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Orthobunyaviruses are a group of viruses with significant public and veterinary health 
importance. These viruses are mainly transmitted through mosquito-, midge-, and tick-vectors, 
and are endemic to various regions of the world. Ebinur Lake virus (EBIV), a newly identified 
member of Orthobunyavirus, was isolated from Culex mosquitoes in Northwest China. In the 
present study, we aimed to characterize the pathogenesis and host immune responses of 
EBIV in BALB/c mice, as an animal model. Herein, we determined that BALB/c mice are highly 
susceptible to EBIV infection. The infected mice exhibited evident clinical signs including weight 
loss, mild encephalitis, and death. High mortality of mice was observed even with inoculation 
of one plaque-forming unit (PFU) of EBIV, and the infected mice succumbed to death within 
5–9 days. After EBIV challenge, rapid viremic dissemination was detected in the peripheral 
tissues and the central nervous system, with prominent histopathologic changes observed 
in liver, spleen, thymus, and brain. Blood constituents’ analysis of EBIV infected mice exhibited 
leukopenia, thrombocytopenia, and significantly elevated ALT, LDH-L, and CK. Further, EBIV 
infection induced obvious cytokines changes in serum, spleen, and brain in mice. Collectively, 
our data describe the first study that systematically examines the pathogenesis of EBIV and 
induced immune response in an immunocompetent standard mouse model, expanding our 
knowledge of this virus, which may pose a threat to One Health.
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INTRODUCTION

Mosquitoes are known to act as reservoirs of extensive pathogens (Xia et  al., 2018;  
Nyaruaba et al., 2019), several mosquito-borne viruses (arboviruses) causing human diseases remain 
the global public health concerns (Tandina et  al., 2018). However, with the constant evolution and 
crossing species barrier, the emergence of novel zoonotic pathogens is one of the greatest challenges 
to global health security (Borland et al., 2020). Cooperation among human, animal, and environmental 
sciences to combat emerging public health threats has become an important issue under the One 
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Health Initiative (Ryu et al., 2017). Therefore, these potential novel 
zoonotic pathogens still should not be  neglected (Cunningham 
et  al., 2017). Thus, it is critical to identify novel pathogens with 
zoonotic potential to reduce their risk of emergence using 
surveillance programs (Scarpino et al., 2017; Ramírez et al., 2018). 
Over the past decade, there have been key scientific advances in 
arbovirus surveillance and have sped up the discovery of these 
viruses (Shi et  al., 2016; Halbach et  al., 2017). Ebinur Lake virus 
(EBIV) was discovered and isolated from Culex modestus mosquitoes 
through a surveillance study done in the Ebinur Lake region in 
China, 2014, which was identified as a novel member of the 
genus Orthobunyavirus within the family Peribunyaviridae, 
Bunyamwera serogroup.

Orthobunyavirus is the largest and most diverse genus of 
bunyaviruses, comprising of more than 170 viruses divided into 
more than 20 serogroups based on serological relatedness of 
complement-fixing antibodies (mediated by N protein), 
hemagglutinating and neutralizing antibodies (mediated by 
glycoproteins; Shchetinin et  al., 2015; Palya et  al., 2019). The 
main hosts of these viruses include rodents, primates, birds, 
ungulates, and humans (Calisher, 1996), and some members 
have been reported to cause disease in these vertebrate hosts. 
Bunyamwera virus (BUNV) and Cache Valley virus (CVV) can 
cause severe symptoms in ruminants, such as spontaneous 
abortion and teratogenic effects (Rodrigues Hoffmann et  al., 
2013), which have caused a considerable economic loss in the 
livestock industry (Kim et  al., 2011). Besides, BUNV was also 
proved to infect free ranging birds (Tauro et  al., 2009). In 
humans, BUNV, Germiston virus (GERV), Ilesha virus (ILEV), 
Fort Sherman virus (FSV), and Guaroa virus (GROV) are known 
to cause disease with symptoms such as febrile illness (Schwartz 
and Allen, 1970; Aguilar et al., 2010; Pachler et al., 2013; Dutuze 
et  al., 2018; de Oliveira Filho et  al., 2020), and encephalitis 
caused by Tensaw virus (TENV; Calisher et  al., 1988). Thus, 
Bunyamwera serogroup viruses are a cause for concern in public 
and veterinary health (Rogers et  al., 2017; Dutuze et  al., 2018). 
Some newly discovered members in this group have been reported 
with potential infection risk in humans and/or animals, but 
they are not yet well characterized (Sudeep et al., 2018). Therefore, 
except for the epidemiological studies, pathogenesis studies are 
critically needed to identify and understand disease threats to 
humans, livestock, and wildlife.

In experimental animal models, Orthobunyaviruses could cause 
neurological diseases that involve neuroinvasive disease and 
neurovirulent disease as seen in the members of California 
serogroup (CSG). This can be  evaluated by several parameters 
such as the route of inoculation. Neuroinvasion represents virus 
spread to the central nervous system (CNS) following peripheral 
inoculation [intraperitoneally, (i.p.)], while neurovirulence describes 
the lethal infection following direct route of inoculation [intracranial, 
(i.c.) or intranasal, (i.n.)] with the virus. The majority of pathogenesis 
studies of the CSG viruses have focused on La Crosse virus 
(LACV). In LACV-infected mice, short viremia was observed 
and the viral antigen was not detected in peripheral tissues, but 
in neurons. GERV presumably circumvented the normal killing 
mechanisms of macrophages and replicated in these cells in mice 
(Olson et  al., 1975). Since research is insufficient, more studies 

on Orthobunyaviruses need to be  carried out to examine the 
differences in mechanistic pathogenesis (Evans and Peterson, 2019).

In our previous report, EBIV was found to replicate efficiently 
and form cytopathic effect (CPE) in different vertebrate cells. 
The preliminary data also demonstrated that EBIV is able to 
cause lethal disease and pathological changes in Kunming mice. 
In addition, the IgM, IgG, and neutralizing antibodies against 
EBIV have been detected in the residents. Therefore, the further 
understanding of the detailed pathogenic mechanism and the 
host immune response to the virus is important in the risk 
assessment of EBIV infection in animals or humans.

In this study, we  fully characterized EBIV infection using a 
BALB/c mice model, and carried out all aspects of EBIV induced 
hematology, clinical chemistry, tissue tropism, and immunology 
changes in hosts for the first time, providing a better understanding 
of viral pathogenesis and host immune status against EBIV 
infection, and endorsing the One Health Initiative.

MATERIALS AND METHODS

Ethics Statement
Animal studies were approved by the Laboratory Animal Ethics 
Committee of Wuhan Institute of Virology, Chinese Academy 
of Sciences (Approval No. WIVA12201901). All animal procedures 
were performed in strict compliance with the guidelines  
of Guide for the Care and Use of Laboratory Animals  
(National Research Council, 2011).

Cell Line, Virus Stock, and Animal
Baby hamster kidney, BHK-21 cell line was used in this study. 
BHK-21 was maintained at 37°C in Dulbecco’s minimal essential 
medium (DMEM; 4.5 g/liter D-glucose) containing 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin in 5% CO2. EBIV 
isolate Cu-XJ20 was first isolated from Culex modestus mosquitoes 
in Xinjiang, China (Xia et  al., 2020). The EBIV virus stock was 
propagated in BHK-21 cells in DMEM containing 2% FBS and 
stored in aliquots at −80°C. Adult BALB/c mice (6–8-week-old) 
were provided by the Animal Centre of Wuhan Institute of Virology. 
The mice were maintained in the ABSL-2 facility with controlled 
temperature (22°C), humidity, and a 12-h light/dark cycle.

Plaque Assay
Virus titrations were performed using BHK-21 cells as previously 
described (Xia et al., 2020), and the results expressed as PFU ml−1.

Median Lethal Dose Challenge and 
Pathogenesis Experiments
For the median (50%) lethal dose (LD50) experiment, 10 groups 
of male and female BALB/c mice (n  ≥  10 per group) were 
infected intraperitoneally (i.p.) with EBIV at 105–10−4 PFU of 
10-fold dilutions per  animal in 200  μl serum-free DMEM. 
Control group/mock mice (n ≥ 5) were inoculated with 200 μl 
serum-free DMEM. These mice were then observed at least 
once a day, and behavioral and weight changes were monitored 
over 2  weeks. The experiment was repeated three 
times independently.
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For pathogenesis experiments, only female mice were 
administered with 10 PFU EBIV in 200  μl serum-free DMEM 
through the i.p. route. Mock-infected mice received 200  μl 
serum-free DMEM. From day 1 to 5 post-infection, EBIV-infected 
mice (n = 5) and mock-infected mice (n = 3–5) were euthanized 
by isoflurane overdose. About 200  μl of blood was collected 
from the orbital sinus by a capillary tube daily for viremia 
assay. Whole blood was also collected from infected and mock-
infected mice for biochemical analysis after removing their eyes. 
During necropsy, the organs were macroscopically observed, and 
afterward the tissues (liver, spleen, kidney, intestine, lung, brain, 
thymus, and Peyer’s patch) harvested were divided into three 
parts, one for determination of titers, the second one was stored 
in 15  ml centrifuge tubes containing 10% Paraformaldehyde for 
histopathological and immunohistochemical (IHC) assays, and 
the last one was sectioned and stored in 2.5% glutaraldehyde 
solution for ultrastructural analysis.

Quantification of Virus in Mice
To determine the viremia, blood samples were first kept at 
4°C for 4 h, followed by centrifugation at 3,000 × g for 10 min 
to separate the serum before storage at −80°C until further 
use. Viremia titers were tittered by plaque assay on BHK-21 
cells. For quantification of the virus in tissues, the tissues were 
first removed and weighed before being homogenized by a T 
grinder electric tissue grinder OSE-Y30 (TIANGEN, China) 
on ice using sterile pestles with serum-free DMEM. Supernatants 
were then collected and stored at −80°C. Finally, the viral 
titers were determined by plaque assay, and titers were expressed 
as PFU  g−1.

Histopathology and Immunohistochemical 
Assay
For the histopathological analysis, tissues of EBIV-infected and 
mock-infected mice fixed with 10% paraformaldehyde were 
embedded in paraffin, cut, and stained with hematoxylin-eosin 
(HE), and examined under light microscopy. For the IHC assay, 
the antiserum against EBIV-NP recombination protein produced 
in BALB/c mice was diluted at 1:100, and the histological 
sections were cut to 4–5  μm for immunohistochemical assay 
as previously described (Sawatsky et  al., 2014; Matos et  al., 
2019). The stained sections were evaluated for EBIV 
immunoreactivity by Image-Pro Plus 6.0 software (Media 
Cybernetics, Inc., Silver Spring, MD, United  States), and the 
accumulated optical density (IOD) and the corresponding 
brown-yellow positive area were provided with three randomly 
selected fields of view (200×). Finally, each group was represented 
by the accumulated optical density IOD (SUM; Zhang et  al., 
2016; Liu et al., 2019). All the above were performed at Wuhan 
Biotechnology Corporation.

Ultrastructural Analysis
Ultrathin sections of tissues in EBIV-infected and mock-infected 
mice were consistent as previously described (Otto et al., 2017) 
using an FEI Tecnai G20 transmission electron microscope 
(FEI Company, United  States) at 200  kV.

Hematology and Clinical Chemistry
For complete blood counts, 50  μl of whole blood was collected 
in an anticoagulant tube. HemaVet 950FS hematology analyzer 
equipped with software was used to measure the white blood 
cell (WBC) count, red blood cell (RBC) count, hemoglobin (Hb) 
concentration, hematocrit, and platelet count. For clinical chemistry, 
200  μl of serum was analyzed by VetScan2 Chemistry Analyzer 
(Abaxis Inc., Sunnyvale, CA, United  States), which provides a 
diagnostic panel, including albumin, total bilirubin, alanine 
aminotransferase, alkaline phosphatase, glucose, amylase, calcium, 
urea nitrogen, creatinine, lactate dehydrogenase, and creatine kinase.

Quantification of Cytokines
To determine cytokine levels in the serum and tissues of mice, 
25  μl of serum or tissue homogenate (liver, spleen, and brain) 
was added to each well (triplicate wells) in the premixed assay 
panels using a Bio-Plex Pro™ Mouse Cytokine Grp I  Panel 
8-Plex kit (Bio-Rad) according to the manufacturer’s instructions, 
then interleukin IL-1β, IL-2, IL-4, IL-5, IL-10, interferon (IFN)-γ, 
and tumor necrosis factor (TNF)-α of samples were qualified 
and analyzed by the Bio-Plex 200 System (Bio-Rad) and the 
Bio-Plex Manager software (version 6.0).

Statistical Analysis
All statistical analyses were done using R v4.0.2, the comparisons 
are ensured by unpaired Student’s t-test and the LD50 is estimated 
by Probit regression model. Levels of statistical significance 
are given as either p  <  0.05 or 0.01.

RESULTS

BALB/c Mice Succumbed to EBIV Infection 
Rapidly
BALB/c mice exhibited clinical signs of disease from 2  days 
post-infection (d.p.i), which typically manifested as piloerection, 
lethargy, and hunched posture (Figure  1A). The weight of 
EBIV-infected mice also began to decrease from 2  d.p.i until 
death with a mean weight loss of 19.85% (Figure  1C). Feces 
with blood and body tremble were observed at 4  d.p.i. From 
5  d.p.i, the mice progressively became immobile, weak with 
labored breathing, and finally started to die, with the peak of 
mice’s death at 6  d.p.i. The survival curve showed more than 
90% of BALB/c mice succumbed to death when administrated 
with an extremely low dose of 1 PFU EBIV, suggesting that 
BALB/c mice are highly permissive to EBIV infection. The 
LD50 was calculated as 0.046 PFU by logistic regression 
(Figure  1B) and 10 PFU was selected as the infectious dose 
of the following experiments in this study.

EBIV Disseminates From the Peripheral 
Tissue to the Central Nervous System
Viremia was detected in all five mice from 1  d.p.i, peaked at 
2  d.p.i, and then continued to decrease (Figure  2A). We  also 
found a high viral load in the lymphoid organs (spleen and 
thymus) isolated from most of the infected mice at 1  d.p.i, 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhao et al. Pathogenesis and Immune Response of EBIV

Frontiers in Microbiology | www.frontiersin.org 4 February 2021 | Volume 11 | Article 625661

A B

C

FIGURE 1 | Clinical illness and survival curve during Ebinur Lake virus (EBIV) infection in male and female BALB/c mice. (A) Behavioral changes. (B) Survival curve. 
Adult mice (n ≥ 10 per group) were challenged intraperitoneally (i.p) with dose from 10−4 to 105 plaque-forming unit (PFU). (C) Weight change over 6 days when 
challenged with dose of 10 PFU.

A B C D

E F G H

FIGURE 2 | Viral load in different organs of EBIV infected female BALB/c mice inoculated by i.p with 10 PFU. Viral titer was measured and quantified in serum and 
organs from day 1 to 5 post-infection by plaque assay (n = 5). Viral titers for the Serum (A), Liver (B), Spleen (C), Kidney (D), Lung (E), Intestines (F), Brain (G), and 
Thymus (H) are shown.
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suggesting EBIV mainly disseminated in the blood and lymphoid 
organs at the early stage (Figures 2C,H). After 2 d.p.i, we detected 
increased viral particles in the kidney (Figure  2D), lung 
(Figure 2F), liver (Figure 2B), intestine (Figure 2E), and thymus 
(Figure  2H). The viral titers in these organs almost remained 
at the same level until 5 d.p.i. However, the viral load was slightly 
decreased in the spleen after reaching its peak at 2  d.p.i. In 
contrast to the spleen, the virus titer in the brain continued to 
rise over time (Figure  2G), demonstrating that EBIV can spread 
from the periphery to the central nervous system from 2  d.p.i.

EBIV Causes Prominent Histopathologic 
Changes in the Periphery of BALB/c Mice
The color of the liver from EBIV-infected mice was faded 
compared with the mock-infected group (Figure 3, black arrow). 

Additionally, the size of spleen (peripheral immune organ; 
Figure  3, white arrow) and thymus (central lymphoid organ; 
Figure 3C) from EBIV-infected mice became smaller, suggesting 
EBIV infection may cause damage to both central and peripheral 
immune systems. It was hard to observe food as severe congestion 
(Figure  3, red arrow) happened in the intestine of infected 
mice (Figure  3, green arrow), possibly caused by decreased 
appetite of the mice on 2  d.p.i (Figure  3, red arrow).

Histopathology and Immunohistochemical 
Staining Showed Tissue Damage 
Following EBIV Infection
At 5  d.p.i, viral antigen was detected in multiple tissues, 
including liver, intestine, brain, spleen, thymus, and Peyer’s 
patch by IHC staining. Within the liver of EBIV infected mice, 
viral antigen showed scattered granular staining (brown) in 
foci of occasional Kupffer cells (Figure 4, purple arrow). We also 
observed some disorganized hepatocytes (Figure 5, green arrow) 
and many hepatocytes of the liver parenchyma exhibited swelling 
and their cytoplasms loose (Figure  5, yellow arrow). For the 
intestine of EBIV infected mice, the necrotic mucosal had 
increased neutrophils (Figure  5, blue and brown arrows), in 
which viral antigen (Figure  4, green arrow) was detected. The 
structure of intestinal villi was partially damaged following 
EBIV infection (Figure  5, gray arrow), accompanied by the 
shedding of epithelial cells (Figure  5, red arrow). In the brain, 
we  observed viral antigen in gliocytes (Figure  4, blue arrow). 
A large number of inflammatory cells, including neutrophils, 
monocytes, macrophages, and lymphocytes, infiltrated around 
the meningeal blood vessels, which may be  associated with 
mild meningitis (Figure  5, purple arrow). Additionally, viral 
antigen was largely detected in neutrophils of lymphoid organs, 
which exhibited severe damage following EBIV infection 
(Figure 4, red, blue, and black arrows). Lymphocytes underwent 
necrosis accompanied by nuclear fragmentation in spleen 
(Figure 5, black arrow). We also observed the irregular structure 
of thymocytes, with lymphocytes degeneration and focal necrosis 
in the cortex of thymus for EBIV-infected group. The same 
histopathology changes were shown in the Peyer’s patch of 
EBIV infected group (Figure  5, light yellow arrow). Generally, 
EBIV could infect both the periphery and CNS, causing 
histopathology changes.

EBIV Causes Lesions in Liver, Brain, and 
Spleen
We also observed the ultrastructural characteristic of tissues 
of EBIV-infected BALB/c mice at 5  d.p.i. Viral particles were 
located in Kupffer cells of the liver (Figure  6, purple arrow), 
which was consistent with the detection of viral pathogens in 
Kupffer cells, as mentioned previously (Figure 5, purple arrow). 
Lipid drops increased significantly in the liver (Figure 6, yellow 
arrow) of the infected group, resulting in hepatic steatosis. In 
CNS, viral particles were observed in the cerebral cortex of 
the brain (Figure  6, red arrow), which lead to the destruction 
of the endothelial wall and edema (Figure  6, blue arrow). 
Consistent with previous HE  and IHC staining of the spleen, 

FIGURE 3 | Gross examination of organs in female BALB/c mice following 
EBIV infection. Representative pictures of organs in mock-infected mice 
(A)+(C-a) and EBIV-infected mice (B)+(C-b). Appearance of liver color of 
EBIV-infected mice lighter brown compared to that of mock-infected mice 
(black arrow). Spleen (white arrow) and thymus (a,b) of EBIV-infected mice 
achieved a significant reduction in size compared to those of mock-infected 
mice. The intestine was almost empty (green arrow), and accompanied by 
severe congestion (red arrow).
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massive lymphocytes were necrotic (Figure  6, brown arrow), 
and virus particles could be  observed in these damaged 
granulocytes (Figure  6, green arrow).

EBIV Infection Causes Abnormal Blood 
Constituents in BALB/c Mice
To evaluate the hematological and clinical chemistry 
parameters, we  analyzed the WBC. The proportion of 

lymphocytes decreased at 2  d.p.i, while the proportion of 
eosinophils increased at 4  d.p.i (Figure  7H). However, 
the total WBC counts in infected mice started to decrease 
from 1  d.p.i and then showed a significant drop at 2  d.p.i, 
accompanied by a mild recovery in the following days 
that could not reach the original level (Figures  7A,G). 
Further analysis showed that the counts of lymphocytes, 
neutrophils, and monocytes were consistent with the trend 
of overall lymphocytes (Figures  7B–D). Eosinophils 

FIGURE 4 | Immunohistochemical (IHC) findings in female BALB/c mice following EBIV-infection at 5 days post-infection (d.p.i). Original magnification was 400× in 
tissues. Infected animals exhibited positive immunostaining (brown) for EBIV with increased significant IOD differences in the Liver, intestine, brain, spleen, thymus, 
and Peyer’s patch sections. Viral antigen can be found scattered in Kupffer cells of liver sections (purple arrow), gliocytes of brain sections (blue arrow), and 
neutrophils of the intestine (green arrow), spleen (red arrow), thymus (orange arrow), and Peyer’s patch (black arrow) sections. Significance was determined by 
comparing to the control. Error bars represent SD. The two-tailed p values are indicated as follows: **p ≤ 0.01.
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continued to increase throughout the study, especially from 
4  d.p.i (Figure  7E). We  did not observe a noticeable 
change in basophil counts between the two groups 
(Figure  7F). Compared to the mock group, infected mice 
had decreased RBC counts (Figure  7I), especially platelet 
numbers, which decreased evidently (Figure  7L), which 
might be  due to their migration to infection sites. Levels 
of Hb (Figure  7J), and hematocrit (Figure  7K) also 
decreased at 4  d.p.i but were partially restored at 5  d.p.i. 
To further understand the physiological status of EBIV 
infection in mice, we  measured the clinical chemistry of 
serum. The ALT and LDH-L were significantly elevated, 
suggesting that the liver was damaged following EBIV 
infection. The level of CK increased significantly, which 
indicated a minor brain injury. Only GLU level decreased, 
which might be  caused by mice decreased appetite 
(Supplementary Figure S1).

EBIV Infection Induce Cytokines Change in 
Target Organs
As shown in Figure  8, the inflammatory related cytokines, 
TNFα and IL-4 levels were significantly decreased in the 
serum at the earlier stage of EBIV infection, but recovered 
to the normal level at 3  d.p.i. However, we  found a rising 
trend for TNFα and IL-4  in both spleen and brain of 
infected mice, especially TNFα level in the spleen were 
increased markedly from 1 to 5  d.p.i. IL-10 production 
peaked in the spleen at 2  d.p.i then decreased, but still 
was significantly higher compared to the control. We  also 
observed a markedly increased brain IL-10 at 3 and 5  d.p.i. 
These results indicated an inflammation change in the 
peripheral and CNS. Significantly, an increase in IL-1β levels 
was observed in spleen at 2 and 3  d.p.i, in liver at 2  d.p.i 
(Supplementary Figure S2). Surprisingly, no IL-1β levels 
were detected in the brain. The serum IL-2 exhibited an 

FIGURE 5 | Histopathologic examination in EBIV-infected female BALB/c mice by i.p route at 5 d.p.i. Original magnification was 200× or 400×. Liver: showed 
hepatocellular edema (yellow arrow) and disordered arrangement (green arrow). Intestine: showed damaged structure (gray arrow) and exfoliated epithelial cells (red 
arrow) in the intestinal villi, increased neutrophils (blue arrow), and cell necrosis (brown arrow) in the mucosal layer. Brain: showed inflammatory cells, including 
neutrophils, monocytes, macrophages, and lymphocytes, infiltrated around the meningeal blood vessels (purple arrow). Spleen: showed lymphocyte necrosis 
(nuclear fragmentation; black arrow). Thymus: showed focal necrosis of lymphocytes (dark gray arrow). Peyer’s patch: showed interstitial edema, loosely arranged 
cells, and lymphocyte necrosis (light yellow arrow).
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FIGURE 6 | Transmission electron microscopy analysis of tissues infected with 10 PFU of EBIV i.p at 5 d.p.i in female mice. Original magnification was 1700× or 
7800×. Liver: lipid droplets in some hepatocytes increased (yellow arrow) and viral particles were found in the Kupffer cell of liver sinus. Brain: the capillary 
endothelial cells (BCECs) swelled (blue arrow) and viral particles were detected (red arrow). Spleen: lymphocytes were necrotic (brown arrow) and viral particles were 
seen in the granulocyte (green arrow).

increasing trend at a later stage of infection, which was 
significantly high at 5 d.p.i. IL-2 levels in the spleen increased 
significantly at 1 and 4  d.p.i. IFNγ levels had a sharp 
decrease at 1  d.p.i in serum and were enhanced in brain 
at 1 and 3  d.p.i, suggesting EBIV infection altered IFNγ 
produced innate immune cells, especially NK cell function 
during the early infection. As a cytokine to mediate B cell 
differentiation, IL-5 level in the spleen was sharply reduced 
at the later stage of EBIV-infection, even undetectable on 
5  d.p.i, indicating the damage of B cell function caused 
by EBIV. Interestingly, in the brain, IL-5 was significantly 
decreased at 1  d.p.i and returned to the similar level as 
control. There was no obvious difference for these cytokines 
in liver (Figure  8D) suggesting the complexity of host 
immune response.

DISCUSSION

The immunocompetent, 6–8-weeks-old BALB/c mice were 
used for EBIV infection by intraperitoneal inoculation in 
this study. This animal model was previously developed as 
an experimental host of Oropouche virus (OROV) that belongs 
to Simbu serogroup of Orthobunyavirus, with severe involvement of  

the central nervous system (Santos et  al., 2012, 2014). Our 
results indicated that EBIV could cause acute disease in 
BALB/c mice. A large majority of infected animals developed 
disease on the 2  d.p.i, progressing to death within 9  days. 
However, this very rapid disease progression caused by EBIV 
is a rare case in Orthobunyavirus infection in the adult mice 
model. In general, weanling (3  weeks old or younger) mice 
are more susceptible to Orthobunyavirus infection, and adults 
(greater than 6  weeks) may be  resistant (Bennett et  al., 2011; 
Santos et  al., 2012; Winkler et  al., 2017; Zhang et  al., 2017). 
What leads rapidly to disease and death in BALB/c mice? 
In experimentally infected mice, EBIV might induce 
encephalopathy with multiple organ damage. EBIV-infected 
mice developed significant hepatic damage on the 5  d.p.i, 
confirmed by histopathological studies and changes in the 
serum levels of ALT/LDH-L, resulting in hepatic disease 
(Camini et  al., 2014). The mammalian peripheral lymphoid 
organ plays a central role in host defense (Golub et al., 2018). 
EBIV could replicate in most lymphoid tissues, including 
spleen, thymus, and Peyer’s patch, resulting in lymphocyte 
necrosis (Figures  4, 5), and atrophy of spleen and thymus 
were observed. This is unusual in Orthobunyavirus infection 
(Wernike et  al., 2012). The IL-1β is a key mediator of the 
inflammatory response (Lopez-Castejon and Brough, 2011), 
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which is essential for host immune response. The rising level 
of IL-1β in spleen and liver demonstrated the occurrence of 
inflammation in the periphery at the earlier stage of EBIV 
infection. Besides, IL-5 is initially defined as a key mediator 
of activated B cell differentiating to antibody-secreted B cells 
(Randall et  al., 1993). Significant abolishment of IL-5 of the 
spleen at the later infection stage, suggests a possible antibody 
deficiency. So we performed the neutralization assay to detect 
neutralizing antibody in serum samples of mice from 1 to 
5  d.p.i and found that even undiluted serum of all mice 
could only reduce plaques by 30% (data not shown). The 
infiltrating inflammatory cells to the CNS and increase of 
CK indicated brain damage, and the viral titer in the brain 
continued to increase following EBIV infection. Viruses may 
cross the blood-brain barrier (BBB) via several routes, including 
direct infection of BMECs, transcellular or paracellular viral 
trafficking across the endothelium (Verma et al., 2009; Daniels 
et  al., 2014). We  found obvious enhancement of TNF-α and 
IL-10  in both spleen and brain, indicating an inflammation 
status of BALB/c following EBIV infection. TNF-α is a key 
factor for viral crossing of the BBB (Miner and Diamond, 
2016), and IL-10 was also proved to facilitate viral infection 
(Bai et  al., 2009). TNF-α and IL-10 may play an important 

role in EBIV entering the brain (Den Heijer et  al., 2010; 
Razakandrainibe et  al., 2013). Thus, the released host factors 
might (cause by the damage to the periphery like spleen), 
increase the permeability of the BBB, and make it easier for 
a virus to invade the CNS either directly or by crossing the 
BMEC tight junctions (Daniels et  al., 2014). These studies 
indicate that the innate immune response in adults is not 
sufficient for protection and that components of the adaptive 
immune response is necessary to prevent the virus from 
invading the CNS (Winkler et  al., 2017).

The transmission of arboviruses to vertebrates through mosquito 
vectors is an intricate complex process, and establishing vector 
transmission by bite is the most relevant mode in mimicking 
arboviral disease infection (Secundino et al., 2017). In a previously 
conducted study by Pingen and team, they note that mosquito 
bites could significantly enhance infection with BUNV infection 
(Pingen et  al., 2016). Although EBIV has been isolated from 
Culex modestus (Xia et  al., 2020), the primary transmission 
vector of EBIV is still not clear. And we  have not yet detected 
any EBIV RNA in the sampled Aedes flavipectus, Aedes Caspian, 
and Culex pipiens mosquitoes that formed part of our mosquito 
surveillance studies for the years 2014 and 2019 (data not shown). 
Notably though, in the same serogroup of Bunyamwera, 
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FIGURE 7 | Hematologic abnormalities induced by EBIV infection with 10 PFU in female mice. BALB/c mice were inoculated by i.p route (n = 5) and 10 mock-
infected animals as control, Each symbol represents one animal. (A) Total White blood cells (WBCs). (B) Lymphocyte. (C) Neutrophil. (D) Monocyte. (E) Eosinophil. 
(F) Basophil. Composite graph showing average absolute counts (G) and average population proportions (H) of lymphocytes, neutrophils, monocytes, eosinophils, 
and basophils. (I) Total red blood cells (RBCs). (J) Hemoglobin (Hb). (K) Hematocrit. (L) Platelets.
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FIGURE 8 | Cytokine abnormalities induced by EBIV infection in female mice. (A) IL-2, IL-4, IFN-γ, TNF-α, IL-10, and IL-5 levels were determined in serum (A) and 
in different tissues, spleen (B), brain (C), and liver (D) of mock and EBIV-infected mice. All cytokine concentrations in tissues were normalized to the mass of the 
respective homogenized tissue. Significance was determined by comparing to the control. Error bars represent SD. The two-tailed p values are indicated as follows: 
*p ≤ 0.05; **p ≤ 0.01.

experimental studies have shown that Ae. aegypti is a competent 
vector in transmission of BUNV, and despite the Ngari virus 
(NRIV) being isolated from many mosquito vectors, it is only 
Anopheles gambiae Giles that has proved to be competent vector 
for NRIV (Dutuze et  al., 2018). Therefore, the long-term 
surveillance of mosquitoes and experimental infection EBIV in 
different mosquito species should be  conducted to investigate 
the vector competence for EBIV, as well as its tropism in the 
positively identified competent mosquito vectors.

The reported hosts of Bunyamwera serogroup viruses are 
rodents, sheep, cattle, equine, avian species, primates, or humans 
(Dutuze et  al., 2018). Being a not well-characterized virus, 
we  do not know whether EBIV can cause disease to humans 
even though the seroprevalence clue of EBIV infection in 
humans has been reported (Xia et  al., 2020). It is possible 
that other vertebrate species, such as small mammals or birds 
could be  more susceptible to EBIV. In order to investigate the 
possible infection of EBIV in avian species, we  conducted an 
experimental infection of EBIV in the embryonated chicken 
egg (ECE). Our obtained findings showed that EBIV can infect 
6-days old ECE by yolk sac route of inoculation and cause 
100% death at titers of 106  PFU/egg. Thus, these findings 
indicate that EBIV can infect the avian species (data not shown). 
Unfortunately, the detection of EBIV antibodies in wild animals 
or birds has not been done so far. Overall, the comprehensive 

study for these lesser-characterized Bunyaviruses is critical to 
our best preparation for future threats.
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