handset with integrated blood glucose 
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(BG) meter and automatic connectivity to secure servers.12 The system’s 

unique features and advantages have been outlined previously.12 Users 

of the Cellnovo System receive a personal login to the secure mobile 

diabetes management portal where they can access automatically 

collected data in order to review their treatment regimen and determine 

if adjustments are required. The patient’s healthcare professional (HCP) 

can access data pertaining to their latest recorded blood sugar, average 

blood sugar, insulin dosing, hypoglycaemia frequency and blood testing 

routine, facilitating early intervention where necessary. Working in 

conjunction with the patient, data can be also analysed to identify trends, 

patterns and glycaemic status; this interactivity using real-time data can 

facilitate greater patient self-management and allow clinic visits to be 

focused on current and accurate information.12

Retrospective data study
Having real-time data from patients using the Cellnovo pump during their 

everyday life presents an opportunity to gain a deep understanding of 

their clinical status on a daily basis and over time. The primary aims of 

this retrospective data study therefore were:

• To review and present clinical and demographic characteristics of the 

entire cohort enrolled in the Cellnovo database and establish a profile 

of patients at their first month of pump use. This will enable clinicians 

to compare these characteristics with those in their own daily clinical 

practice at pump initiation.

• To analyse a number of glycaemic parameters from a sub-cohort of 

pump users. 

Methods
Data collection
Prior to starting on the Cellnovo pump, patients provided written 

informed consent to the anonymous collection, storage and use of their 

demographic and clinical data in the Cellnovo Diabetes Management 

System. This baseline data are recorded when the patient starts pump 

therapy; thereafter, BG measurements and hourly basal and bolus doses 

delivered are recorded. 

Full cohort
Data were retrieved from January 2013 to September 2017; the  

baseline demographic and clinical data of the 599 patients (worldwide) 

reviewed included:

• age, gender;

• total daily dose (TDD), ratio of daily basal and bolus to the TDD in the 

first month of pump use;

• duration of T1DM where available;

• HbA1c; and 

• the number of BG measurements per day in the first month of  

pump use.

Sub-cohort
From this data set, we retrieved a smaller cohort of 166 patients who had 

used the pump for at least 6 months and had recorded their BG at least 

three times a day on average; this was to ensure a sufficient duration of 

pump use and enough glycaemic data to undertake analysis. In this sub-

cohort, we analysed:

• mean HbA1c;

• mean BG and standard deviation (SD) to express variability;

• number of hypoglycaemic events per week, comparing first and last 

analysed month of data; and

• the median follow-up time for this cohort of 1 year (range 6–41 months).

Statistical analysis
Data were tested for normality using the Shapiro-Wilk test. The paired 

Student’s t-test and Wilcoxon rank-sum test were used as they were 

appropriate to identify changes in mean and SD of BG measurements. A 

p value of less than 0.05 was taken to indicate significance.

Results
Full cohort
Data were retrieved from January 2013 to September 2017. Table 1 shows 

the baseline demographic and clinical characteristics of the full cohort of 

patients (n=599), 495 (82.6%) of whom were adults. The mean age at start 

of pump therapy was 8 years in children, 14.5 years in adolescents and 

39.1 years in adults.

Insulin total daily dose
From baseline to month 1, mean TDD of insulin in the first month was 

38.1 ± 14.6 IU/day; the TDD was lowest in children (28.4 ± 12.5 IU/

day), and highest in adolescents (48.2 ± 17.5 IU/day). The bolus doses 

as a fraction of the TDD were highest in children (64%) and lowest in 

adults (55%).

Table 1: Baseline clinical characteristics of the full cohort (mean ± standard deviation)

Children* Adolescents* Adults* All 

Number (% of total) 58 (9.3) 46 (7.5) 495 (82.6) 599 (100%)

Mean age at pump start, years (SD) 8 (2.5) 14.5 (1.8) 39.1 (12.1) 34.2 (15.4) 

Female (%) 43% 43% 59% 56%

Mean duration of diabetes, years (min, max), (data recorded n=159) 3.4 (0.4, 6.8) 3.7 (0.3, 12.6) 17 (0.1, 47) 15.3 (0.1, 47) 

Mean total daily dose of insulin at pump start, IU/day (SD) 28.4 (12.5) 48.2 (17.5) 38.3 (13.8) 38.1 (14.6) 

% basal (SD) 36 (12) 38 (8) 45 (13) 44 (13) 

% bolus 64 62 55 56 

HbA1c  % (SD), data recorded n=584 7.72 (1.29) 8.11 (1.41) 7.81 (1.27) 7.82 (1.28)

Average number of BG measurements per day in first month [min-max] 4.44 [0.03,11.33] 3.62 [0.03,8.83] 3.85 [0,13.17] 3.89 [0,13.17]

*Children 0–12 years, adolescents 12–18 years, adults >18 years. 
BG = blood glucose; HbA1c = glycated haemoglobin; max = maximum; min = minimum; SD = standard deviation. 
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Blood glucose measurements
From baseline to month 1, mean number of BG measurements in children, 

adolescents and adults was 4.40, 3.62 and 3.85 per day respectively in 

the first month.

 

HbA1c level at baseline
The mean HbA1c at baseline (Table 1) was 7.72% in children, 8.11% 

in adolescents and 7.81% in adults. Table 2 shows HbA1c readings by 

age group. Of the 599 patients, data were available for 584 patients 

(57 children, 44 adolescents and 483 adults). The percentage of patients  

in the children and adult age groups with an HbA1c below 7% was largely 

similar (18% and 19%, respectively), whereas just over half (54%) of the 

adolescents had an HbA1c above 8% at pump initiation. 

Sub-cohort
In total, 166 patients were included in the sub-cohort (16 children,  

7 adolescents and 143 adults). Due to small numbers, neither HbA1c 

(children and adolescent group) nor mean BG and SD (adolescent group) 

were analysed.

HbA1c level
Table 3 shows baseline HbA1c values as percentages (range <7–>9%). 

Of the 166 patients in the sub-cohort, HbA1c data were recorded for 151 

patients (15 children, 6 adolescents and 130 adults). Overall, 34 patients 

(20.5%) had two HbA1c measurements more than 90 days apart (mean 

follow-up time 10 months, range 3.5–25.7 months); of these, 30 were 

adults. In this adult group there was a significant reduction in HbA1c of 

0.54% (p=0.002; Table 4). 

Figure 1 shows the improvement in HbA1c values as a function of the 

initial value measured at baseline. A correlation analysis was carried 

out between initial HbA1c and improvement. Pearson’s correlation 

coefficient was calculated to be r=0.58, p=0.0007 (28 degrees of 

freedom), confirming an increased improvement in HbA1c levels with 

higher HbA1c levels at pump initiation.

Hypoglycaemic events
Table 4 shows the changes in HbA1c, number of hypoglycaemic events 

per week and mean BG from baseline to last month of data capture 

for the sub-cohort. In the children’s group (n=16), there is some 

decrease in the number of hypoglycaemic events per week between 

the first and last month of data collection: 3.7 hypoglycaemic events 

on average per week in the first month of use, and 3.0 in the last 

month, with 11 (68.75%) children having fewer hypoglycaemia events. 

This decrease is not statistically significant. In the adolescent group, 

hypoglycaemic events decreased almost significantly from 3.8 to 2.3 

a week (p=0.05). In adults (n=143), there was a significant decrease 

in the number of hypoglycaemic events, by one event less per week 

(p<0.00001). In the first month of pump use there were on average 3.4 

hypoglycaemic events, whereas by the last month this had fallen to 2.4 

per week, with 93 (65.03%) having fewer events. 

Mean blood glucose level
In the adult group, there was a small but significant increase in mean BG 

level (p=0.01). Of 143 adults, 21 (14.6%) had a significant improvement 

of between 13.4 mg/dl and 158.1 mg/dl. Furthermore, 42 (29.6%) had a 

significant increase in the BG levels of between 7.9 mg/dl and 83.3 mg/dl. 

Blood glucose variability (measured by standard deviation)
There was no significant change in variability between the first and last 

month in the children’s group. Five (31%) had a decrease of variability 

between 1.7 mg/dl and 37.5 mg/dl, while 11 (69%) had an increase of 

variability between 3.7 mg/dl and 21.1 mg/dl. In the adult group, there 

was a small, significant increase in BG variability (p=0.007) of 3.45 ± 15.2 

mg/dl. Overall, 53 (37%) had a decrease of variability between 0.4 mg/dl 

and 51.6 mg/dl, whereas 90 (63%) had an increase of variability between 

0.3 mg/dl and 53.6 mg/dl. 

Discussion
The Cellnovo Online platform is not a registry, but the data available 

provide clinical and lifestyle information about the patient’s daily life. 

This review describes the profile of patients in multiple sites who are 

registered on the Cellnovo Diabetes Management System. 

Results from the median follow-up of 1 year in the sub-cohort show a 

significant improvement in HbA1c and a downward trend in children, and 

a decrease in hypoglycaemia frequency of approximately one event per 

week in adolescents and adults. Mean BG levels have remained the same 

for children and adolescents with a very slight increase on average for 

adults. While BG variability has not decreased, this analysis has to be 

interpreted carefully as it is real-life retrospective data. BG measurements 

can be biased; for example, if a patient is feeling unwell, they may 

measure BG more frequently, whereas when they feel well, they may 

reduce the number of measurements they undertake. Encouragingly, 

however, mean BG improved by 14.6% of adult pump users.

Retrospective results from two studies of the Omnipod® System (Insulet 

Corporation, Billerica, MA, US) found both similarities and differences 

when compared with the data reported here. For example, in our cohort 

7.46% of patients were aged under 18 years at pump initiation, whereas 

the Austrian and German Diabetes-patient-documentation (DPV) registry 

showed a larger proportion of children (74% aged <20 years).21 An 

American study showed just over one-third of patients were aged under 

18 years, with a mean age of 29 years.17 The differences between these 

studies and ours may be explained by differences in criteria for pump 

prescription between countries and the growing number of children 

using pump therapy, particularly in the US.22 

The mean duration of diabetes in the adult group in the present study 

was the same as the American study, with slight differences among 

Table 2: Distribution of HbA1c in full cohort at pump initiation 

Age group (n) Percent of 

patients with 

HbA1c <7%

Percent of 

patients with 

HbA1c 7–8%

Percent of 

patients with 

HbA1c 8–9%

Percent of 

patients with 

HbA1c >9%

Children (57) 18 49 23 10

Adolescents (44) 14 32 29 25

Adults (483) 19 41 25 15

HbA1c = glycated haemoglobin. 

Table 3: Distribution of HbA1c in sub-cohort at pump initiation 

Age group* (n) Percent of 

patients with 

HbA1c <7%

Percent of 

patients with 

HbA1c 7–8%

Percent of 

patients with 

HbA1c 8–9%

Percent of 

patients with 

HbA1c >9%

Children (15) 7 60 20 13

Adolescents (6) 17 66 17 0

Adults (130) 15 48 25 12

*Some data values missing from system. HbA1c = glycated haemoglobin.
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adolescents and children. In the DPV registry, 57% of patients had 

diabetes for less than 5 years due to the higher proportion of children 

and adolescents using the pump. 

In this review, the TDD of insulin at baseline for adults was low (38 IU/day), 

almost the same as that of the DPV registry (20–30 age group: 39 IU/day;  

>40 years: 35 IU/day), whereas the American study showed a greater  

TDD of insulin among adults, at 59 IU/day (adolescents: 52 IU/day; 

children <13 years: 25 IU/day). 

When comparing the HbA1c trends in our study, similar results to  

those of Layne et al. are seen;17 a decrease in hypoglycaemia 

frequency by one event per week 3 months after initiation of pump 

therapy. Other studies have used retrospective data to evaluate the 

use of pump therapy on clinical parameters such as reduction in 

HbA1c and on the frequency of hypoglycaemic episodes.23 A recent 

study16 compared the efficacy of different models of pumps among 

different manufacturers (Medtronic, Minimed Inc. [Northridge, 

CA, US], Roche Diabetes Care [Burgdorf, Switzerland], Animas 

Corporation [West Chester, PA, US], Omnipod [Insulet Corporation, 

Billerica, MA, US])  with respect to HbA1c, and found that while 

there was no significant difference between pumps at 1 year after 

pump start, the overall decrease in HbA1c was no more than our 

result of 0.5% (reduction from 8.7 to 8.2%).16 Johnson et al. reviewed 

data pertaining to 345 children (aged <18 years) on the Western 

Australian Childhood Diabetes Database (WACDD) over a 7-year 

period and found that the mean HbA1c reduction was 0.6%, which 

remained significant throughout the 7 years of follow up.24 Severe 

hypoglycaemia reduced from 14.7 to 7.2 events per 100 patient-years 

(p<0.001). In another 7-year follow-up study, Mameli et al. showed an 

improvement in HbA1c of 0.5% at year 1, and further improvement 

at year 7, with a significant decrease in severe hypoglycaemia of 0.5 

to 0.9%.25 Sherr et al. explored metabolic control in young people, 

using data from three diabetes registries; the Austrian and German 

DPV (n=26,198), T1D Exchange (T1DX; n=13,755) and the National 

Paediatric Diabetes Audit (NPDA; n=14,457).26 Pooled analysis of 

the data showed that pump use was associated with a lower mean 

HbA1c (pump: 8.0 ± 1.2% [64 ± 13.3 mmol/mol] versus MDI: 8.5 ± 1.7% 

[69 ± 18.7 mmol/mol], p<0.001). 

In respect of hypoglycaemic events, Plotnick et al. demonstrated a 

reduction in number of events after pump therapy start (12 versus 17 

events per 1,000 patients per month, rate ratio: 0.46, 95% confidence 

interval: 0.21–1.01).27 Johnson et al. also demonstrated that the number 

of events dropped by 50% to that experienced in the year before pump 

therapy (14.7 to 7.2 events per 100 patient-years; p<0.001).24

Limitations
It is acknowledged that the primary aim of the database is to help 

patients and HCPs manage insulin dose adaptation in real-time with 

respect to different daily life situations, rather than to study the 

glycaemic effect of the system. While real-time data are recorded 

automatically by the system, BG measurements are entered by the 

patient, so may be biased towards those times when the patient feels 

unwell. This may explain the lack of improvement in either mean 

BG or BG variability. In addition, as this is a retrospective review of 

data, it is not possible to explore anomalies in data, or to discern the 

confounding variables.

Conclusion
The results from real-life data showed a significant and meaningful 

improvement in HbA1c – a decrease of 0.54% – and hypoglycaemia 

frequency at 1 year follow-up. Mean BG levels remained the same 

for children and adolescents with a very slight increase on average 

for adults, and while BG variability has not decreased, this is real-life 

retrospective data.

Further studies are needed to evaluate all the benefits of the system. 

To this end, for clinical and regulatory purposes, we plan to undertake 

prospective studies to assess glycaemic control and outcomes, as well 

as evaluating quality of life and patient feedback in clinical situations with 

the involvement of HCPs. 

Table 4: Clinical parameters from baseline to final month of data analysis in the sub-cohort (mean ± standard deviation)

Children (n=16) Adolescents (n=7) Adults (n=143*)

Baseline to and 
of first month

Last month p value Baseline to end 
of first month

Last month p value Baseline to end 
of first month

Last month p value

HbA1c (%) (adults n=30) NA NA NA NA NA NA 7.67 ± 0.98 7.13 ± 0.85 0.002

Number hypoglycaemic 
events per week 

 3.7 ± 1.9 3.0 ± 2.2 0.27 3.8 ± 2.6 2.3 ± 2.0 0.05 3.4 ± 2.5 2.4 ± 2.0 <0.00001

BG (mg/dl) 178.0 ± 23.6 182.6 ± 32.7 0.55 159.7 ± 32.3 166.0 ± 36.3 0.46 162.7 ± 30.3 169.0 ± 30.0 0.01

Standard deviation of BG 
(mg/dl)

83.0 ± 19.0 86.0 ± 13.6 0.4 75.6 ± 8.0 75.0 ± 24.0 0.9 72.6 ± 16.0 76.0 ± 17.0 0.007

*Some data values missing from system. BG = blood glucose; HbA1c = glycated haemoglobin; NA = not applicable. 

Figure 1: HbA1c improvement in the full cohort (baseline to 
month 1)
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