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Abstract

Categorization and categorical perception have been extensively studied, mainly in vision and audition. In the haptic
domain, our ability to categorize objects has also been demonstrated in earlier studies. Here we show for the first time that
categorical perception also occurs in haptic shape perception. We generated a continuum of complex shapes by morphing
between two volumetric objects. Using similarity ratings and multidimensional scaling we ensured that participants could
haptically discriminate all objects equally. Next, we performed classification and discrimination tasks. After a short training
with the two shape categories, both tasks revealed categorical perception effects. Training leads to between-category
expansion resulting in higher discriminability of physical differences between pairs of stimuli straddling the category
boundary. Thus, even brief training can alter haptic representations of shape. This suggests that the weights attached to
various haptic shape features can be changed dynamically in response to top-down information about class membership.
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Introduction

Categorical perception (CP) was first observed for color [1] and

speech perception [2] and can be described easily using the

example of a rainbow. Although the rainbow consists of

a continuous spectrum of different wavelengths, human perception

parses this continuum into a limited number of distinct color bands

(e.g. blue or green) [1]. Thus, CP describes a phenomenon where

stimuli varying gradually along a physical continuum lead to

a small number of discrete perceptual categories [3]. This

phenomenon is further characterized by the fact that equal-sized

physical differences between stimuli are perceived as larger or

smaller depending on whether the stimuli belong to the same or to

different categories [4]. Thus, two color shades are perceived as

being more similar if both are labeled as yellow than if they are

labeled as yellow and green even though both pairs of stimuli are

equally spaced in terms of wavelength. In other words: CP is

characterized by between-category expansion and/or within-

category compression in terms of perceived similarity. Further it

gives rise to a boundary effect that exaggerates transitions between

different categories. The boundary effect itself is characterized by

a heightened discriminability for a stimulus pair when the stimuli

belong to two different categories and a reduced discriminability

for a stimulus pair when the stimuli belong to the same category

[3,5]. Returning to the example of the rainbow, although the

wavelengths vary continuously, we perceive a series of distinct

transitions or ‘steps’ between the different color bands, which are

perceived as steeper than the changes within each band. These key

effects (between-category expansion, within-category compression

and increased discriminability at category boundaries) are the

hallmarks of CP.

Categorical perception is considered an important phenomenon

because it demonstrates a powerful top-down effect in perception.

When CP occurs, stimuli are not only assigned to categories, but

the mental category structure actually alters the perceptual

representation of the underlying physical dimensions. For exam-

ple, color categories distort the perceptual relationship between

different wavelengths in color perception [1], and phoneme

categories distort the perceptual representations of voice onset

times in speech [2]. Thus, importantly, CP is not simply the

process of learning categories or concepts. In order for CP to be

said to occur, the underlying perceptual dimensions must be

systematically altered, increasing the discriminability of stimuli

that cross category boundaries.

A number of studies have revealed CP in more complex stimuli,

e.g. music [6], rhythm [7], material [8], shape [9] and even faces

(e.g., [10–12] among many others). Thus, CP seems to be a general

principle governing perception, which may be related to how

neural networks represent categories in the human brain [3].

Nevertheless, all these studies so far have been restricted to the

visual and auditory systems. Here, we show that CP effects can

also occur in the haptic modality. We generated a set of tangible

objects spanning a physical shape continuum and performed

classical classification and discrimination tasks to look for

a quantitative discontinuity in discriminability at the category

boundary.

Haptic experiments with complex shapes are technically

challenging and are also time consuming for participants to

perform. For this reason relatively few studies have analyzed how
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humans categorize objects haptically (compared to equivalent

experiments in the visual modality). Early work on haptic object

recognition [13] demonstrated that haptic exploration can support

rapid and accurate recognition of everyday objects. More recently,

many studies have compared shape perception and categorization

performance across visual and haptic modalities (e.g., [14–17]),

and studied visual-haptic integration (e.g., [18–20]). Other

experiments have shown that haptic recognition and classification

performance is sensitive to the orientation of the object relative to

the training orientation, similar to the viewpoint sensitivity found

in visual object recognition [21–23]. A number of other groups

have studied neural representations of haptic shape encoding

[24,25].

Lederman & Klatzky [26] analyzed how humans categorize

common, everyday objects, while Haag [27] compared visual and

haptic categorization of toy objects, which resembled miniaturized

animals. While these studies have shown that humans are

impressively good at haptic recognition and classification of

familiar objects, such stimulus sets have a number of limitations.

First, they are hard to characterize in terms of important object

parameters such as shape or texture. Second, using familiar objects

means that subjects enter the experiment with the categories

already in place. This means it is not possible to test performance

before and after training to measure the effects of the learning

process. Third, having recognized a given object, subjects can use

semantic knowledge, perhaps acquired via other senses, to

influence their judgments (for a recent review about that subject

for color perception, see: [28]).

In contrast, Schwarzer [29], Cooke [15] and Homa [30] and

their colleagues used fully controlled, novel stimuli and thus

participants had to base their categorization behavior solely on

object-intrinsic properties, rather than pre-established semantics.

As these studies show, the haptic sense is not only suitable for

correctly categorizing familiar every-day objects, but can also

categorize novel objects. This categorization behavior was shown

to be influenced by task [31] and training [32]. These studies have

shown that objects within a category are perceived to be more

similar than objects from different categories. However, this raises

the question: what happens at category boundaries? Despite

substantial progress in our understanding of haptic category

formation, previous studies have not revealed a CP effect, because

they did not test for an increase in discriminability at the category

boundary.

By contrast, here we explicitly tested for changes in the

discriminability of different shapes brought about by category

learning. It is important to note that there are good reasons for

expecting discrimination performance not to be affected by class

membership in any sensory modality. In the case of haptic shape

perception, it could be that discrimination performance is driven

by low-level feature differences between the objects, irrespective of

the class to which the object is assigned. For example, labeling an

object as belonging to class A does not affect the physical

curvatures, texture or size of the object, which could serve as the

basis for discrimination. Despite this, we find that a surprisingly

small amount of training can lead to clear changes in haptic shape

representations, consistent with the criteria for CP. We argue that

shape is represented as a weighted combination of many mid- and

high-level features, and that the weights attributed to different

features can vary dynamically in response to top-down in-

formation about class membership.

In order to test for CP, we manufactured a set of objects that

vary continuously in shape between two prototype objects (A and

B). We then ran three experiments with different groups of

participants to measure category learning and its effects on

discrimination performance (summarized in Figure 1). First, in

Experiment 1, we used multidimensional scaling (MDS) to confirm

that the stimuli were roughly evenly spaced in terms of their a priori

perceptual similarity. This allows us to ensure the stimuli are

suitable for measuring CP effects in the other two experiments.

Then, in Experiment 2, we used a test–training–re-test design to

measure category learning. The purpose of this experiment was to

demonstrate that the training is effective at teaching participants

categories A and B. Specifically, we first presented participants

with objects A and B and then tested their initial ability to

categorize the intervening objects as belonging to class A or B.

This establishes a baseline ability to classify intervening objects.

Then we trained the participants with explicit feedback on a different

set of intervening objects until they could consistently categorize

them as belonging to either class A or B. Finally, we re-tested their

ability to categorize the original set of intervening stimuli after

training, to confirm that the training teaches participants the

categories. Using a different subset of the intervening stimuli in the

test and training sessions ensures participants learn the concepts A

and B, rather than just learning to recognize the specific

exemplars. If participants learn the classes A and B, we expect

an improvement in categorization performance after training.

Note that this category learning process is a pre-requisite for CP,

but does not, on its own, demonstrate CP.

Finally, in Experiment 3 we used a discrimination task to

measure the effects of category learning on the participants’ ability

to discriminate the different stimuli. A new set of participants

again performed a test–training–re-test regime, except that instead

of reporting which class each stimulus belonged to, they had to

discriminate between objects in a same-different task. If CP does

Figure 1. Overview of experiments. Experiment 1 (MDS) was designed to measure the perceptual uniformity of the space of stimuli used in the
other experiments in one session. Experiments 2 (Categorization) and 3 (Discrimination) were conducted in two sessions on consecutive days. The
first session consisted of pre-training testing, followed by training with feedback. The second session consisted of top-up training followed by a post-
training test. We compare performance before and after training to measure the effects of category learning on the ability to categorize untrained
stimuli (Experiment 2) and discriminate between stimuli in a same-different task (Experiment 3).
doi:10.1371/journal.pone.0043062.g001

Haptic Categorical Perception of Shape

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43062



not occur, we would expect the training not to significantly impact

their ability to discriminate between similar shapes in the re-test

phase compared to the initial (pre-training) test phase. By contrast,

if CP does occur, we would expect to see an increase in the ability

to discriminate stimuli that flank the category boundary following

training, demonstrating a top-down effect of category assignment

on the perceptual representation of haptic shape features.

Methods

Ethics Statements
The research presented here consists of standard haptic tasks

with seated participants palpating plastic objects. This falls under

standard testing procedures for research in non-public institutions

that do not involve drugs, and therefore did not require any

specific ethics approval from the ethics review board. All

experiments were conducted in accordance with the 1964

declaration of Helsinki. Participants signed a general consent

form stipulating that they agree to have their data used

anonymously and published and they were informed of their

right to remove their data at any time. Before the start of each

experiment session, informed, oral consent was obtained from all

participants about the specific experiment. Participants were

informed that they could stop at any time. All data was kept and

analyzed anonymously. An experimenter was present at all time

during the experiments.

Participants
Forty right-handed participants (age: 21 to 61 years) completed

the experiments, in four distinct groups of 10 participants each.

Group 1 (Experiment 1, front ‘view’): 4 female. Group 2

(Experiment 1, rear ‘view’): 4 female. Group 3 (Experiment 2): 5

female. Group 4 (Experiment 3): 5 female. No significant gender

differences were found, so none are reported in the results.

Stimuli
To generate tangible objects, we combined computer graphics

modeling with rapid 3D prototyping. Two objects, A and B, were

generated using the 3D modeling software 3D Studio Max by

taking a sphere of 7 cm diameter and overlaying it with two wave

modifiers each, resulting in roundish objects with small hills and

valleys. These two objects were then morphed into each other and

15 intermediate morph objects were generated at equally-spaced

morph steps. The objects were then printed using a 3D printer

(ZPrinter 650, ZCorporation, Germany). All objects were equal in

weight and volume and were mounted on small stands for easier

haptic exploration. The final stimulus set consisted of 17 different

shapes (see Figure 2). Since the experiments consisted of training

and testing conditions, we split the stimuli into a training set and

a test set to ensure that participants learnt category features rather

than individual objects. The training and test sets were in-

terdigitated equally along the morph continuum (see Figure 2). As

all objects are related to each other, a common arbitrary base

viewing point (0 degree) could be defined for all of them and was

used for orientating the objects relative to the observers in the

experiments. Throughout all experiments, the stimuli were freely

explored by blindfolded, right-handed participants.

Experiment 1: MDS
To ensure that the stimulus set was suitable for identifying

categorical perception, we performed similarity ratings and

multidimensional scaling (MDS) analyses to verify that participants

were able to discriminate objects A, B and the intervening

morphed objects, and that participants perceived the objects to

span a roughly equally-spaced sequence.

Since haptic experiments are very time consuming we only used

the nine stimuli of the test set for the similarity ratings. The task was

to rate the similarity between pairs of objects on a scale from low

similarity (1) to high similarity (7). Blindfolded participants freely

explored the nine objects with their right hand. The exploration

time was restricted to six seconds. Every object was compared

once to itself and once to every other object resulting in 45 object

pairs. All object pairs were shown in randomized order in one

block. Participants had to perform three blocks in total and were

allowed to take a break between blocks. Ten participants palpated

the objects in 0u orientation, ten others in 180u orientation (groups

1 and 2 in Figure 1), to ensure that there were no orientation-

specific artifacts in the objects (The 0 deg orientation was chosen

arbitrarily for object A and that orientation and by extension the

180 deg orientation and the orientations in-between were defined

thereby for all other objects). By using these two orientations and

free object exploration, we covered the whole 3D shape of the

objects [21]. The similarity ratings were averaged across

participants and analyzed using non-metric MDS (MDSCALE

in Matlab see [17] for a detailed description on how to perform

and analyze MDS of complex parametrically-defined objects in

combination with haptic object exploration). The MDS output

map is visualized for a one-dimensional solution in Figure 2. The

physical spacing between the different numbers indicates the

distances returned by MDS between the corresponding stimuli.

The figure shows that objects A and B are clearly distinguishable,

that the morphs in between objects A and B are also distinguish-

able and perceived in correct order, and furthermore that they are

almost equally spaced perceptually (we tested this also for two- and

three-dimensional MDS output maps and found the same results).

Thus the stimulus set is well suited for identifying CP effects.

Experiment 2: Classification
The experiment consisted of (1) a pre-training test, (2) a training

phase and (3) a post-training test. Because of time constraints the

experiment was divided into two sessions, which took place on two

consecutive days. The first session started with a test phase,

followed by a training phase. The second session started with

a training phase to verify that the training consolidated during the

night, and was followed by the post-training test. Ten new

participants (group 3) conducted both sessions. They explored one

object at a time using their right hand and had 4 seconds to

explore the object freely.

The pre-training test started by introducing the participants to

objects A and B. Object A was presented in orientations 0u, 60u,
120u, 180u, 240u and 300u. Then, B was presented in the same

orientations. Next, the seven morph-objects of the test set were

presented in random order in one of the six orientations selected

arbitrarily (we ensured that every orientation of every object

occurred at least once). Participants had to say whether the object

belonged to category A or B. No feedback was provided. The

testing was repeated ten times for each object. After half of the test

trials, A and B were presented again from all six orientations as

a reminder.

Next, participants had to pass the training. The training was

similar to the pre-training test, except that feedback was provided,

and we used the training set to ensure that participants learned the

category-related features rather than the objects themselves.

Participants again indicated whether the presented object

belonged to category A or B. Training ended when participants

correctly classified at least 7 out of 8 objects, three times in a row.

Haptic Categorical Perception of Shape
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On the following day, participants had to perform the training

and reach the learning criterion again before conducting the post-

training test. The post-training test exactly was identical to the pre-

training test.

Experiment 3: Discrimination
CP effects are said to occur when object pairs that straddle the

category boundary are easier to discriminate than object pairs

lying within one category. Standard procedure for testing this

effect is to calculate d’. Therefore ‘‘same’’ and ‘‘different’’ object

pairs had to be selected. Again, since haptic experiments are very

time consuming, only comparisons around 5 morph levels were

made. For each level, the ‘‘same’’ pair consisted of one object used

twice, while the ‘‘different’’ pair consisted of its neighboring

objects. For example, for level 1, a ‘‘same’’ trial consisted of object

25 versus object 25, while a ‘‘different’’ trial, consisted of object 13

versus object 38, which are adjacent to object 25 in the test set.

Same-different judgments were similarly made for objects having

morph values 38, 50, 63, 75, and 88 (see Figure 3).

The experiment consisted of two sessions, with a pre-training

test and a learning phase on the first day, and a learning phase and

post-training test on the second day. Ten new participants

performed this experiment (group 4 in Figure 1). Within the

pre-training phase, each object pair was presented four times.

Since we had five ‘‘same’’ pairs and five ‘‘different’’ pairs this

resulted in (565)64=40 pairs. These 40 object pairs were

presented in random order and random orientation. In each trial,

the participant could freely explore one object for 4 seconds with

the right hand, then the object was replaced by the next one which

was either the same or a different object and after palpating the

second object, participants had to respond ‘‘same’’ or ‘‘different’’.

For the first object, one of the six possible orientations was pseudo-

randomly selected. The second object was then presented in the

same orientation. Thus, there was no orientation difference

between the two objects; the differences that participants perceive

were only a result of the morphing process. No feedback was

provided.

After this pre-training test, participants went through a training

phase. The training was performed in exactly the same manner as

in the classification task (see above).

On the following day, participants again completed the same

training, followed by the post-training test, which was conducted

in exactly the same manner as the pre-training test described in

this section.

Results

Classification
The experiment consisted of a pre-training test and a training

phase on day one and a training phase and the post-training test

on day two. To reach the learning criterion participants had to

classify at least 7 out of 8 objects correctly in three consecutive

blocks. On day one, participants needed on average 8 blocks to

reach criterion while they only needed 5.3 blocks on the second

day. Thus participants were significantly better on the second day

(Wilcoxon signed rank test, p= .047, T=1.5, r=2.296, effect size

Figure 2. Stimuli. The top row shows the two prototypes A and B used to create all intervening objects. The second and third rows represent the 15
training and test objects, respectively. Note that training and test sets differ, except for the prototypes, which were used in all sessions. The x-axis
displays the proportion of B-features in each intermediate (morph) object, as a percentage. The bottom three rows show the MDS results for two
object orientations (0u and 180u, see text for more details). The numbers in black (top row) indicate the relative positions of the physical stimuli in
terms of the percentage of B features. The numbers in grey (bottom two rows) indicate the perceived differences between the test stimuli.
Specifically, the horizontal position of each grey number along the morph line indicates the perceived position of the corresponding stimulus, as
calculated by MDS. The perceptual MDS maps were linearly scaled to the same range as the physical stimuli, for easy comparison. It is clearly visible
that participants perceive the morphed objects to span a roughly equally-spaced morph line independent of object orientation (10 participants were
tested for each orientation). Note that the perceived ordering of the stimuli is preserved.
doi:10.1371/journal.pone.0043062.g002

Figure 3. Discrimination experiment: stimuli and trials. Repre-
sentation of the five object levels used in the discrimination experiment.
Each level consisted of two trials (one ‘‘same’’ and one ‘‘different’’ trial).
The first row shows the objects used for the trials of object level 1.
Stimulus 25 was shown twice in the ‘‘same’’ trial while the adjacent
objects (13 and 38) were shown in the ‘‘different’’ trial. Rows 2 to 5
show the objects used for in the object levels 2 to 5 respectively. In all
levels, the object with the number in black was used twice in the
‘‘same’’ trials, while the objects labeled in grey were used in the
‘‘different’’ trials. Note that for object level 3, the objects of the
‘‘different’’ trial straddle the physical category boundary.
doi:10.1371/journal.pone.0043062.g003
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W= .67) showing that they formed a category representation that

was consolidated during the night.

Since ten participants identified every object ten times, once in

the pre-training test and once in the post-training test, every object

was identified 100 times in each test. We calculated how often

every object was identified as object B and plotted the proportion

of answers ‘‘B’’ (see Figure 4). A cumulative Gaussian was fitted

through these data points using the psignifit toolbox version 2.5.6

for Matlab, which implements the maximum-likelihood method

described by [17]. From this sigmoidal function the point of

subjective equivalence (PSE) and just noticeable difference (JND,

calculated as the difference between the upper threshold which

was set to 75% and the PSE) can be retrieved. The steepness of the

curve is described by the JND, the lower the JND, the steeper the

curve. Perfect classification would yield a step-like function in

which all objects with less than 50% B-features would be identified

as A and all objects with more than 50% B-features would always

be identified as B while object 50 would be arbitrarily assigned to

either A or B. Thus, the PSE would be marked by object 50.

Figure 4 shows that the PSE is actually located near object 50

before and after training. Furthermore, participants could already

discriminate between objects A and B and also between the

morphs, before the training. However, cursory visual inspection of

the classification curve does not reveal a sharp step at the category

boundary. After training, the curve is much steeper and the JND

greatly decreases (from JNDpre= 27.25 to JNDpost = 9.3). The

steep, step-like function after training shows that training lead to

the formation of category representations. Comparing JNDs of

single subject data before and after training shows that this

categorical effect is highly significant (Wilcoxon signed rank

p= .002, T=0, r=2.845, effect sizeW= .89). The JND decreased

significantly for all participants. Thus, every single subject was able

to form a category representation.

Discrimination
CP effects are characterized by a higher discriminability of

inter-stimulus differences for stimuli straddling the perceived

categorical boundary as defined in the classification task. Standard

procedure to test for this effect is calculating d’, which is the ratio

between hit rate (correctly identified ‘‘same’’ or ‘‘different’’ pairs)

and the false-alarm rate. Thus, CP should lead to a peak in the d’

value for the object pair straddling the categorical boundary

(between-category expansion).

We calculated d’ for five different equidistant levels (see Figure 3)

and plotted the values for the pre-training test and the post-

training test (Figure 5). Before training, all object pairs are roughly

equally discriminable (Friedman test: x2(4) = 2.71, p..05). How-

ever, training on shape categories changes the performance. Level 3

has the highest d’ value and thus is discriminated most easily after

training, followed by level 4. As Figure 3 highlights, level 3 straddles

the physical boundary of the morph-line between object A and B.

Performing a Friedman test reveals that the levels are significantly

different in discriminability after training (x2(4) = 10.08, p= .03.

However, post-hoc Wilcoxon tests show that only level 4 in

comparison to level 1 and 2 (p= .02, T=0, r=2.49, effect size

W= .75, p= .04, T=7, r=2.46, effect size W= .67 respectively)

reveal significant differences. All other levels fail to reach the

significance level of p= .05. This means that the perceived

categorical boundary is not located exactly at object 50 but

shifted somewhat toward object B.

This finding is consistent with the results of the classification

experiment. Figure 4 shows that both before and after training,

participants perceive the categorical boundary to be located right

of object 50 (PSEpre =52.88, PSEpost =55.66). In sum, the results

of the classification task indicate that the categorical boundary

between object A and B is located slightly to the right of object 50

and that we find between-category expansion after training, i.e. an

increase in discriminability for this region.

Discussion

The ability to learn and generalize perceptual categories from

a finite number of exemplars is a crucial faculty of human

cognition. In some cases, such as with phoneme or color classes,

the mental category structure not only allows us to identify which

class a given stimulus belongs to (categorization), but actually alters

the underlying perceptual representation of the relevant physical

dimensions, exaggerating perceived differences between stimuli

that span category boundaries (categorical perception effects),

leading to an increase in the ability to discriminate these stimuli.

Importantly, learning to label stimuli as belonging to a given class

does not necessarily distort the underlying perceptual features in

this way, but when it does, this is known as categorical perception.

In the series of studies presented here, we found such CP effects

in haptic shape perception. Combining computer graphics

modeling with 3D printing, we generated a set of complex objects

whose shape features varied continuously in a controlled way.

These objects were palpated freely by blindfolded participants in

a classification and in a discrimination task. The classification

results showed that participants were able to discriminate object A

Figure 4. Results of the classification experiment. Left: pre-training; right: post-training. We counted how often every stimulus was identified as
object B. These proportions were averaged across participants. Then a cumulative Gaussian was fit to the data. From this sigmoidal function the PSE
and JND can be retrieved. Participants categorize A and B correctly before training, but the morphed objects are perceived as a smooth transition.
After training the curve is significantly steeper, indicating that training lead to a sharpened categorical boundary. The blue dotted lines indicate the
locations on the shape continuum of the 25%, 50% and 75% categorization values. Error bars = SEM.
doi:10.1371/journal.pone.0043062.g004
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and B prior to learning, however they perceived the intermediate

shapes as a smooth transition between the two categories. After

learning, the sigmoidal function became significantly steeper,

indicating that training was effective as participants became more

attuned to category-relevant features of the objects. Furthermore,

the JND decreased significantly, indicating that participants were

able to perceive smaller differences between objects after training.

Finally, the discrimination experiment shows that after learning,

participants demonstrated an increased ability to discriminate

shape differences around the categorical boundary, a hallmark of

CP [3].

In the classification task the perceived category boundary was

shifted slightly away from the physical boundary. The large

variance partially obscures the location of the performance peak in

the discrimination task. In visual or auditory experiments it would

be possible to locate the categorical boundary and define the peak

more precisely by generating new stimuli and having more trials.

However, this was not possible here because of the nature of haptic

stimuli and because of the difficulty and length of the haptic

experiments (3 hours per participant were needed for Experiment

1, and 4 hours total for Experiment 2 and Experiment 3 each). In

our opinion, in the experiments presented here we found a good

compromise between accuracy demands and attentional and

perceptual limitations of human participants as, despite the limited

number of stimuli and trials, there are enough sample points to

uncover CP effects reliably after training.

CP effects were first discovered in color and speech perception.

In the meanwhile it was shown that CP effects can be induced by

learning [4,9] and were observed for more complex stimuli e.g.

material [8], shape [9] and faces [10–12]. Although concept

learning has been studied in the haptic modality (as reviewed in

the Introduction), to our knowledge, this is the first time that CP

(i.e., a top-down remapping of perceptual representations following

category learning, leading to increased discriminability at category

boundaries) has been reported for the haptic modality. Recent

advances in computer graphics modeling and rapid 3D prototyp-

ing finally allow us to generate adequate stimuli to successfully test

for CP in this field.

Together our findings demonstrate that the brain can rapidly

alter the way it represents haptic shape features in response to top-

down information about category membership. We suggest that

the changes do not occur at the level of somatosensory receptors,

as these do not measure shape properties directly. During

palpation, 3D shape must be inferred from patterns of activity

across receptor [33], which must be integrated over space and

time, taking into account the relative positions of the digits. Little is

known about how this occurs. However, the speed with which

category learning leads to CP effects suggests that shape is

represented as a weighted combination of a large number of mid-

and high-level features extracted from constellations of lower level

activity. This is analogous to the idea that visual object recognition

relies on mid- and high-level features learned from statistical

relations between lower-order image measurements [34,35]. In

order to learn categories of objects haptically, the brain could

dynamically re-weight the importance of the different features,

leading to the changes in similarity and discriminability we observe

in our results (see computational modeling of these processes in

[36]).

Relatively little is known about the precise brain mechanisms

underlying category formation. Event-related potentials and fMRI

data suggest that visual and auditory CP effects evoke activity

within the prefrontal cortex (e.g. [37,38], respectively). Whether

there are many modality specific networks or whether one

multimodal neural network processes CP effects from all different

sensory inputs needs to be determined in future research.

To sum up, in this paper we showed in a classification and

a discrimination experiment that category learning of complex

shapes can induce CP effects in the haptic modality, and thus that

CP is a general principle of perception that occurs across

modalities.
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