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Abstract: Type 1 diabetes requires treatment with insulin injections and monitoring glucose levels
in affected individuals. We explored the utility of two mathematical models in predicting glucose
concentration levels in type 1 diabetic mice and determined disease pathways. We adapted two
mathematical models, one with β-cells and the other with no β-cell component to determine their ca-
pability in predicting glucose concentration and determine type 1 diabetes pathways using published
glucose concentration data for four groups of experimental mice. The groups of mice were numbered
Mice Group 1–4, depending on the diabetes severity of each group, with severity increasing from
group 1–4. A Markov Chain Monte Carlo method based on a Bayesian framework was used to fit
the model to determine the best model structure. Akaike information criteria (AIC) and Bayesian
information criteria (BIC) approaches were used to assess the best model structure for type 1 diabetes.
In fitting the model with no β-cells to glucose level data, we varied insulin absorption rate and insulin
clearance rate. However, the model with β-cells required more parameters to match the data and we
fitted the β-cell glucose tolerance factor, whole body insulin clearance rate, glucose production rate,
and glucose clearance rate. Fitting the models to the blood glucose concentration level gave the least
difference in AIC of 1.2, and a difference in BIC of 0.12 for Mice Group 4. The estimated AIC and
BIC values were highest for Mice Group 1 than all other mice groups. The models gave substantial
differences in AIC and BIC values for Mice Groups 1–3 ranging from 2.10 to 4.05. Our results suggest
that the model without β-cells provides a more suitable structure for modelling type 1 diabetes and
predicting blood glucose concentration for hypoglycaemic episodes.

Keywords: diabetes; thresholds; model selection; model calibration

1. Introduction

Diabetes, a global epidemic, has two main forms—type 1 and type 2 diabetes. Approx-
imately 463 million adults were living with diabetes in 2021, and this is expected to rise to
700 million by 2045 [1]. The disease can affect any individual, regardless of size, age, or
gender, and there are many factors that can increase risk of having diabetes. Diabetes can
be considered as the irregularities in the glucose homeostasis system where homeostasis is
not able to be maintained or controlled [2]. Symptoms of all forms of diabetes are, increased
thirst, urination, hunger, tiredness, weight lost, and blurred vision [2]. The severity of the
disease arises when complications appear. Complications of diabetes are heart disease, kid-
ney failure, nerve damage, comas, and eventually death [3,4]. A recent concern of diabetes
is related to the COVID-19 pandemic. COVID-19 is known for attacking the immune system
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and individuals with diabetes are extremely vulnerable to contracting the highly infectious
virus, having already compromised immune systems. Several studies have linked diabetes
to increased severity of COVID-19 infection and hindering quick recovery [5,6].

Type 1 diabetes (i.e., insulin dependent diabetes) usually occurs from a young age
and is classified as an autoimmune disease. Type 1 diabetes occurs due to an autoimmune
reaction from the body, destroying the β-cells in an individual [7]. Without β-cells, an indi-
vidual cannot produce insulin, which is required to reduce blood glucose levels back within
the normal range [2]. Without control of the blood glucose levels, diabetes complications
arise, and eventually will lead to death [2]. Treatment and management of type 1 diabetes
requires daily injections of insulin and constant blood glucose monitoring, healthy diet,
and exercise [7].

Type 2 diabetes (i.e., non-insulin dependent diabetes) is present more frequently
in individuals who are overweight and 80% of individuals diagnosed with type 2 are
overweight [8]. Type 2 diabetes is reversible and can develop over time if risk factors,
such as being overweight, unhealthy diet, and high blood pressure manifest; it constitutes
90% of diabetes cases [1]. Unlike type 1 diabetes, individuals with type 2 diabetes do
have β-cells present, but insufficient insulin secretion to control glucose levels [2]. This is
caused by insulin resistance, which occurs when the body produces insulin, but fails to
effectively use it [9]. The body therefore becomes resistant to its own insulin and attempts
to compensate by producing higher quantity of insulin [7]. This in turn leads to β-cells
wearing out or β-cell burnout [7]. Management of type 2 diabetes takes places through diet,
exercise, and a healthy lifestyle, although oral medications may be given if individuals are
not able to control their glucose levels through diet and exercise [2]. In some cases, insulin
injections may also be given; however, this is usually administered to individuals with type
1 diabetes [10].

Treatment and management of diabetes is becoming increasingly important especially
within the current COVID-19 pandemic. Most of type 2 diabetes cases can be reversed and
nearly most prevented, but type 1 diabetes is irreversible; thus, treatment and management
of the disease in this form is very important. In 2020, more than 1.1 million children
and adolescents were living with type 1 diabetes globally [1]; thus, increasing the urgent
need to establish efficient treatment and management strategies of the disease. Although
manageable, the major challenge with diabetes involves the fatal complications that can
occur if not properly managed [3,4].

Previous mathematical models of the glucose homeostasis system, which were con-
fronted with data, considered models with different components, such as the amount of
glucose in the digestive system as a separate entity and the amount of glucose present in
urine [11,12]. In our models, studied in [3,13], we hypothesized that glucose concentration
in the system is accounted for in one equation rather than breaking down the glucose
concentration in different parts of the body and separating it into different equations. Other
glucose homeostasis models that fit to the data are based on models in which plasma insulin
and glucose levels are considered as separate equations to exogenous insulin and the effect
of insulin on glucose levels [14]. Delay differential equations, consisting of a system of
equations to model different parts of insulin, glucose concentration, and plasma levels were
used to model diabetes and fitted to data in [15]. Further, the use of time delays is common
in modelling the glucose–insulin regulatory system [16–19] because of the need to consider
a time delay in insulin secretion in response to elevated blood glucose concentration.

Development of suitable mathematical models to understand glucose homeostasis
system in a diabetic individual is urgent and key in developing automatic insulin pumps
for disease treatment, management, and control. Several mathematical models are used
as algorithms in continuous glucose monitoring devices, insulin pumps, and an artificial
pancreas [20–22], and these devices require accurate predictive models. Model comparison
and selection play important roles in identifying the best model from a set of candidate mod-
els for data-driven modelling and system identification problems [23]. Existing diabetes
models for type 1 and type 2 include β-cells [3,8,11,18,24–31]. In this study, we adapted
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two mathematical models from our previous work, one with β-cells [13] and one without
the β-cell component [3], to determine their capabilities in predicting blood glucose con-
centration levels and identifying type 1 diabetes pathways using published experimental
data from mice studies [32]. In [32], these data were fitted to a model that partly considered
glucose in the digestive system, but in our case, we explored the performance of the two
models for whole body glucose dynamics to understand diabetes pathways. Both models
describe the glucose homeostasis system of an individual, glucose, insulin, and growth
hormone concentration levels in an individual. The main difference between the models
is that one has a β-cells component and the other has no β-cells, as it was theoretically
designed to describe the glucose homeostasis system of a purely type 1 diabetic individual.
Type 1 diabetics have zero or relatively low β-cells; thus, we assume that the second model
has no β-cell component [7] in order to adequately capture this characteristic. This study
is the first attempt to use data-driven approaches to generate evidence on the utility of
these models in predicting blood glucose concentration levels in type 1 diabetics and in
disease pathways. The penalised model selection approach is commonly used for model
comparison and selection. In this study, we use the Akaike information criterion [33] and
Bayesian information criterion [34], which are common penalised model selection criteria
used in several disciplines.

2. Methods
2.1. Data

We used published data on mean blood glucose concentration levels for four small
experimental groups of mice (i.e., sample sizes of 5–6) [32]. The four groups of mice used in
this study were, from various times, exposed to bisphenol S, a chemical that hinders glucose
homeostasis in individuals and accelerates type 1 diabetes [32]. Further details on the mice
used and their protocols can be found in [32]. Mathematical models to predict diabetes
pathways in humans are usually tested using data from experimental studies in rodents [35].
Many of the studies are in vitro but it is also essential to have in vivo studies; hence, rats and
mice are the most commonly used animals to study the glucose homeostasis system [35].
Most importantly, glucose homeostasis in humans and rodents is maintained by the same
factors (i.e., finding the balance between glucose and insulin concentration in the blood);
hence, it is acceptable to use data from rodents and apply the results to understand diabetes
dynamics in humans [36]. The data are based on four groups of experimental mice with
diabetes, were manually extracted from [32], and are presented in Figure 1. We numbered
the four groups as Mice Groups 1–4, depending on diabetes severity, with Mice Group 1
having a hyperglycaemic episode peaking at 400 mg/dL (data extracted from Figure 1D
in [32]) and Mice Group 4 (data extracted from Figure 3D in [32]) maintaining glucose
concentration within the expected ranges of 70–200 mg/dL [4]. The blood glucose data
for all four groups of mice in Figure 1 illustrate some biological characteristics of the
groups of mice. Mice Group 1 had a hyperglycaemic episode with extremely high levels
of glucose concentration appearing rapidly. In Figure 1, Mice Group 2 (data extracted
from Figure 3C in [32]) started within normal glucose concentration ranges and rapidly
became hypoglycaemic (glucose concentration is dangerously low). This suggests that
Mice Groups 1 and 2 may not have been able to control their glucose homeostasis systems.
Mice Group 1 showed a hyperglycaemic episode, where excess glucose was in the blood,
but not enough insulin was injected to control it. On the other hand, Mice Group 2 showed
a hypoglycaemic episode, where the glucose levels were too low in the blood and less
insulin needed to be injected to control the system. Mice Group 1 likely experienced several
symptoms, such as nausea, dizziness, feeling faint, weakness, and possibly death if the
glucose levels did not decrease to within normal ranges [4]. Similarly, Mice Group 2 likely
experienced the same severe symptoms; remaining in dangerously low levels of glucose
and death could occur if the levels of glucose do not normalise [4]. We note that Mice
Group 3 (data extracted from Figure 1D in [32]), although diabetic, was within expected
blood glucose concentration ranges (<260 mg/dL) [4] and showed slightly higher levels
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than that of non-diabetics. Mice Group 4 appears to have been within the expected glucose
concentration ranges, showing the glucose homeostasis system to be under good control.

Figure 1. Glucose concentration data for four groups of experimental mice extracted from [32]. The
blue line represents Mice Group 1 glucose concentration level data; Mice Group 2 is denoted by
the orange line; Mice Group 3 is denoted by the dark red line; and Mice Group 4 is denoted by the
grey line.

2.2. Diabetes Candidate Models

We use two mathematical models, which represent the pathways to diabetes, one specifi-
cally describes type 1 diabetes [3] and another that can represent both forms of diabetes (type
1 and type 2) [13]. Models 1 and 2 simulate the insulin concentration, glucose concentra-
tion, and growth hormone concentration in an individual and their formulation details are
presented in [3,13], respectively. The models were parameterised using experimental data
from mice studies, which were extracted from published literature [24,32]. Models 1 and 2 are
respectively given in the model system (1) and (2), their model input parameters and response
variables are presented in Table 1. Both models are based on the minimal model, which was
proposed by [25,37,38] and is widely used in the intravenous glucose tolerance test.

Model 1 (a type 1 diabetes model) consists of the following response variables, insulin
(I), glucose (GL), and growth hormone (GH) and incorporates an insulin injection term, I0.
Here, we briefly describe the Model 1 formulation details presented in [3]. The model does
not consider β-cell dynamics and incorporates a subcutaneous insulin injection term, I0,
which represents a constant bolus value. The insulin levels in the blood are a product of the
amount of insulin externally injected and the absorption rate, ψ. The insulin injection term,
I0, is hypothesised to have an inversely proportional relationship with insulin concentration

in the blood (I) [39–42]. We model this relationship using the term
I0

1 + I
. Overtime blood

insulin level drops as glucose is absorbed by muscle, fat, and liver cells, and clears at
a constant rate δ. Glucose (GL) levels are increased by the growth hormone through
suppression of glucose uptake by insulin, at a constant rate c. The parameter a represents
total glucose production rate in the liver. The growth hormone (GH) is increased by the
rate of production by the somatotropic cells in the pituitary gland at a constant rate ρ and
decreases at a rate w through absorption by the liver [43]. Model 1 is governed by the
following system of differential equations [3].
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dI
dt

=
ψI0 I
1 + I

− δI,

dGL
dt

= a− (b + cI)GL + cGH ,

dGH
dt

= ρ− wGH .


(1)

Model 2 is the glucose homeostasis model and consists of β-cells (β), insulin (I),
glucose (GL), and growth hormone (GH). Here, we briefly describe Model 2 formulation
details presented in [13]. The β-cells increase, by production or replication at rate h, and
are reduced by β-cell exhaustion or natural death at a rate g. Insulin (I) is secreted by
the β-cells and is dependent on the levels of glucose in the body. Insulin is reduced by
natural clearance at a rate f . The net insulin rate was determined to be best modelled as
a sigmoidal function of the glucose level [24]. Glucose (GL) levels are increased by the
growth hormone by suppressing glucose uptake by insulin, at a constant rate c. Parameter
a represents the total glucose production rate in the liver. The growth hormone (GH) is
increased by the rate of production by the somatotropic cells in the pituitary gland at a
constant rate ρ. GH is decreased at a rate w through absorption by the liver [43]. Model 2 is
governed by the following system of differential equations [13].

dβ

dt
= (hGL − iG2

L − g)β,

dI
dt

=
βdG2

L
e + G2

L
− f I,

dGL
dt

= a− (b + cI)GL + cGH ,

dGH
dt

= ρ− wGH .


(2)

The model parameters and variables of both models are presented in Table 1 and the param-
eter values and variable estimates were extracted from the published literature [3,8,10,43–45],
and other parameter values were assumed.

2.3. Model Calibration

We fitted the models to experimental data on mice published in [32]. We manually
extracted mean values of blood glucose concentration levels from the figures presented
in [32]. We considered the mean blood glucose concentration to be more suitable to use for
the purposes of our study. A Markov Chain Monte Carlo (MCMC) based on a Bayesian
framework was used to fit the diabetes models to blood glucose concentration level data.
The flexible modelling environment (FME) package in R [46], was used to implement an
MCMC algorithm based on the delayed rejection and adaptive Metropolis procedure [47].
A similar approach was also applied in modelling infectious diseases [48,49]. We sys-
tematically varied the parameters that were previously shown to be influential through a
mathematical analysis conducted in [3] and used these to guide our fitting process for each
model. In fitting Model 1, we varied insulin clearance rate (δ) and insulin absorption rate
(ψ). We deduced through a systematic analysis that Model 2 required more parameters to
be varied in order to fit the glucose concentration data and we varied glucose production
rate (a), glucose clearance rate (b), whole body insulin clearance rate ( f ), and the β-cell
glucose tolerance range factor (i).
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Table 1. Model parameters, variables, and their definitions. ∗ Note that certain parameters are fitted
for each model.

Parameter/Variable Definition Symbol Baseline Value [Range] Unit Reference

Biological parameters
Glucose production rate by liver a fitted * mg/dL min
Glucose clearance rate independent of insulin b fitted * min−1

Insulin induced glucose uptake rate c 0.85 [0.1–1] mL/m IU min Assumed
β-cell maximum insulin secretory rate d 43.2 [40–100] m IU/mL min mg Assumed
Sigmoidal inflection point e 20,000 [20,000–50,000] mg2/dL2 Assumed
Whole body insulin clearance rate f fitted * min−1

β-cell natural death rate g 0.03 [0.03–1] min−1 Assumed
Determines β-cell glucose tolerance range factor h 0.5727× 10−3 [0.5727× 10−3–1] dL/mg min Assumed
Determines β-cell glucose tolerance range factor i fitted * dL2/mg2 min
Growth hormone production rate by somatotropic cells ρ 15.06 [5–30] mIU/mL min [43]
Growth hormone clearance rate by the liver w 1958.40 [2000–4000] min−1 [43]
Insulin absorption rate ψ fitted * mIU/mL min
Insulin clearance rate δ fitted * min−1

Insulin Bolus I0 5 [5–30] mIU/mL [3]
Model response variables Initial conditions
β-cells β 800 mg [8]
Insulin I 20 mIU/mL [44]
Glucose GL 80 mg/dL [10]
Growth Hormone GH 30 mIU/mL [45]

In the fitting, glucose concentration (GL) was estimated by varying parameters, a, δ, b,
ψ, b, f and i, whilst other parameters remained fixed as given in Table 1. We assumed a
uniform prior for each varied parameter and parameters were sampled within lower and
upper values of assumed values and published literature given in Table 1. When fitting
the models to blood glucose levels, we assumed the observations to be identically and
independently distributed with additive Gaussian noise and unknown variance. Thus,
for a nonlinear model M with model parameters, θ, which need to be estimated from
the observed data, including x denoting the system input vector (i.e., the biological input
parameters shown in Table 1) and y denoting the output vector (i.e., GH , GL, I, β). Let us
denote the data D associated to the model, M by D = {xi, yi)|i = 1, . . . , n}, where n is the
number of data points. We also assume the mapping between the input xi to yi can be
represented as

y = f (x, θ) + ε,

where it is assumed that the observed values y differ from the function values f (x, θ)
by additive noise, ε, and we will further assume that this noise follows an independent,
identically distributed Gaussian distribution with zero mean and variance, σ2

ε ∼ N(0, σ2)

The parameters of model M, are estimated using the Bayes estimates, which are com-
puted by implementing the MCMC algorithm. The posterior distribution of the parameters,
(θ, σ2) is given by,

p(θ|y, σ2) ∝ exp
(
− 0.5× SS(θ)

σ2

)
ppri(θ),

where SS is the sum of squares function (SS(θ) = ∑(yi − f (x, θ)i)
2) and ppri(θ) is the prior

distribution of the parameters. A common approach to determine prior distribution for the
parameters of the univariate normal model is to assume either a non-informative prior or a
conjugate prior distribution for the unknown parameters. We assume a non-informative
prior distribution, for θ, as ppri(θ), which will be constant for any values of θ. While, for
the error precision, σ−2, as a nuisance parameter, we assume a conjugate prior distribution
as a Gamma distribution (adopted from Gelman et al. [50]; see Section 3.4) as follows:
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ppri(σ
−2) ∼ Γ

(n0

2
,

n0

2
S2

0

)
where n0 and S0 are known, and they can be easily defined in the FME package to compute
the posterior distribution for σ−2. The posterior distribution is calculated using the function
modMCMC. At each MCMC step, the error variance σ−2 will be sampled from the following
Gamma distribution as the posterior:

p(σ−2|(y, θ)) ∼ Γ
(n0 + n

2
,

n0S2
0 + SS(θ)

2

)
.

The MCMC chain was generated with at least 100,000 runs for the final model fitting.
Chain convergence was examined visually, using the Coda R package. Extended runs were
carried out in cases where convergence was not evident. Uncertainty of each estimated
parameter was evaluated by analysing the MCMC chains and calculating the 2.5% and
97.5% quantiles to obtain the 95% credible interval (Crls). We used Akaike Information
criterion (AIC) [33] and Bayesian information criterion (BIC) [34] to compare and then
identify the best model that described blood glucose concentration levels in a type 1 diabetic.
We used two types of information criteria to confirm the consistence of results. The AIC
evaluated the relative fit of the models given by calculating a prediction error, using the
following formula.

AIC = n log
(

L̂
n

)
+ 2k.

where n represents the number of data points used, k is the number of parameters fitted
(which, for our fitting, is 2 and 4, respectively, for Model 1 and Model 2), and L̂ is the
maximized value of the likelihood function of the model. BIC also evaluates the prediction
error of the models using a different penalty term for increased parameters involved and is
given by the following formula.

BIC = k ln(n)− 2 ln(L̂).

where n represents the number of data points used, k is the number of parameters estimated
by the model (fitted).

Each diabetes model system of differential equations is solved and fitted to experimen-
tal data using a code in the R programming environment (with FME and Coda packages)
following the algorithm below:

1. Select a dataset and candidate model.
2. Use functions modFit and modCost to find the best-fit parameters using least squares

fit. The function modFit conducts constrained fitting of the model to data when fitting
a model to data with lower and/or upper bounds. The function modCost calculates
the discrepancy of a model solution with observed data. This function estimates
the residuals, and the variable and model costs (sum of squared residuals), given a
solution of the model and data.

3. Use Gaussian likelihood to draw model parameter posteriors for a set of varied
parameters (i.e., for each candidate model) assuming uniform non-informative priors.

4. Use the function modMCMC to perform MCMC simulations assuming Gaussian
likelihood and visually examine chain convergence.

5. Store the model estimates in a table.
6. Compute uncertainty range for each parameter estimate and calculate AIC and BIC

values.
7. Plot relevant model output.
8. Repeat steps 1–7 for each dataset and candidate model.
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3. Results
Parameter Estimating and Uncertainty

MCMC chain convergence when fitting Model 1 to blood glucose concentration levels
for Mice Group 1 is shown in Figure 2 and the MCMC chain convergence when fitting to
Mice Groups 2–4 data are shown in Appendix A Figures A1–A3. MCMC chain convergence
when fitting Model 2 to blood glucose concentration levels for Mice Group 1 is shown
in Figure 3 and the MCMC chain convergence when fitting to Mice Groups 2–4 data are
shown in Appendix A Figures A4–A6. The traces of the MCMC chain (shown by the grey
line in the figures) show that the chains have converged (i.e., there is no apparent drift).
The results for fitting Model 1 to blood glucose level data for Mice Group 1, 2, 3 and 4 are
shown in Figures 4a, 5a, 6a and 7a. The corresponding estimates of the insulin clearance
rate (δ) and insulin absorption rate (ψ) are presented in Table 2.

In Table 2, we note that Mice Group 2 has the highest estimates for both δ = 0.16 and
ψ = 8.11. Mice Group 1 has the lowest estimated value of δ among all four groups of mice.
We also notice a similar trend for ψ. With Mice Group 1, lower estimates could be a result of
having extremely high blood glucose levels, which the systems struggle to control, and this
is usually due to lack of insulin or a slow rate of insulin absorption into the blood stream
(ψ) and, hence, less insulin needs to be cleared (δ). The results for fitting Model 2 to glucose
concentration data for Mice Groups 1, 2, 3, and 4 are presented in Figures 4b, 5b, 6b and 7b.
The corresponding estimates for glucose production rate (a), glucose clearance rate (b),
whole body insulin clearance rate ( f ), and glucose tolerance range (i) are presented in
Table 3.

In Table 3, we note that most of the fitted parameters for Mice Group 3 have the
highest estimates, except for i, for which Mice Group 2 has the highest estimated value.
There is no clear trend for the lowest estimated values, however b and f both had lowest
estimated value for Mice Group 2, at 0.11 and 0.28, respectively. It is interesting to note that
the whole body insulin clearance rate ( f ) estimated value varied widely depending on the
mouse, with an estimated minimum value of 0.28 and a maximum value of 102.81. The
low value estimate for f using Mice Group 2 data could be explained by the fact that the
mouse is not managing its blood glucose levels and this results in a hypoglycaemic episode,
meaning that the mouse is not able to clear insulin quickly. The extreme values of f also
demonstrate lack of control of the glucose homeostasis system. The results in Table 3 show
that the whole body insulin clearance rate ( f ) widely varies depending on the dataset and,
therefore, plays a large role in the model fitting.

Figure 2. First panel shows MCMC chain convergence for parameter ψ and second panel shows
MCMC chain convergence for parameter δ when fitting Model 1 to Mice Group 1 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.
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Figure 3. First top panel shows MCMC chain convergence for parameter a and second top panel
shows MCMC chain convergence for parameter b. The first bottom panel shows MCMC chain
convergence for parameter f and the second bottom panel shows MCMC chain convergence for
parameter i. These MCMC convergences are for Model 2 when fitted to Mice Group 1 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.

Table 2. Model 1 parameters estimates with medians and 95% Crls for Mice Groups 1–4. * Note that
parameter estimates for δ are multiplied by 10−1.

Parameter Mice Group 1 Mice Group 2 Mice Group 3 Mice Group 4

δ (×10−1) * 0.38 (0.3–0.4) 1.6 (1.5–2) 0.42 (0.4–0.45) 0.79 (0.7–0.8)

ψ 0.82 (0.63–0.96) 8.11 (5.67–11.84) 1.21 (0.93–1.60) 2.44 (1.65–3.16)

Table 3. Model 2 parameters estimates with medians and 95% Crls for Mice Groups 1–4. * Note that
parameter estimates for i are multiplied by 10−6.

Parameter Mice Group 1 Mice Group 2 Mice Group 3 Mice Group 4

a 45.28 (36.02–49.72]) 37.29 (34.45–97.24) 86.11 (51.79–97.05) 30.75 (21.21–51.56)

b 0.13 (0.08–0.14) 0.11 (0.06–0.49) 0.37 (0.20–0.41) 0.12 (0.03–0.2)

f 72.19 (22.26–76.49) 0.28 (0.11–0.3) 102.81 (24.87–243.27) 10.05 (3.77–13.76)

i (×10−6) * 1.91 (1.9–1.95) 2.91 (2.9–3) 2.276 (2.275–2.278) 1.18 (0.51–1.19)
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(a) (b)

Figure 4. (a) Fitting Model 1 (with no β-cells) to blood glucose level dataset for Mice Group 1.
(b) Fitting Model 2 (with β-cells) blood glucose level dataset for Mice Group 1. Where the shaded
light purple region is the 95% Crls, the dashed dark purple line is the median model projection, and
the blue circles are the mean data points for the glucose concentration level in Mice Group 1.

(a) (b)

Figure 5. (a) Fitting Model 1 (with no β-cells) to blood glucose level dataset for Mice Group 2.
(b) Fitting Model 2 (with β-cells) to blood glucose level dataset for Mice Group 2. Where the shaded
light purple region is the 95% Crls, the dashed dark purple line is the median model projection, and
the blue circles are mean data points for the glucose concentration level in Mice Group 2.
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(a) (b)

Figure 6. (a) Fitting Model 1 (with no β-cells) to Mice Group 3 dataset. (b) Fitting Model 2 (with
β-cells) to Mice Group 3 dataset. Where the shaded light purple region is the 95% Crls, the dashed
dark purple line is the median model projection, and the blue circles are mean data points for the
glucose concentration levels in Mice Group 3.

(a) (b)

Figure 7. (a) Fitting Model 1 (with no β-cells) to blood glucose level dataset for Mice Group 4.
(b) Fitting Model 2 (with β-cells) to blood glucose level dataset for Mice Group 4. Where the shaded
light purple region is the 95% Crls, the dashed dark purple line is the median model projection, and
the blue circles are mean data points for the glucose concentration levels in Mice Group 4.

In Figure 4, we note that when fitting the models to the blood glucose concentration
level for Mice Group 1, the predicted model trajectories for Models 1 and 2 peak at ap-
proximately 525 mg/dL (a dangerously high level, which, if not reduced immediately,
could result in death) and 320 mg/dL (a high value, but not as severe as that predicted
for Model 1). Figure 4a, Model 1, shows a sharp and uncontrollable blood glucose level
peak, which is expected of a type 1 diabetic. Type 1 diabetics lack control of the glucose
homeostasis system, as they have little or no β-cells to contain the rapid rise of glucose
concentration levels. Figure 4b shows a controlled blood glucose level peak, which is repre-
sentative of either a type 1 or type 2 diabetic. The nature of Model 2, with the presence of
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β-cells makes it more suitable for modelling type 2 diabetes; however, it can also represent
type 1 if the system evaluates β cells at zero. It is clear that Model 2 fails to fit high hyper-
glycaemic data point, which occurs predominately with diabetics, and is not a good fit for
representing type 1 diabetic mice. There are several glucose homeostasis models [39,51–59];
however, the ones which particularly target type 1 usually use intermolecular dynamics
and deal with processes within the molecules. Models that are used to represent glucose
homeostasis models for non-diabetic and diabetic (type 2 and type 1) usually use blood
concentrations of the glucose and insulin levels, instead of intermolecular dynamics [9].
The advantage of using models with blood glucose and insulin is that they can easily be
quantified unlike molecules.

In Figure 5, we fitted the models to blood glucose concentration level data for Mice
Group 2. Mice Group 2 is a hypoglycaemic mice group that manages to return its glucose
concentration back to normal levels. Model 1 fitting predicts a higher blood glucose
peak at approximately 260 mg/dL and Model 2 peaks at approximately 120 mg/dL. This
is a significant difference in blood glucose concentration and shows the difference in
management of the disease, Model 1 is more representative of an uncontrollable glucose
homeostasis system for a Type 1 diabetic. We note that for Model 2 (Figure 5b), the
uncertainty range is comparatively very small and fails to fit the final data point, but the
model does fit the other data points very well within 95% Crls.

Similarly, in Figure 6, we note that when fitting both mathematical models to the blood
glucose concentration level dataset for Mice Group 3, the predicted model trajectories for
Models 1 and 2 peak at 370 mg/dL and 265 mg/dL. Both of these are within the feasible
range of blood glucose concentration levels [4]. However, Figure 6a shows an extremely
high value, as would be expected of type 1 diabetic mice with no control of the glucose
homeostasis system. We note that this extreme (and rapid) uncontrollable blood glucose
concentration level peak for Model 1 is a good representation of a Type 1 diabetic [60,61].
Comparing Figure 6a,b, we note that the 95% Crls are much smaller for Model 1 than that
of Model 2, which shows that there is less variation and uncertainty in fitting Model 1.

The characteristic of Model 1 in predicting rapid blood glucose level peaks is also
illustrated in Figure 7. The predicted blood glucose level peak in Figure 7a is similar to that
in Figure 5a. The fitting of Model 1 to the Mice Group 4 blood glucose dataset is generally
good, regardless of the rapid peak; however, it fails to cover all data points. Model 2 fitting
to Mice Group 4 does fit very well and has no rapid uncontrollable peak. Model 2 fits the
95% Crls well as the uncertainty range covers all data points. A comparison of Figure 7a,b
shows that Model 2 fits better to blood glucose level data for Mice Group 4.

The computed AIC and BIC values for Model 1 and Model 2 for each mice group are
presented in Table 4.

Table 4. In the table, AICj, BICi for j = 1, 2 denotes the AIC and BIC values for Models 1 and 2.
Similarly ∆AIC = AIC2 −AIC1 and ∆BIC = BIC2 − BIC1 denotes the difference in AIC and BIC for
each model for the same group of mice.

Mouse AIC1 BIC1 AIC2 BIC2 ∆AIC ∆BIC

Mouse 1 11.73 10.95 15.78 14.21 4.05 3.26

Mouse 2 11.10 10.32 14.07 12.51 2.97 2.19

Mouse 3 11.33 10.55 14.21 12.65 2.88 2.10

Mouse 4 11.18 10.70 12.38 10.82 1.20 0.12

The results in Table 4 show that Model 1 has lower AIC and BIC values when fitting
the blood glucose concentration level dataset for all four groups of mice. Fitting Model 1 to
glucose concentration data for Mice Group 2 gave the lowest AIC = 11.10 and BIC = 10.32.
The difference for Mice Group 4 ∆AIC and ∆BIC < 2 ([62,63]) suggests that Models 1 and
2 are equally capable of explaining the blood glucose concentration data. However the
differences in ∆AIC and ∆BIC > 2 for Mice Groups 1–3 suggest substantial differences
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between the models (see Table 4). Both models demonstrated equal capability in predicting
blood glucose concentration levels for these data. The lower AIC and BIC values for Model
1 suggest that it is more suitable in predicting blood glucose concentration levels among
type 1 diabetics.

We notice a general trend in the differences in AIC and BIC results. The magnitude
of ∆AIC and ∆BIC values in Table 4 (illustrated in Figure 8) is dependent on the severity
of diabetes of each mice group, with increased control of diabetes/decreased severity of
diabetes giving lower ∆AIC and ∆BIC < 3, and mice with increased severity of diabetes
giving higher ∆AIC and ∆BIC > 3. This pattern suggests that Model 1 (no β cells) becomes
increasingly suitable in explaining blood glucose level data as the mice diabetes condition
becomes more severe (i.e., hypoglycaemic and hyperglycaemic episodes are occurring). The
severity of diabetes is also increased when the mice progress from type 2 to type 1 diabetes.

Figure 8. A plot of information criteria difference (∆IC) for each mice group and corresponding
experimental peak blood glucose concentration level. The blue triangles denotes ∆AIC and the
orange triangle denotes ∆BIC. The red line denotes ∆IC = ∆AIC or ∆BIC = 2.

4. Discussion

Diabetes mismanagement resulting in high blood glucose levels can cause several sec-
ondary diseases [64], which could lead to death. Understanding type 1 diabetes and blood
glucose concentration levels in individuals at certain significant time points is important
in treatment and management of the disease. Mathematical models are important tools to
understand pathways and threshold blood glucose concentration levels required to keep
the glucose homeostasis system stable. Many of these models are used as algorithms in con-
tinuous glucose monitoring devices, insulin pumps, and an artificial pancreas [20–22]. The
correct insulin bolus injection requires accurate mathematical models in predicting blood
glucose concentration levels. Model comparison and selection constitute an important step
in determining an accurate model structure for the glucose–insulin regulatory system.

Our results showed that both models (i.e., (with β-cells) and (without β cells)) are
comparable in fitting blood glucose level dataset for Mice Group 3 and Mice Group 4.
However, the estimated values of ∆AIC = (4.05, 2.97) and ∆BIC = (3.26, 2.19), for Mice
Group 1 and Mice Group 2, blood glucose level datasets showed substantial differences,
suggesting that the model without β cells is more suitable in explaining the type 1 glucose
homeostasis biological processes. Model fitting (see Figures 4–7) showed that the model
with no β cells provides a better representation of a type 1 diabetic glucose homeostasis
system. The rapid rise in glucose concentration levels simulated in the predictions for the
model with no β cells captures a phase in which the system is uncontrollable and requires
intervention to be managed, and this is achieved by injecting the insulin bolus [4]. Our
findings also showed that, as the mice diabetes condition became more severe, the model
with no β cells becomes favourable, as shown by large ∆AIC and ∆BIC values (see Table 4).
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Data driven approaches to modelling implemented in this study are important in
refining current diabetes models in order to establish evidence based mathematical models
with better prediction capabilities and potential to evaluate diabetes management and
treatment strategies. The absence of efficient and accurate devices for diabetes treatment
and control clearly suggest that current diabetes mathematical models are insufficient.
Our study makes an important step in developing a platform for further development of
accurate diabetes models using simple deterministic models that are easy to understand.

The study has some limitations. Fitting was only conducted using data for mean
blood glucose concentration levels from four groups of mice; however, data for a larger
sample of experimental mice would be necessary to fully understand diabetes pathways
and performance of the candidate models. It is also important to fit these models to insulin
concentration levels data concurrently for more robust results, if such data are available.
The prior distributions (non-informative prior for θ and conjugate prior, as inverse Gamma
for error variance), considered in the Bayesian framework and introduced in Section 2.3,
are appropriate and widely used in the Bayesian studies. However, further investigation
is required to examine the robustness of the associated posterior results with respect to
prior distributions misspecification. One way to tackle this issue is to formally elicit prior
distributions of the parameters, using the methods introduced in [65,66]. However, whilst
eliciting prior distributions for the unknown parameters is not very straightforward in
practice [67], this is widely recommended as the most appropriate method to conduct a
fully Bayesian analysis. An alternative method is to explore sensitivity of the posterior
distributions with respect to misspecification of prior distributions. However, local and
global sensitivity analyses were common methods from the 1980s to 1990s (see [68,69]),
but these methods have recently been further developed and applied in a wide range of
applications [70–72].

Another limitation is that the data were collected at different time points and it would
be interesting to explore the performance of the models for data collected at reduced time
intervals or following the significant diabetes time steps (30, 60, 90, 180, and 210 min). These
time steps are of relevance, as a diabetic individual would be required to measure their
blood glucose levels at 30 and 60 min after food. At 210 min (approximately 3.5 h), the blood
glucose levels are expected to be back to normal baseline values as the system achieves
homeostasis. The current data only represent an episode of diabetic mice; it is necessary to
have continuous data for more episodes in order to develop robust prediction models for
type 1 diabetes episodes. The data in [32] explored sex-specific effects of diabetes, it would
be interesting to investigate sex-specific effects and disease severity on the performance
of the studied models and understand the consistency of our findings. The current model
structures could then be modified to include more realistic time dependent parameters (e.g.,
seasonality terms) or consider using a structure with impulsive differential equations. In
addition, it would be interesting to evaluate the predictive capabilities of linear versions of
these models, similar to those reviewed in [73], and investigate the structural and practical
identifiability [73,74]. Despite these shortfalls, our modelling represents an interesting step
in developing data-driven dynamic models for diabetes, to improve the prediction of blood
glucose concentrations using deterministic compartmental models.

5. Conclusions

This study used data-driven mathematical models to understand diabetes pathways.
Mathematical models are important tools in understanding the glucose homeostasis system
for diabetic individuals in order to establish disease treatment or management strategies
and they are crucial in designing personalized decision support tools for individuals with
diabetes [74]. Our findings show that, in general, the candidate model with no β-cells
provides a more suitable structure for modelling Type 1 diabetes and predicting glucose
concentration for hypoglycaemic episodes.

The findings from this study highlight the need to build suitable mathematical model
structures for diabetes. These models are important in developing accurate algorithms
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for building machine learning predictive models, such as an artificial pancreas [21,22].
Accurate and efficient artificial pancreas machines are essential for diabetes treatment,
management, and control. Despite the importance of mathematical models, such as tools
to inform decision making for disease (e.g., diabetes), such mathematical models have
been neglected for diabetes, with a few mathematical modelling studies on a diabetes
homeostasis system available in recent literature. The growing burden of diabetes [1] and
complications associated with the COVID-19 infection [5,6], calls for the need to build
robust mathematical models—urgently needed tools to control or treat the disease.
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Appendix A

Figure A1. First panel shows MCMC chain convergence for parameter ψ and second panel shows
MCMC chain convergence for parameter δ when fitting Model 1 to Mice Group 2 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.
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Figure A2. First panel shows MCMC chain convergence for parameter ψ and second panel shows
MCMC chain convergence for parameter δ when fitting Model 1 to Mice Group 3 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.

Figure A3. First panel shows MCMC chain convergence for parameter ψ and second panel shows
MCMC chain convergence for parameter δ when fitting Model 1 to Mice Group 4 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.
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Figure A4. First top panel shows MCMC chain convergence for parameter a and second top panel
shows MCMC chain convergence for parameter b. The first bottom panel shows MCMC chain
convergence for parameter f and the second bottom panel shows MCMC chain convergence for
parameter i. These MCMC convergences are for Model 2 when fitted to Mice Group 2 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.

Figure A5. First top panel shows MCMC chain convergence for parameter a and second top panel
shows MCMC chain convergence for parameter b. The first bottom panel shows MCMC chain
convergence for parameter f and the second bottom panel shows MCMC chain convergence for
parameter i. These MCMC convergences are for Model 2 when fitted to Mice Group 3 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.
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Figure A6. First top panel shows MCMC chain convergence for parameter a and second top panel
shows MCMC chain convergence for parameter b. The first bottom panel shows MCMC chain
convergence for parameter f and the second bottom panel shows MCMC chain convergence for
parameter i. These MCMC convergences are for Model 2 when fitted to Mice Group 4 data. The black
lines represent the MCMC chain and the grey line represents traces of the chain.
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