
fnins-14-625397 January 5, 2021 Time: 17:36 # 1

REVIEW
published: 14 January 2021

doi: 10.3389/fnins.2020.625397

Edited by:
Yuval Nir,

Tel Aviv University, Israel

Reviewed by:
Ketema Paul,

UCLA Department of Physiology,
United States
Leila Tarokh,

University of Bern, Switzerland

*Correspondence:
Kimberly J. Jennings

kimjenn@stanford.edu

Specialty section:
This article was submitted to

Sleep and Circadian Rhythms,
a section of the journal

Frontiers in Neuroscience

Received: 02 November 2020
Accepted: 22 December 2020

Published: 14 January 2021

Citation:
Dorsey A, de Lecea L and

Jennings KJ (2021) Neurobiological
and Hormonal Mechanisms
Regulating Women’s Sleep.

Front. Neurosci. 14:625397.
doi: 10.3389/fnins.2020.625397

Neurobiological and Hormonal
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Sleep
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Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States

Sleep is crucial for optimal well-being, and sex differences in sleep quality have
significant implications for women’s health. We review the current literature on sex
differences in sleep, such as differences in objective and subjective sleep measures
and their relationship with aging. We then discuss the convincing evidence for the role
of ovarian hormones in regulating female sleep, and survey how these hormones act
on a multitude of brain regions and neurochemicals to impact sleep. Lastly, we identify
several important areas in need of future research to narrow the knowledge gap and
improve the health of women and other understudied populations.
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INTRODUCTION

Nearly all living organisms spend a fraction of their lives in a reversible, unconscious, coma-
like state, some experiencing fantastical dreams reminiscent of schizophrenic symptoms. It is still
unclear why exactly organisms sleep, but the necessity of sleep for health and well-being is certainly
clear. Disrupted sleep negatively impacts cognition, risk of disease and obesity, and numerous
indicators of health (Meng et al., 2013; Vgontzas et al., 2013; Irwin, 2015; Schmid et al., 2015; Smith
and Mong, 2019). Sleep strengthens and consolidates memory (Arzi et al., 2012; Diekelmann et al.,
2012), and sleep disruption impairs this learning process (Drummond and Brown, 2001; Gujar
et al., 2010) as well as other cognitive processes (Johnson et al., 2006). Sleep-deprived patients
have a weakened immune response to vaccinations and are more vulnerable to immune challenges
(Spiegel et al., 2002; Lange et al., 2003; Cohen et al., 2009). Long-term sleep deprivation may
even lead to death (Rechtschaffen et al., 1989). In women, sleep deprivation is associated with an
elongated and more painful labor (Chang et al., 2010), as well as a decline in physical performance
in older age (Goldman et al., 2007). The impacts of sleep deprivation are far-reaching, revealing the
crucial role of sleep in cognition, health, and general well-being (Table 1).
Worryingly, there is a clear sex bias in reported sleep disorders with significant implications for
women’s health. Women are 41% more likely than men to experience insomnia, and this risk
increases with age (Zhang and Wing, 2006). Women are also at twice the risk of restless leg
syndrome (RLS) (Berger et al., 2004). Frequently, women are more likely than men to report
difficulty maintaining sleep, feeling unrefreshed in the morning, and excessive daytime sleepiness
(Lindberg et al., 1997). Obstructive sleep apnea, however, is more prevalent in men (Paul et al.,
2008). We will note here that the term “women” in this review refers to cis women (see section
“Discussion”).
Given the detrimental effects of sleep disruption on health, cognition, and well-being, this
predisposition for women to experience sleep problems potentially contributes to sex-linked health
disparities, such as the greater prevalence of Alzheimer’s disease in women than men (Mielke
et al., 2014). Therefore, to improve health outcomes for women across the lifespan, it is critical
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TABLE 1 | Sleep disruption has vast health consequences.

Consequence of cleep deprivation Symptoms References

Impaired cognition Impairs strengthening and consolidation of memory Drummond and Brown, 2001; Gujar et al., 2010

Inattentiveness and other ADHD-like symptoms Dahl, 1996; Pilcher and Huffcutt, 1996; Dahl and Lewin, 2002

Psychiatric disorders and substance abuse in adolescents Kirmil-Gray et al., 1984; Roberts et al., 2000; Johnson and Breslau,
2001

Increased risk of disease Common cold and pneumonia Cohen et al., 2009; Patel et al., 2012

Cardiovascular disease Mullington et al., 2009; Vgontzas et al., 2013; Azevedo Da Silva
et al., 2014

Hypertension Gangwisch et al., 2010; Meng et al., 2013; Palagini et al., 2013

Alzheimer’s Lucey and Bateman, 2014; Peter-Derex et al., 2015; Smith and
Mong, 2019

Other health indicators Immune response to influenza A and hepatitis A vaccine
decreased by over 50%

Spiegel et al., 2002; Lange et al., 2003

Increased appetite and risk of obesity Brondel et al., 2010; Buxton and Marcelli, 2010; Schmid et al.,
2015

Longer and more painful labor during pregnancy Lee and Gay, 2004; Chang et al., 2010

Sleep deprivation impairs cognitive processes, increases vulnerability for a myriad of diseases, and disrupts other vital health indicators.

to understand how sleep manifests during different phases of a
woman’s life. Furthermore, researchers must continue efforts to
identify the biological source(s) of sex differences in sleep and
identify potential substrates amenable to clinical intervention.
Many lines of converging evidence point to a critical role for
ovarian sex hormones in mediating sex differences in sleep and
in acutely regulating female sleep. The present review will survey
the field’s knowledge on sex differences in sleep and discuss recent
insights into the role of sex hormones in sleep.

SEX DIFFERENCES IN SLEEP
DISTURBANCES

Subjective Measures and Sleep
Disorders
Women frequently report subjectively poorer sleep than men.
Women are more likely than men to report difficulty staying
asleep, feeling unrefreshed in the morning, and excessive daytime
sleepiness (Lindberg et al., 1997). Women reported more
disturbed sleep, such as more disturbance from noise (Rediehs
et al., 1990). Women report longer sleep onset latency (the time
from lights off to falling asleep) and more nocturnal awakenings
(Mniszek, 1988; Janson et al., 1995; Li et al., 2002; Tsai and
Li, 2004). These frequently reported symptoms converge such
that a meta-analysis found that women are 41% more likely
to experience insomnia than men (Zhang and Wing, 2006).
Women are also more than twice as likely to experience anxiety
and depressive disorders (Kessler et al., 2005; Bekker and Van
Mens-Verhulst, 2007), which have been correlated with sleep
disturbances (Paulsen and Shaver, 1991; Hohagen et al., 1993).
However, the sex difference in sleep remained significant after
controlling for psychological status, so the higher prevalence for
anxiety and depression in women is not the sole reason for the
observed sex difference (Lindberg et al., 1997). During puberty,
post-menses girls have a 2.75-fold risk of insomnia compared
to pre-menses girls while boys only have a slightly increased
risk throughout the course of puberty, even after adjusting for
comorbid psychiatric disorders. This sex difference only occurred

after menses onset (Johnson et al., 2006), suggesting that the
pubertal rise in gonadal hormones may play a causal role.

Women are also at higher risk for non-insomnia sleep
problems. People with global sleep dissatisfaction (GSD) are
more likely to report excessive daytime sleepiness and to use
sleep medications. Like insomnia, GSD is more prevalent in
women than men (Ohayon and Zulley, 2001). Women are also
at twice the risk of experiencing RLS (Berger et al., 2004). RLS is
characterized by an uncomfortable prickling sensation in the legs
and the desire to move them, especially at night. Consequently,
RLS causes difficulty falling asleep.

When considering the sex difference in reported sleep, it is
difficult to distinguish between sex differences in perception of
sleep quality and willingness to admit to symptoms. For example,
women may report fewer symptoms of apnea because of the social
awkwardness associated with women snoring. Therefore, it is
possible that sex difference in diagnosis rates does not accurately
reflect sex differences in sleep quality. However, it is generally
accepted by most clinicians that women experience more sleep
problems than men (Buboltz et al., 2001; Arber et al., 2009; van
de Straat and Bracke, 2015).

Objective Measures
Surprisingly, polysomnographic measures [including
electroencephalography (EEG) and electromyography (EMG)]
usually report women as having better objective sleep across
age ranges. Young women fell asleep faster and had better sleep
efficiency (the percentage of time spent asleep while in bed) than
young men (Goel et al., 2005). Middle-aged women had better
sleep efficiency, had more rapid-eye-movement (REM) sleep,
and were better at maintaining REM sleep than men (Kobayashi
et al., 1998). Women over the age of 58 had longer REM latencies
(the time from sleep onset to the first appearance of REM sleep)
than men of the same age (Rediehs et al., 1990). REM latency is
a biomarker of sleep disorders, and longer REM latencies have
been correlated with sleep apnea and periodic limb movements
(Shrivastava et al., 2014). Women across multiple ages had more
slow-wave sleep (SWS) than age-matched men (Hume et al.,
1998; Fukuda et al., 1999). SWS is indicative of sleep regulation
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and intensity, with more SWS associated with more restful sleep.
Sleep spindles are another indicator of sleep stability (Dang-Vu
et al., 2010; Schabus et al., 2012) and could contribute to the
better objective sleep experienced by women compared to men.
Women have more sleep spindle activity than men both during
adolescence (Goldstone et al., 2019; Markovic et al., 2020) and
adulthood (Gaillard and Blois, 1981; Huupponen et al., 2002;
Purcell et al., 2017). Therefore, by EEG measures and other
polysomnographic indicators, women should experience better
sleep. The mismatch between so-called objective and subjective
sleep measures points to a more nuanced relationship between
sex and sleep. These objective sleep measures may not be equally
accurate in women as in the men they were largely designed
for. Or, these differences in self-reported sleep could be due to
a different willingness to seek medical help. Sleep itself could
also function differently in men and women such that women
truly experience poorer sleep despite increases in SWS and
sleep efficiency. The reasons for this discrepancy will only be
elucidated with increased attention to sex as a biological variable
in future sleep research.

CHANGES IN WOMEN’S SLEEP DURING
KEY LIFE TRANSITIONS

There is considerable evidence that female sex hormones,
namely, estrogens and progestogens, directly impact women’s
sleep and thus likely mediate sex differences in sleep. Women’s
sleep disturbances are most pronounced during periods of life
characterized by significant hormonal change. Sex differences
in subjective sleep arise in puberty, in which young women
experience a surge of sex hormones and, concomitantly,
are at almost three times the risk of developing insomnia
relative to adolescent boys (Johnson et al., 2006). Some sex
differences in objective sleep—such as sleep spindle activity—
emerge prior to puberty, but even these differences are much
more pronounced following menses (Markovic et al., 2020).
Furthermore, women exhibit different sleep architectures during
the different stages of their ovulatory cycle, highly correlated
to their changing hormone levels (Moline et al., 2003; Lord
et al., 2014). Women also report more sleep disturbances
during periods of hormonal flux, including menses, pregnancy,
and menopause (Mallampalli and Carter, 2014). During these
periods, the absolute concentrations of and ratio between
estrogens, progestogens, and androgens change dramatically.
Furthermore, hormone fluctuations may also occur within a
single hormone class. For example, the hormone class “estrogen”
consists of four steroid hormones. Estradiol (E2) is the most
prevalent type of estrogen for women in childbearing age
and within most laboratory animal models. As a woman
transitions through menopause, the most prevalent form of
endogenous estrogen shifts from estradiol to estrone (E1). During
pregnancy, estriol (E3) is the main estrogen produced by the
ovaries, although estetrol (E4) is produced by the fetus at this
time. Additionally, intentional changes to the hormonal profile,
such as administration of exogenous hormone therapy or oral
contraceptives (OCs), can also alter sleep (Baker et al., 2001a,b;

Burdick et al., 2002). The following sections will review women’s
sleep during each of these key phases with special focus on how
women’s sex hormones correlate to changes in sleep.

Menstrual Cycle
Most women experience regular cyclic changes in sex hormones
lasting approximately 28 days, also known as the menstrual
cycle. Ovarian hormone concentrations are regulated by
the hypothalamic-pituitary-gonadal axis: neurons in the
hypothalamus release gonadotropin releasing hormone (GnRH),
which causes the anterior pituitary to release the gonadotropins
luteinizing hormone (LH) and follicle-stimulating hormone
(FSH) into the bloodstream, which in turn act on the ovary
to regulate follicular development and the production of sex
steroid hormones. The menstrual cycle can be separated into
two phases. In the follicular phase (approximately days 1–14),
an ovarian follicle matures and estradiol grows to peak in
concentration. High estrogen permits LH and FSH to spike and
trigger ovulation, while estradiol temporarily decreases. After
ovulation, the ruptured follicle transforms into the corpus lutea
and thus the luteal phase (approximately days 15–28) begins.
LH and FSH decrease as estradiol slowly increases again and
progesterone increases significantly. Estradiol, progesterone, LH,
and FSH are at low concentrations as menses occurs and the
cycle begins again.

Many studies have found changes in sleep architecture across
the phases of the menstrual cycle, with most sleep disturbances
occurring in the luteal phase. In the luteal phase, women
experienced increased sleep onset and awakenings, and lower
sleep efficiency and quality compared to the follicular phase
(Manber and Bootzin, 1997; Baker and Driver, 2004). Women
in the luteal phase had less REM sleep and more non-rapid-
eye-movement (NREM) sleep, with an increase in SWS in
particular (Schwierin et al., 1998; Baker et al., 2002). EEG power
density varies throughout the menstrual cycle, with the highest
density of sleep spindles occurring in the luteal phase (Driver
et al., 1996). The luteal phase is also associated with elevated
core body temperature, which could potentially interact with
sleep processes to impact sleep quality (Baker et al., 2001a).
During the luteal phase, some women experience premenstrual
syndrome (PMS), which includes symptoms of discomfort such
as stomachache, backache, headaches, and nausea. Those with
PMS are especially vulnerable to sleep disruptions during the
luteal phase. Women with PMS self-reported having more
unpleasant dreams, nocturnal awakenings, morning tiredness,
and increased mental activity at night in comparison with
women without PMS (Mauri et al., 1988). Women with PMS
are more likely to report insomnia and migraines premenstrually
and are at greater risk for daytime sleepiness than non-
symptomatic women (Sheldrake and Cormack, 1976; Manber
and Bootzin, 1997). Considered together, these data indicate that
women’s sleep varies across the menstrual cycle, with the most
robust changes reported when both estrogen and progesterone
concentrations are elevated.

There are also documented changes in sleep and sleep-
related processes in cycling women who are taking OCs.
Polysomnographic studies have found that women taking OCs,
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relative to naturally cycling women in the luteal phase, have
less SWS but more light and REM sleep (Baker et al., 2001a,b;
Burdick et al., 2002). Nocturnal body temperature is higher in
women taking OCs than women in the follicular phase and
young men, likely due to the thermoregulatory effects of synthetic
progestins (Kattapong et al., 1995; Baker et al., 1998, 2001a,b;
Stachenfeld et al., 2000; Burdick et al., 2002). Sleep has been
associated with body temperature: onset of sleep provokes a
decrease in core temperature (Barrett et al., 1993) and a rapid
decline in core temperature promotes sleep initiation and deeper
sleep (Murphy and Campbell, 1997). Sleep architecture during
the menstrual cycle could be further changed due to synthetic
steroids increasing core body temperature. Though many women
take OCs for a significant portion of their lives, many questions
remain regarding the impact of OCs on sleep.

Pregnancy
Pregnancy is another period in which women experience
dramatic changes in both sex hormone concentrations and
sleep quality. The course of pregnancy is separated into three
trimesters, with the first trimester corresponding to weeks
1–13 of gestation, the second trimester corresponding to
weeks 14–26, and the final trimester corresponding to weeks
27–40. During pregnancy, there is a significant increase in
maternal sex hormone production. Estrogen and progesterone
concentrations increase as the fetus matures, and peak to
about 50- or 60-fold (compared to non-pregnancy levels)
shortly before delivery (Hardie et al., 1997). After parturition
(childbirth), estrogen and progesterone rapidly decline and
return to normal in 2 or 3 months postpartum. Likewise,
prolactin increases linearly, up to sevenfold in late pregnancy,
compared to early pregnancy (Rigg et al., 1977). Cortisol
increases in the third trimester to twice the amount of non-
pregnant women, and peaks to up to 4.7 times as high during
labor (Allolio et al., 1990) before rapidly returning to normal
following delivery.

Self-reported sleep disturbances increase in prevalence
throughout the course of pregnancy; 68% of women report
having altered sleep during pregnancy, which increases from
13% in the first trimester to 66% in the third trimester. The
most commonly cited reasons for sleep disruption include
urinary frequency, headaches, and leg cramps (Schweiger,
1972). In another survey, nearly all (97.3%) pregnant women
report nocturnal awakenings, which increase in frequency and
duration throughout pregnancy (Mindell and Jacobson, 2000).
Also common were reports of restless sleep, difficulty falling
and staying asleep, and daytime sleepiness, which increased in
prevalence as pregnancy progressed (Hedman et al., 2002). Many
of these symptoms are likely related to increased abdominal
mass, fetal movement, and other physiological changes that
occur during pregnancy. For example, almost half of pregnant
women report symptoms of sleep apnea such as snoring and
choking, even though most report they did not snore before
pregnancy. Pregnancy is also a risk factor for RLS (Bourjeily et al.,
2011; Manconi et al., 2012). RLS symptoms during pregnancy
usually occur in the third trimester, when estrogen is at its peak
concentration (Berger et al., 2004).

Polysomnographic recordings also reveal changes in sleep
architecture across pregnancy. Duration of REM sleep decreases
from the first to second trimester (Brunner et al., 1994). The
third trimester in particular has the most robust change, with
numerous studies showing an increase in wake after sleep onset
(WASO) compared to the other trimesters (Karacan et al., 1968;
Driver and Shapiro, 1992; Hertz et al., 1992; Brunner et al., 1994;
Lee et al., 2000). In the final trimester, women have a longer
sleep duration but lower efficiency due to increased WASO and
longer sleep latency (Karacan et al., 1968; Lee et al., 2000). REM
sleep decreases in the third trimester, while stage 1 (light sleep) of
NREM increases and stages 3 and 4 (deep/SWS) decrease (Driver
and Shapiro, 1992; Hertz et al., 1992). Spectral analysis of the EEG
reveals a progressive decrease in power density during NREM
sleep throughout pregnancy, suggesting a decreased depth of
sleep in the third trimester (Brunner et al., 1994). In summary, the
incidence of reported sleep disturbances increases throughout the
course of pregnancy, and this is supported by polysomnographic
findings. Most studies have consistently shown increased WASO
compared to non-pregnant or postpartum women, likely in
part due to disturbances from abdominal enlargement, fetal
movement, and lower back pain.

The mother’s hormones continue to fluctuate drastically
following parturition, along with increased prevalence of sleep
disturbances. In early postpartum, mothers have increased wake
time and decreased REM duration, which both return to baseline
levels within 2 weeks (Karacan et al., 1968; Driver and Shapiro,
1992; Hertz et al., 1992). Similarly, sleep efficiency decreases in
early postpartum but increases 3–5 months later to approximate
prepartum levels (Hertz et al., 1992; Lee et al., 2000). Postpartum
sleep is also characterized by a longer sleep latency, contributing
to the worsened sleep efficiency. However, some measures of
sleep quality improve: while deep sleep is drastically reduced in
late pregnancy, it is recovered postpartum (Karacan et al., 1968).
Most sleep disturbances in this period are related to feeding
and caring for the newborn, and could also be impacted by
feeding method (Shinkoda et al., 1999; Quillin and Glenn, 2004).
It is therefore challenging to distinguish between the effects of
hormone changes from the effects of early childrearing on sleep,
and both factors are likely involved.

Menopause
Menopause marks the ceasing of menstruation, after which
the ovaries halt production of estrogen and the amount
of circulating estradiol and progesterone drops precipitously.
Progression through menopause is associated with changes
in sleep architecture and an increase in self-reported sleep
disruptions. The process of menopause can be separated into
three general phases: premenopause, in which menstruation
has occurred within the past 3 months; perimenopause, in
which menstruation was absent (amenorrhea) for at least
3 months but there has been less than a year of irregular
menstrual cycles; postmenopause, in which amenorrhea has
occurred for at least a year or the woman has had a
complete hysterectomy or bilateral oophorectomy (Young
et al., 2003). Due to changes in the menstrual cycle, the
menopausal transition is characterized by a decrease in
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estradiol and increase in FSH, progesterone, and testosterone
(Ameratunga et al., 2012).

Subjective sleep measures have been found to worsen
with progression through the menopausal transition. The
prevalence of reported sleep problems increases from 33–
36% in premenopausal women to 61% in postmenopausal
women, who have the highest rate of insomnia complaints in
the general U.S. population (Kripke et al., 2001). Compared
to premenopausal women, postmenopausal women report
experiencing more trouble falling and staying asleep, difficulty
sleeping, nighttime awakenings, and daytime drowsiness
(Ballinger, 1976; Baker et al., 1997; Kravitz et al., 2008).
Perimenopausal and postmenopausal women report being less
satisfied with their sleep in comparison to premenopausal women
(Young et al., 2003). However, in contrast to subjective reports
of sleep, objective sleep quality indicators have been found
to not decrease during menopause (Ameratunga et al., 2012).
Certain objective sleep indicators even improved throughout
the transition; compared to pre- and perimenopausal women,
postmenopausal women had more SWS, longer sleep duration,
and better sleep efficiency (Young et al., 2003). Regardless,
numerous studies agree that sleep architecture is altered
throughout the different stages of menopause.

Due to the changing hormone profile during menopause, it
is reasonable to suggest that sex hormones play a role in sleep
disruption during this period. Indeed, a longitudinal study of
women progressing through menopause found that decreasing
estrogen levels were associated with more frequent awakenings
and trouble falling asleep (Kravitz et al., 2008). However, these
sleep disturbances could also be age-related, as both men’s and
women’s sleep quality decreases in old age. Compared to men,
women are more vulnerable to age-related changes in sleep such
as decreased reported sleep quality and longer sleep onset latency
(Zhang and Wing, 2006; Reyner and Home, 2020). It is likely
a combination of age-related changes and hormonal effects that
lead to the altered sleep architecture in menopause.

Many women in the menopausal transition use hormone
therapy (usually estradiol or a combination of estradiol and
progesterone) to alleviate climacteric symptoms such as hot
flashes, sweating, headaches, and reported sleep problems (Polo-
Kantola et al., 1998, 1999; Hachul et al., 2008). Postmenopausal
women using hormones, compared to those who are not,
have a lowered risk for disturbed sleep, increased REM sleep,
and a shortened onset to sleep latency (Antonijevic et al.,
2000; Kravitz et al., 2008). Though the majority of studies
indicate that hormone therapy ameliorates subjective sleep
quality, exogenously administered estradiol or progesterone does
not greatly change sleep architecture (as seen in EEG/EMG
recordings) in postmenopausal women (Polo-Kantola et al., 1998,
1999; Montplaisir et al., 2001; Hachul et al., 2008). Regardless,
most studies agree that hormone therapy for postmenopausal
women can alleviate symptoms and improve reported sleep
characteristics.

In summary, changes in hormone levels are associated
with alterations in sleep architecture (Figure 1). Periods with
high progesterone levels, such as the luteal phase of the
menstrual cycle, the third trimester of pregnancy, and the

menopausal transition, are associated with increased prevalence
of self-reported sleep disturbances as well as diagnosis of
sleep disorders such as RLS. Periods of change in estradiol
levels were also associated with sleep disturbances. Elevated
estradiol in the third trimester, hormone therapy, and OCs
(although these use synthetic estrogens) changes REM amount
and sleep latency. Periods of diminishing estradiol levels,
such as during menopause, are characterized by greater risk
for insomnia and lowered satisfaction with sleep. Periods of
hormonal change in the female reproductive cycle coincide with
changes in sleep quality and organization. This clear correlation
between hormonal status and sleep strongly suggests that
ovarian hormones regulate women’s sleep and may contribute
to observed sex differences in sleep. However, in order to
causally test this hypothesis, we must look to studies performed
in animal models.

INSIGHTS FROM ANIMAL MODELS

Animal models are useful tools in biomedical research because
they are often easier to biologically manipulate and are more
ethical on which to invasively experiment. Rats and mice are
the predominant laboratory models of sleep behavior due to the
similarities in neurocircuitry they share with humans. Unlike
humans, however, rodents have polyphasic sleep, meaning that
they have multiple periods of sleep and wake each day. Laboratory
rats and mice prefer to sleep in the light phase, but they sleep
in periods throughout the entire light–dark cycle. Additionally,
while human NREM is subdivided into three to four stages,
rodent NREM sleep is subdivided into only two stages. Similar
to humans, in rats and other animal models, sleep characteristics
differ between males and females. Additionally, sleep architecture
changes during hormonal transitions such as the reproductive
cycle and hormone replacement.

Sleep Across the Estrous Cycle
Female rodents, like humans, exhibit changes in both hormones
and sleep across their ovulatory cycle. This “estrous cycle”
consists of four phases: proestrus, estrus, and diestrus I and II
(sometimes referred to as diestrus and metestrus; Levine, 2015).
Diestrus I begins with low levels of estrogen and progesterone,
which steadily increases in diestrus II. During proestrus, estrogen,
LH, and progesterone peak in concentration as ovulation occurs.
Behavioral estrus, a period of sexual receptivity (Pfaus et al.,
2015), occurs during the active phase (night) of proestrus.
The cycle ends with the day of estrus, in which estrogen and
progesterone decline rapidly to baseline levels as the cycle
restarts. Unlike humans, rodents do not exhibit a prolonged luteal
phase with sustained high progesterone.

Female rodents, also like humans, exhibit changes in sleep and
locomotor activity across their ovulatory cycle. Sleep in rodents
is most altered during proestrus when hormone concentrations
change most rapidly. On the day of proestrus, before the peak
in estradiol and progesterone levels, rats spend more time
sleeping than any other estrous phase (Colvin et al., 1968).
Typically, estrogen peaks a few hours before dark phase onset
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FIGURE 1 | Female hormonal transitions correspond with increased risk for sleep disorders and changes in sleep architecture. The luteal phase of the menstrual
cycle, pregnancy, and menopause all increase prevalence of nocturnal awakenings. The luteal phase of the menstrual cycle is associated with increased risk for
insomnia. Pregnancy, particularly the third trimester, increases risk of RLS and sleep apnea. The menopausal transition is associated with heightened prevalence of
insomnia and SDB, particularly in postmenopause. Abbreviations: WASO, wake after sleep onset; REM, rapid-eye-movement sleep; NREM,
non-rapid-eye-movement sleep; PMS, premenstrual syndrome; RLS, restless legs syndrome.

and progesterone peaks early in the dark phase (Smith et al.,
1975; Gotlieb et al., 2020). During the night of proestrus, the
amount of REM and NREM sleep is markedly reduced in
female rats relative to the same time point in other phases of
the estrous cycle (Colvin et al., 1968, 1969; Yamaoka, 1978;
Kleinlogel, 1983; Fang and Fishbein, 1996; Schwierin et al., 1998;
Hadjimarkou et al., 2008; Schwartz and Mong, 2013). Rats had
the most brief awakenings in proestrus (Schwierin et al., 1998).
Female rodents are most active during the dark phase of proestrus
and spend most of their time awake, likely facilitating finding
and engaging a sexual partner (Hadjimarkou et al., 2008). After
a REM-less night, rodents exhibit REM-rebound during estrus,
during which they sleep the most relative to other phases of
estrous (Colvin et al., 1968). Schwierin et al. (1998) examined
the possibility of sleep homeostasis causing the change in sleep
across the estrous cycle. Like other forms of homeostasis, this
process drives organisms toward sleep when they digress too far
from their wakefulness set point. Sleep homeostasis is regulated
by sleep pressure (or sleep drive), which is an organism’s need
for sleep at a given time and which increases throughout the
day and dissipates during sleep (Borb and Achermann, 1999).
Although slow-wave activity and duration of sleep in NREM were
changed following sleep deprivation, these effects were identical
in estrus and proestrus. Schwierin et al. (1998) concluded that the

change in sleep architecture throughout the cycle is not caused
by disrupted sleep homeostasis. Overall, female rodents have the
lowest amount of sleep during the night of proestrus along with
heightened locomotor activity, and this takes place during the
peak of estradiol and progesterone concentration. The females
then compensate by getting the most sleep the following day,
estrus, when the sex hormones return to baseline levels.

Hormone Manipulation
A major advantage of using animal models is the ability to directly
manipulate physiology to probe cause–effect relationships.
To experimentally manipulate hormone concentrations in
animal models, researchers most frequently remove the gonads
(gonadectomy, or ovariectomy for female animals) and may later
administer sex hormones to restore physiological concentrations.
These studies have been particularly useful to confirm that sex
hormones indeed alter sleep duration and sleep architecture.

Notably, removal of sex hormones eliminates sex differences
in sleep in rodents. Before gonadectomy, female mice spend
more time awake and have less REM sleep in the dark phase
than males (Paul et al., 2006). Gonadectomy in rats, mice, and
guinea pigs eliminates sex differences in sleep and physical
activity and adding back physiological levels of sex hormones
restores these differences (Colvin et al., 1969; Yamaoka, 1980;
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Fang and Fishbein, 1996; Ogawa et al., 2003; Paul et al., 2006;
Cusmano et al., 2014). These data strongly indicate that adult sex
hormones are critical for sexual dimorphism in sleep behavior.

There is robust evidence that administration of estrogen or
of estrogen with progesterone suppresses sleep and promotes
wakefulness in females. Estrogen replacement in rats and mice
reduces dark phase sleep but has little effect during the light
phase (Schwierin et al., 1998; Schwartz and Mong, 2013;
Cusmano et al., 2014). Estradiol administration in the dark
phase increased wakefulness and decreased duration of REM
and NREM sleep, compared to gonadectomized rodents without
hormone treatment (Colvin et al., 1968, 1969; Branchey et al.,
1971; Paul et al., 2009; Deurveilher et al., 2011; Cusmano et al.,
2014). Estradiol therefore clearly exerts an inhibitory effect on
REM and NREM sleep. The effect of progesterone alone on
sleep is somewhat unclear but is likely to be mild if present at
all. Deurveilher et al. (2009) found that progesterone treatment
in rats increased REM-sleep latency but decreased the amount
of REM sleep. However, Heuser et al. (1967) administered
progesterone into the preoptic area of cats, which decreased sleep
onset latency and promoted REM sleep. Additionally, Colvin
et al. (1969) found that progesterone alone had little or no
effect on REM or NREM.

However, when progesterone is administered in conjunction
with estrogen, sleep was significantly reduced. Progesterone and
estrogen work synergistically to increase time awake and decrease
REM and NREM in the dark phase in female rats (Branchey et al.,
1971; Deurveilher et al., 2009, 2011). In ovariectomized female
guinea pigs, combined estrogen and progesterone treatment
reduced REM and NREM sleep (Malven and Sawyer, 1966).
Estrogen and progesterone also facilitate recovery from sleep
deprivation. In recovery sleep, rats treated with estradiol alone
or estradiol with progesterone had more consolidated NREM,
longer REM sleep, and fewer awakenings compared to baseline
sleep (Deurveilher et al., 2011; Schwartz and Mong, 2013).
This suggests that estradiol and progesterone fragment sleep
under baseline conditions but help consolidate recovery sleep.
Thus, whereas progesterone alone has limited impacts of sleep
architecture, it works powerfully in conjunction with estradiol
to suppress sleep.

There are considerably fewer studies on the impact of
androgens on sleep, but overall it appears the effect of androgens
may be sex-specific. The most prevalent androgen in humans
and rodent models is testosterone. Testosterone itself is a
prohormone that can be either aromatized to estradiol (an
estrogen) or reduced to dihydrotestosterone (DHT, a potent
androgen), complicating interpretation of studies administering
testosterone alone. Cusmano et al. (2014) found that testosterone
treatment suppressed REM in female rats but not males or
masculinized females. However, treatment with DHT did not
affect sleep and wakefulness—indicating that sleep suppression
by testosterone was likely due to conversion into estradiol.
On the other hand, testosterone or its metabolites may
facilitate sleep in males. Male mice treated with testosterone
experienced an increase in NREM sleep and a decrease in
wake amount compared to vehicle-treated males (Paul et al.,
2009). Testosterone has also been associated with sleep recovery

following sleep disruption, as administration of testosterone
following sleep deprivation promoted NREM recovery sleep in
male mice (Paul et al., 2009).

Organizational Effects of Sex Hormones
on Sleep
The aforementioned work addresses only the impact of
removing and replacing gonadal steroids in adult animals.
However, there is significant evidence that exposure to sex
hormones early in life can shape lifelong sleep characteristics.
According to the organizational-activational model of sexual
differentiation, gonadal hormones can either guide neural
development (“organization”) or tune activity within circuits
(“activation”), largely dependent on the age of the organism
(Phoenix et al., 1959; Arnold, 2009). Gonadal hormone exposure
perinatally organizes tissues that regulate masculine or feminine
behaviors and modulates sensitivity to sex hormones in the
future. Classically, Phoenix et al. (1959) found that prenatal
testosterone treatment in female guinea pigs reduced lordosis
behavior and increased mounting behavior in adult animals,
permanently altering their behavior. Blocking hormone exposure
prenatally in males also results in increased feminized behavior
and decreased masculine behavior in adult animals (Thornton
et al., 1991). In adulthood, gonadal hormones act on existing
brain circuits to promote expression of sexually differentiated
behavior (as seen in the data discussed above).

Indeed, gonadal hormones exert an organizational effect on
adult sleep behavior. The masculinized brain has been found
to be less sensitive to the effects of sex hormones on sleep.
Male rats castrated neonatally—before the brain has completed
masculinization—exhibited reduced REM and NREM duration
after estradiol and progesterone treatment (Branchey et al., 1973),
more similar to female rats. However, female rats that were
exposed to masculinizing sex hormones prenatally and male rats
castrated in adulthood show little to no change in sleep patterns
following hormonal treatment (Branchey et al., 1973; Yamaoka,
1980; Cusmano et al., 2014). These data indicate that early life
exposure to sex steroids organizes the brain such that adult males
are “protected” from estradiol’s effects on arousal and sleep.

DIRECT IMPACT OF OVARIAN
HORMONES ON NEURAL SLEEP
CIRCUITS

Clearly, ovarian hormones regulate female sleep. However,
the neurobiological substrates mediating this effect remain
elusive. Sleep and wakefulness are regulated by numerous
interconnected neural loci that are often conceptualized as either
sleep-promoting or wake-promoting. Major wake-promoting
brain regions include cholinergic neurons from the laterodorsal
tegmental (LDT) nuclei and pedunculopontine tegmental (PPT)
nuclei, histaminergic neurons from the tuberomammillary
nucleus (TMN), serotonergic raphe nuclei that all project
throughout the forebrain (Herkenham, 1980; Steininger et al.,
1999), norepinephrinergic neurons of the locus coeruleus (LC),
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and hypocretin-expressing neurons of the lateral hypothalamic
area (Peyron et al., 1998; Sakurai et al., 1998; Jennings and de
Lecea, 2019). Perhaps the best studied sleep-promoting brain
region is the ventrolateral preoptic (VLPO) area, which contains
sleep-active GABAergic and galaninergic neurons (Sherin et al.,
1998; Saper and Fuller, 2017), although additional sleep-
promoting neural populations continue to be identified (Xu et al.,
2015; Liu et al., 2018; Weber et al., 2018).

Female sex hormones impact a wide array of neural
mechanisms implicated in sleep. There are estrogen and
progesterone receptors in numerous sleep- and arousal-
regulating brain regions such as the preoptic area, SCN, LC,
and other hypothalamic nuclei (Shughrue et al., 1997; Curran-
Rauhut and Petersen, 2002). As we will discuss below, estradiol
in particular directly and indirectly influences the activation of
neurons in these regions, likely with consequences on sleep/wake
functioning that have not yet been fully explored.

Ventrolateral Preoptic Area
The VLPO area is one of the major brain regions associated with
sleep promotion. VLPO neurons increase their firing rate during
sleep compared to waking (Szymusiak et al., 1998). Estradiol
influences the activation of these sleep-promoting neurons. In
ovariectomized female rats, estradiol decreased VLPO activation
(as measured by c-Fos expression) under baseline conditions
(Deurveilher et al., 2008; Hadjimarkou et al., 2008).

Estradiol may influence the activation of VLPO neurons by
regulating lipocalin-type prostaglandin D synthase (L-PGDS)
and adenosine levels. L-PGDS is an enzyme that catalyzes
prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2), which
induces sleep when applied to the preoptic area (Ueno et al.,
1982). Inhibiting L-PGDS catalytic activity in the VLPO reduces
sleep and increases wake time (Mong et al., 2003b; Qu et al.,
2006). Similarly, administration of estradiol to the VLPO in
rats decreases L-PGDS transcript levels by half (Mong et al.,
2003a,b; Ribeiro et al., 2009). Consequently, PGD2 expression
is lowered, causing sleep problems. Hadjimarkou et al. (2008)
found that treating female rats with estradiol reduced the female’s
concentrations of L-PGDS protein to the level of male rats. They
also found that blocking estradiol from acting on the preoptic
nucleus prevented estrogen-mediated suppression of sleep.
Estradiol regulates L-PGDS promoter activity through estrogen
receptors, especially ERα, which has been shown to promote
L-PGDS activity (Lightfoot and Gym, 2008; Devidze et al., 2010).

Estradiol may also regulate sleep by acting on adenosine
receptors, which mediate the somnogenic effects of PGD2.
Adenosine concentration in the brain steadily increases during
the waking period and decreases during sleep, leading some to
suggest a role in the biological basis of sleep pressure (Porkka-
Heiskanen et al., 1997). Adenosine inhibits forebrain and
mesopontine cholinergic neurons involved in arousal, allowing
it to regulate wake and sleep (Portas et al., 1997). When
administered to the preoptic area, estradiol decreased adenosine
A2A receptor mRNA levels and increased running wheel activity
in mice (Ribeiro et al., 2009). Huang et al. (2007) proposed that
PGD2 indirectly excites VLPO neurons by stimulating adenosine
release into the VLPO. Therefore, when estradiol decreases the

amount of adenosine A2A receptors in the VLPO, not as much
adenosine is released, which decreases the activation of VLPO
neurons. In summary, estradiol decreases L-PGDS and A2A
receptor transcription levels in the VLPO, increasing arousal.

Lateral Hypothalamus
The lateral hypothalamus has also been implicated in sleep/wake
regulation. The lateral hypothalamus is populated with neurons
which express the neuropeptide hypocretin (Hcrt, also known as
orexin), a neuroexcitatory peptide associated with a broad range
of functions in sleep, arousal, and appetite, among others (de
Lecea et al., 1998; Sakurai et al., 1998; Jennings and de Lecea,
2019). Hcrt1 and 2 (also called Orexin A and B) are released from
neurons in the lateral hypothalamus which project widely in the
brain, including to structures involved in sleep–wake such as the
preoptic area, LC, raphe nuclei, and TMN (de Lecea et al., 1998;
Peyron et al., 1998; Chemelli et al., 1999).

The hypocretins promote and stabilize wakefulness.
Disruption of hypocretin neurotransmission causes narcolepsy
in mice, dogs, and humans (Chemelli et al., 1999; Lin et al.,
1999; Nishino et al., 2000). The absence of Hcrt impairs the
maintenance of the waking state, causing narcoleptic symptoms
such as sleep attacks. Hcrt neurons fire more during waking and
REM than SWS, suggesting that Hcrt plays a role in activating the
ascending arousal system (Takahashi et al., 2008). Furthermore,
photostimulation of Hcrt neurons in the lateral hypothalamus
promoted sleep-to-wake transitions and decreased sleep-to wake
latency, regardless of the time of day (Adamantidis et al., 2007;
Carter et al., 2009). Therefore, the neuropeptide hypocretin
is strongly associated with promoting and stabilizing arousal.
Hcrt-containing neurons innervate components of the ascending
arousal system and the VLPO, suggesting that hypocretin could
regulate both sleep and wake (Saper et al., 2001).

Hypocretin expression is sexually differentiated, likely due
to regulation by reproductive hormones. Preprohypocretin (a
precursor for Hcrt) mRNA levels are greater in the hypothalamus
of female rats than males (Jöhren et al., 2002). Consequently,
female rats have greater concentrations of Hcrt1 compared
to males (Taheri et al., 1999). The Hcrt system is sensitive
to fluctuations in ovarian hormones. Estradiol increases c-Fos
expression in Hcrt-containing hypothalamic neurons, suggesting
that estradiol could promote wakefulness by increasing activation
of Hcrt neurons (Deurveilher et al., 2008). Production of Hcrt
and its receptors changed during the course of the rodent
reproductive cycle. Hcrt1 and 2 concentration as well as HcrtR1
protein expression peaked in the hypothalamus during the day
of proestrus, which coincides with the surge of progesterone
and estradiol (Porkka-Heiskanen et al., 2004; Silveyra et al.,
2007). Ovariectomized female rats, on the other hand, exhibited
a decrease in HcrtR1 expression in the hypothalamus, and
estradiol replacement restored Hcrt expression to the high levels
of normally cycling rats (Silveyra et al., 2007, 2009). Conversely,
examining the Hcrt regulation of sex steroid production reveals
that hormonal status may moderate the impact of Hcrt
signaling. Hcrt stimulated release of LH when administered to
ovariectomized female rats, but only when they had been primed
by estrogen and progesterone. Without female reproductive
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hormone priming, Hcrt inhibited LH secretion (Pu et al.,
1998). This suggests that estradiol and progesterone somehow
contextually flip hypocretin’s influence on gonadotropin release
and raises the possibility of sex hormones similarly moderating
the impact of Hcrt on other neural systems, such as sleep/wake.
Androgens may also regulate Hcrt signaling, at least in males.
In male rats, gonadectomy decreased HcrtR1 expression in the
anterior hypothalamus, and both testosterone and DHT restored
receptor expression (Silveyra et al., 2009). Since DHT is a non-
aromatizable androgen, these data suggest that androgen receptor
signaling can regulate HcrtR expression, potentially impacting
sleep and wake drives. Overall, sex steroids, particularly ovarian
sex hormones, have been implicated in enhancing the activity of
hypocretin neurons. Ovarian hormones may therefore enhance
hypocretin’s ability to strengthen the arousal drive and prevent
inappropriate switching to the sleep state.

Tuberomammillary Nucleus
Histaminergic neurons in the TMN of the posterior
hypothalamus are another wake-promoting population which
has been shown to be regulated by ovarian hormones. These
histaminergic neurons fire specifically during wakefulness
and stop firing during deep NREM sleep and REM sleep
(Vanni-Mercier et al., 2003). Knockout mice without histamine
had decreased sleep latency, shorter wake episodes, and more
REM sleep (Parmentier et al., 2002). Inhibiting histamine
transmission increases NREM sleep and decreases wakefulness,
while enhancing histamine transmission has the opposite effect
(Lin et al., 1988).

Ovarian hormones influence the activation and activity of
histamine-related molecules. Estradiol treatment increases c-Fos
expression in histaminergic TMN neurons compared to the
vehicle (Deurveilher et al., 2008). Histamine receptor binding
sites are sexually dimorphic in rats, and ovariectomy removed
sex differences whereas estradiol treatment restored them (Seltzer
and Donoso, 1989; Ghi et al., 1991). However, progesterone
blocked estradiol-mediated recovery of sex differences in
binding sites, suggesting that both hormones work to regulate
histamine transmission. These hormone-driven changes in TMN
histaminergic signaling could likely influence the role of TMN
neurons in promoting wakefulness.

Locus Coeruleus
The LC is located in the pons of the brainstem, and it is
the primary site of norepinephrine (NE) production in the
central nervous system. NE is released upon activation of the
sympathetic nervous system to increase heart and breathing
rate, and slow digestion to respond to the stressor. Sympathetic
nervous system activation is also the quicker, more immediate
component of the stress response system (Russell and Lightman,
2019). Thus, noradrenergic neurons in the LC regulate arousal
responses. The LC is sexually dimorphic: female rats compared to
males have greater total LC volume and more neurons containing
dopamine-beta-hydroxylase (DBH), an enzyme which catalyzes
dopamine to NE (Luque et al., 1992). This suggests that females
can synthesize and release more NE, increasing their arousal.
Ovarian hormones also influence activity in the LC. Estradiol

increased c-Fos expression within LC cells in sleep-deprived rats
compared to non-deprived controls, suggesting that estradiol
potentiates LC neuron activation (Deurveilher et al., 2008).
Estradiol and progesterone together increase extracellular NE
levels in the LC, likely due to estradiol’s influence on enzymes
related to NE (Vathy and Etgen, 1988). Estradiol increases levels
of tyrosine hydroxylase (TH), the rate-limiting enzyme in the
synthesis of NE, and also increases DBH concentration (Serova
et al., 2002). It has been proposed that estradiol’s enhancing effect
on NE activity in the LC could make females more vulnerable
to hyperarousal (Bangasser et al., 2016, 2019). This state of
heightened arousal could thus promote wakefulness and inhibit
sleep in females, leading to reports of disrupted sleep.

Dorsal Raphe Nucleus
Serotonergic neurons in the dorsal raphe nucleus (DRN)
are involved in the regulation of wake and REM (Monti,
2010). Suppressing serotonergic activity in the DRN has
been shown to increase REM sleep (Portas et al., 1996).
Estradiol regulates several serotonin [5-hydroxytryptamine (5-
HT)] receptor subtypes. The 5-HT1A autoreceptor detects
extracellular serotonin and then inhibits serotonin neural activity
in a negative feedback loop (Bethea et al., 2002). Systemic
administration of estradiol and progesterone decreases 5-HT1A
autoreceptor binding sites in the DRN, increasing serotonin
transmission (Lu and Bethea, 2002). Similarly, activating the
5-HT2A receptor reduces REM (Monti and Jantos, 2006)
while blocking the receptor increases NREM and decreases
wake (Popa et al., 2005). Estradiol treatment increases the
expression of 5-HT2A receptors in the DRN, increasing 5-
HT concentration (Sumner and Fink, 1993; Sumner et al.,
1999). Considered together, ovarian hormones downregulate
5-HT1A autoreceptors while upregulating 5-HT2A receptors,
which increases transmission of serotonin. This could potentially
explain why female rats exhibit greater DRN serotonergic activity
than males (Domínguez et al., 2003). Furthermore, neonatal
treatment with gonadal sex hormones altered serotonergic
activity in the DRN in adults, suggesting that organizational
effects of these steroids could also be involved. Overall,
ovarian hormones increase serotonin transmission in the
DRN which likely strengthens arousal, promoting wake and
suppressing NREM and REM.

Basal Forebrain Cholinergic Neurons
The basal forebrain is another region implicated in promoting
wakefulness. Basal forebrain cholinergic neurons (BFCN)
promote arousal and increase wake and REM when stimulated
(Xu et al., 2015). Like other components of the arousal circuit,
BFCN are sexually dimorphic. Young male rats have larger
BFCN than young females (Veng et al., 2003). Ovarian hormones
modify morphology and transmission in BFCN. Estradiol
exerts a protective effect on cholinergic neurons by enhancing
neurotrophin receptor expression (Henderson et al., 1996;
Ábrahám et al., 2009). Alzheimer’s disease is characterized by the
degeneration of BFCN, so estradiol’s ameliorative effect on BFCN
during neurodegeneration makes it a potential candidate for
treatment (Henderson et al., 1996). Estradiol also increases cell
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soma size in this region and increases choline acetyltransferase
(ChAT) activity—an enzyme that synthesizes acetylcholine—
in projection areas of BFCN. Considered together, ovarian
hormones facilitate and support cholinergic transmission in the
basal forebrain, and therefore promote wakefulness.

Ventral Tegmental Area
Dopaminergic neurons in the ventral tegmental area (VTA)
are well known for their role in motivation, learning, and
reward (Wise, 2004; Bromberg-Martin et al., 2010). However,
this region has also been implicated in promoting arousal.
Stimulation of dopaminergic VTA neurons initiated and
maintained wakefulness, while inhibition suppressed wakefulness
and promoted sleep-nesting behavior (Eban-Rothschild et al.,
2016). While the VTA is not noticeably structurally dimorphic
between males and females (Chung et al., 2017), there are
sex differences in dopaminergic transmission. Most of the
VTA’s effects on promoting wake are mediated through major
projections to the nucleus accumbens (NAc). VTA dopaminergic
neuron firing rate and dopamine release into the NAc are higher
during vaginal estrus than other phases of the reproductive
cycle (Zhang et al., 2008), although this is counterintuitive
because rats sleep the most in estrus. Cocaine administration
produced a greater inhibition of the firing of VTA dopaminergic
neurons during proestrus than estrus. This inhibitory effect
was blocked by ovariectomy and restored by estradiol, which
increased dopaminergic neuron activity. During estrus, cocaine
was mediated by estradiol to have an increased affinity to
bind to DAT (dopamine transporter) and inhibit the uptake of
dopamine (DA), increasing DA concentration (Calipari et al.,
2017). Overall, DA transmission in the VTA varies throughout
the estrous cycle and estradiol can modulate cocaine’s impact
on dopamine release. DA neurotransmission has been associated
with sleep/wake states, and sleep modifies the potency of cocaine
(Alonso et al., 2020). Considering the VTA-NAc circuit promotes
arousal, this indicates that ovarian hormones could potentiate
dopaminergic transmission in the VTA to promote wakefulness
(although this remains to be tested).

Glia
Glial cells roughly equal neurons in number (von Bartheld
et al., 2016), and their myriad of significant roles distinguish
them as a new frontier of neuroscience. Glial cells have been
implicated in many roles in the nervous system, including
regulation of sleep (Frank, 2019). Astrocytes support neurons
and have been implicated in sleep homeostasis. Impairing
gliotransmission in astrocytes decreases slow-wave activity, an
indicator of sleep pressure (Halassa et al., 2009). Astrocytes
are the most numerous cells in the human brain and are
located throughout the entire central nervous system, including
regions associated with sleep such as the lateral hypothalamus.
One mechanism through which astrocytes regulate sleep is
through secretion of somnogens. Cultured astrocytes secrete
interleukin-1 (IL-1), which increases slow-wave activity (Tobler
et al., 1984). Sex differences in glia have been reported, and
these non-neural cells are also regulated by gonadal hormones.
Bollinger et al. (2019) found sex-specific effects of stress on glia

in the medial prefrontal cortex (mPFC) that were hormone-
dependent. Stress increased microglial density in the mPFC of
female rats, while stressed males had a greater astrocyte area.
Gonadectomy increased microglial area in males, which was
prevented by testosterone treatment. In females, ovariectomy
blocked stress effects on microglia, which were restored by
estradiol. Sex hormones differentially modify glia morphology in
the context of stress, and perhaps this could occur in other neural
responses such as the sleep/wake drive. Glial cells are regulated
by many nuclear receptors such as ERβ, the dominant estrogen
receptor in microglia (Saijo et al., 2013). Estrogen also acts as a
neuroprotectant for glial cells (Morale et al., 2006; Arevalo et al.,
2010) because ERβ represses inflammatory responses of microglia
and astrocytes (Saijo et al., 2011). Estrogen receptors mediate
glial inflammatory responses, suggesting that ovarian hormones
mediate glial activity. There is a knowledge gap of how hormone-
mediated changes to glial morphology and activity relate to sleep,
but changes to glia could impact other neural regions associated
with sleep and wake.

Female Sex Hormones Promote
Wakefulness and Suppress Sleep
In summary, female sex hormones act on numerous brain regions
associated with sleep and arousal to promote wakefulness and
consolidate sleep periods (Figure 2). Estradiol downregulates
PGD2, a somnogen, in the VLPO to reduce sleep drive
(Mong et al., 2003a,b). Both estradiol and progesterone
regulate histamine transmission, which could mediate the
arousal-enhancing role of histaminergic neurons in the TMN
(Deurveilher et al., 2008). Estradiol could also promote
wakefulness by upregulating NE activity in the LC (Vathy and
Etgen, 1988), serotonergic activity in the DRN (Lu and Bethea,
2002), dopaminergic activity in the VTA-NAc circuit (Zhang
et al., 2008), hypocretinergic activity in the LH (Silveyra et al.,
2007), and/or cholinergic activity in the BF (Henderson et al.,
1996). Glia, which have been implicated in sleep homeostasis, are
also regulated by gonadal steroids and potentially impact many
regions in sleep/wake circuits (Morale et al., 2006). All of these
actions by ovarian hormones are consistent with the hypothesis
that ovarian hormones act widely throughout the brain to
promote wake and suppress sleep. Notably, although sexual
dimorphism and sex hormone regulation of these regions are well
established, the extent to which any given region may mediate
the hormonal regulation of sleep remains to be experimentally
tested. Additionally, most of the regions described contribute to
the arousal system, so there is more room for exploration among
sleep-promoting regions.

THE IMPACT OF HORMONES ON
SLEEP-RELATED SYSTEMS

Nesting and Locomotor Behaviors
There have also been reports of sex differences and hormone
treatment effects on systems related to or supportive of sleep
that could influence sleep and wakefulness regulation. Nesting
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FIGURE 2 | Female sex hormones act on neural regions associated with sleep and wakefulness to promote arousal and suppress sleep. Estradiol and progesterone
suppress neural transmission of somnogens in the VLPO, weakening the sleep drive. The hormones also increase transmission of arousal-promoting substances in
the LH, TMN, LC, as well as other regions not pictured to strengthen the arousal drive. Abbreviations: VLPO, ventrolateral preoptic nucleus; L-PGDS, lipocalin-type
prostaglandin synthase; PGD2, prostaglandin H2; A2A, adenosine 2A receptor; LC, locus coeruleus; NE, norepinephrine; TMN, tuberomammillary nucleus; LH,
lateral hypothalamus; HcrtR1, hypocretin receptor 1; REM, rapid-eye movement sleep; NREM; non-rapid-eye movement sleep.

behavior, which includes the actions involved in making a nest,
is hormonally controlled and is usually studied in the context
of parental behavior (Lisk et al., 1969). Nest building also
supports sleep behavior (Eban-Rothschild et al., 2016), and it
is currently unknown how sex hormones regulate the impact
of nest building on sleep in non-parental animals. Hormone
treatment also impacts locomotor activity. In female rats, levels
of ovarian hormones and estrogen receptors influenced voluntary
locomotor activity (Gorzek et al., 2007). Ovariectomy and
estrogen deficiency both decreased wheel running, which was
restored by estrogen treatment (Ogawa et al., 2003; Vyazovskiy
et al., 2006; Gorzek et al., 2007; Ribeiro et al., 2009). Estradiol
increases locomotor activity, which may increase general arousal
and limit the time available to sleep.

Circadian Rhythms
One of the most significant sleep-related systems not yet
discussed is circadian biology. The suprachiasmatic nucleus
(SCN) in the anterior hypothalamus is the central pacemaker
of the circadian system, regulating the timing of sleep and

physical activity (Rusak and Zucker, 1979). The circadian system
synchronizes day and night (light and dark) with an organism’s
internal processes to create roughly 24-h circadian rhythm.
Circadian rhythms shift in response to external factors such as
light, exercise, and feeding (Stephan, 2002; Abbott et al., 2015). As
part of synchronizing physiologic and behavioral processes to the
environment, the circadian system consolidates sleep into longer
periods at the appropriate time of day as opposed to erratic bouts.
Circadian rhythms are primarily orchestrated by the SCN, which
if lesioned causes animals to sleep in unconsolidated periods,
independent of the light and dark cycle (Stephan and Zucker,
1972; Mouret et al., 1978).

Ovarian hormones have been shown to alter circadian
rhythmicity, which directly impacts sleep–wake activity. Rodents
who are gonadectomized or otherwise estradiol deficient have
fragmented sleep and are less entrained to the light phase, but
estradiol treatment restored the circadian timing of sleep (Colvin
et al., 1969; Vyazovskiy et al., 2006). Therefore, estradiol has
been proposed to consolidate circadian sleep–wake rhythms in
female rats (Schwartz and Mong, 2013). Animal models also
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exhibit changes in measures of circadian activity throughout the
female reproductive cycle. Female rats and hamsters showed the
most change during proestrus and estrus (the days of the greatest
change in estrogen and progesterone levels), during which the
animals exhibited shortened periods and advanced phases of
physical activity (Morin et al., 1977; Albers et al., 1981).

The SCN is a sexually dimorphic structure in many aspects,
although the functional consequences of these differences are not
completely understood. The volume of the SCN is larger in male
rats than females (Gorski et al., 1978; Robinson et al., 1986). The
SCN of male rats also has more axo-spine synapses, postsynaptic
density material, and asymmetrical synapses (Güldner, 1982,
1984). These structural and synaptic differences could indicate
differences in SCN activity between males and females. There
is also evidence for hormonal regulation of clock genes in the
SCN. Estradiol treatment increased mRNA levels of Cry2, a clock
gene, in the SCN while ovariectomized female rats had lowered
gene expression (Nakamura et al., 2001). Many questions remain
regarding the direct impact of ovarian hormones on SCN activity,
although preliminary evidence suggests that estrogen impacts
circadian rhythms by acting through the SCN. Estrogen receptor
mRNA expression in the SCN of rats fluctuates according to
a diurnal pattern, suggesting a correlation between estrogen
signaling and circadian rhythms (Wilson et al., 2002). Future
studies are needed to better understand how ovarian hormones
may impact SCN functioning with consequences for circadian
rhythms, including sleep.

Stress
The link between stress and sleep is robust, and it is generally
accepted that stress impairs sleep (Friedman et al., 1995;
Bastien et al., 2004; Kalmbach et al., 2018). In addition to
norepinephrinergic activity in the LC, other sex-differentiated
stress responses can contribute to changes in sleep. Like the HPG
axis, the hypothalamic-pituitary-adrenal (HPA) axis includes a
cascade of neural and hormonal signals, triggered by circadian
and environmental indicators. Distinct from the sympathetic
nervous system, the HPA axis is the slower, secondary component
of the stress response. Within the HPA, the periventricular
nucleus (PVN) of the hypothalamus releases corticotropin
releasing hormone/factor (CRH/CRF) (Vale et al., 1981). This
triggers the anterior pituitary to release adrenocorticotropic
hormone (ACTH), causing the adrenal cortex to release
corticosteroids (CORT) in preparation to respond to the stressor.
Circulating CORT then acts on the hypothalamus and pituitary
in a negative feedback loop to regulate hormone secretion.
Like other stress systems, the HPA has been correlated with
wakefulness. Sleep deprivation increases HPA activity, and
optogenetic activation of CRF neurons within the HPA promotes
wakefulness while chemogenetic inhibition decreases wake time
(Minkel et al., 2014; Li et al., 2020; Ono et al., 2020). The HPA axis
has also been correlated with circadian rhythmicity, suggesting
the possibility that HPA activity could influence the circadian
system to regulate sleep (Kalsbeek et al., 1995; Tousson and
Meissl, 2004). There is a sex difference in stress responses within
the HPA, with females exhibiting a stronger response than males
(Gaskin and Kitay, 1970; Brett et al., 1983; Handa et al., 1994;

Handa and McGivern, 2016). There is also a female-biased sex
difference in both baseline and stress-induced levels of ACTH
expression in the PVN (Handa et al., 1994; Iwasaki-Sekino
et al., 2009). Altered HPA functioning has been associated with
generalized anxiety disorder (GAD) and other anxiety disorders
(Mantella et al., 2008; Dieleman et al., 2015), which may be
related to women’s greater risk for anxiety disorders (Kessler
et al., 2005; Bekker and Van Mens-Verhulst, 2007). Gonadal
hormones regulate the sexually differentiated functioning of the
HPA. Estrogen treatment potentiates ACTH and CORT secretion
in response to stress, while testosterone attenuates the response
(Burgess and Handa, 1992; Handa et al., 1994). Given the link
between the HPA axis and wakefulness, sex differences in HPA
functioning could contribute to the sex difference in sleep. The
greater reactivity of the HPA axis in response to stress could
increase general arousal in females, strengthening the wake drive.

DISCUSSION

Multiple converging lines of evidence substantiate that ovarian
hormones can regulate sleep in both humans and animal models.
Studies have repeatedly demonstrated strong correlations
between natural hormonal fluctuations and sleep across species.
Experimental manipulations support this model and indicate
that estrogen signaling is by far the most impactful on sleep.
However, the exact neurobiological mechanisms mediating the
hormonal control of sleep remain elusive. Ovarian hormones
impact the physiology of numerous sleep- and wake-regulating
neural loci such that wake is promoted over sleep (Figure 3).
This array of neurobiological changes likely contributes to the
observed sexual dimorphism in sleep behavior, and potentially to
women’s elevated risk of sleep disruption across the lifespan.

There is clearly a significant knowledge gap in our mechanistic
understanding of how ovarian hormones impact the brain to
regulate sleep. For example, estradiol modifies histamine binding
sites in the TMN, but there are likely additional pathways
by which estradiol could impact transmission of histamine or
other compounds associated with wakefulness in the TMN. It is
known that estrogen alters circadian rhythmicity, but the impact
of estrogenic signaling on molecular pathways and neuronal
functioning in the SCN is unclear. It is also evident that ovarian
hormones regulate LC structure and neurochemistry. However,
studies on estrogen in the LC have primarily considered the
hormone’s impact on hyperarousal in the context of stress, so
further research is needed to test whether estrogenic regulation
of the LC affects sleep. It is also unknown whether sex hormones
regulate sleep through actions on glial cells, which comprise
about half of the brain and interact with neural transmission.

Ovarian hormones not only impact physiology within the
aforementioned regions, but they may also regulate information
flow across regions. As has been proposed for social behavior
circuits (Newman, 1999; Goodson and Kabelik, 2009), sex
hormones could regulate the information weighting and
functional connectivity within sleep/wake circuits to produce
alterations in sleep behavior. Estrogen has been shown to
have region-specific effects on inter-region connectivity. For
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FIGURE 3 | Female sex hormones act on adjacent mechanisms to promote wake over sleep. Estradiol and progesterone modulate neurochemical transmission and
morphology of synapses and glia. Hormone response elements such as estrogen response elements (EREs) directly impact gene expression, possibly regulating
clock genes. Estradiol and progesterone also impact nest building and circadian rhythms, resulting in longer duration of wake than sleep.

example, synaptic plasticity and functional connectivity in the
ventromedial hypothalamus to anteroventral PVN pathway
change throughout the estrous cycle with direct consequences
to female reproductive behavior (Inoue et al., 2019). At the
electrophysiological level, estradiol administration decreased
excitability of medial amygdala afferents from the medial preoptic
area but not those from the lateral septum, indicating that
hormonal regulation of computational inputs can be region-
specific (Yoshida et al., 1994). Notably, these effects have
primarily been studied in the context of hormonally-regulated
social behavior circuits. However, we argue that sleep is also a
hormonally-regulated behavior, and thus is potentially regulated
by similar mechanisms. Further research should elucidate the

role of ovarian hormones in modulating the pattern—not just
the activation in isolation—of neural networks to guide sleep and
wake behavior.

Our understanding of the mechanisms of sexual dimorphism
within the sleep/wake circuits is limited, although rodent
models indicate that gonadal steroids exert an organizational
effect on this circuitry early in life. Another less explored
potential contributor to sexual dimorphism is the impact of sex
chromosomes, which differentiate neurons into XX or XY cells
based on the biological sex of the organism (Arnold, 2004). Sleep
pressure following sleep deprivation increases more rapidly in
women than men, and sex chromosomes have been implicated
in this process (Paul et al., 2008; Ehlen et al., 2013). Ehlen and
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colleagues tested the impact of sex chromosomes on sleep using
mice from the four core genotypes mice model, in which the
sex chromosome complement (XX, XY) is independent of the
mouse’s gonadal sex (male or female). The four genotypes are
XX females, XX males, XY females, and XY males. During sleep
recovery following sleep deprivation, XY female mice slept more
than XX females (Ehlen et al., 2013). Further studies directly
testing the impact of sex chromosomes on sleep neurobiology
would complement work on sex hormones and sleep.

The ultimate adaptive benefit of sex differences in sleep is
unknown (if one ever existed at all), but it is clearly maladaptive
in modern society. Ovarian hormones regulate the neurocircuitry
related to sleep such that women are biologically predisposed for
disrupted sleep. This is a public health concern because sleep
is crucial for optimal health and well-being, and its disruption
leads to dire consequences. For example, sleep deprivation
increases risk for cardiovascular disease, hypertension, and
Alzheimer’s disease (Meng et al., 2013; Vgontzas et al., 2013;
Smith and Mong, 2019). Sleep disturbances are also associated
with cognitive deficits such as reduced memory consolidation
and inattentiveness, as well as psychiatric problems such as
substance abuse (Drummond and Brown, 2001; Johnson et al.,
2006; Gujar et al., 2010). Therefore, women’s increased risk of
sleep problems could predispose women for a higher risk of
disease and cognitive deficits. Further research is required in
this area to understand and address the sleep disturbances that
disproportionately burden half of the world’s population.

In spite of the clear necessity to understand and improve
women’s health, many unanswered questions remain. One reason
why this knowledge gap has persisted is because historically
most sleep studies have used only male subjects. This is a
broad issue across biomedical sciences. A meta-analysis found
that neuroscience studies using only male animals outnumbered
female-only studies by a ratio of 5.5:1, and few studies in this
field used both male and female subjects (Beery and Zucker,
2011). The sex bias in animal models is significant because as
of 2009, 85% of neuroscience studies used rodents as subjects.
Researchers often defend their choice to only include males by
claiming that it is challenging to control for the variation in
length of reproductive cycles between females. However, studies
testing pain receptivity, gene expression, and other neuroscience-
related traits found female mice tested at different points in their
cycle to be no more variable than male mice (Prendergast et al.,
2014; Itoh and Arnold, 2015; Becker et al., 2016). In fact, male
mice exhibited a significantly greater trait variability than females
in these studies. Women and female animals have long been
excluded from sleep studies, leading to a knowledge gap in how
mechanistic sleep circuitry differs between males and females and
how ovarian hormones might impact these circuits. Neuroscience
and sleep research are improving in this aspect, but experimenters
should continue to prioritize studies with sex as a biological
variable in order to understand how female physiology interacts
with sleep biology.

Better inclusion of women in pharmaceutical clinical
evaluation could pave the way for sleep treatment tailored for
women. Most pharmaceutical treatments have been designed
primarily according to men and male physiology due to the

longstanding sex bias in biomedical research, including sleep
research. This male bias in basic research has led to deleterious
consequences for women even confining our discussion to
sleep treatments. For example, in 2013, the FDA reduced the
recommended dose of Ambien (zolpidem), a popular sleep
aid, for women due to sex differences in drug metabolism
leading women to experience high dosages exceeding safe levels
(FDA Drug Safety Communication, 2014). Administration of
olanzapine, another sleep aid, increased NREM in women but
decreased NREM in men (Giménez et al., 2011). Given the sex
differences in the effects of pharmaceutical pharmacological
treatment on sleep, future research should determine optimal
treatment and doses for sleep problems in women.

Finally, we reiterate that the data on “women” in this review
come from and apply to cis-women. This is because sex and
gender minorities have been and continue to be understudied
in biomedical research, including sleep research. Future research
on these populations could improve health outcomes for these
historically underserved populations. In particular, trans-men
and women receiving gender-affirming hormone treatment
represent a uniquely positioned population for studying the
organizational versus activational effects of sex hormones on
sleep in humans. Women in general have been understudied in
biomedical research, and we encourage that more research and
resources be applied to benefit additionally marginalized groups.

CONCLUSION

Women have significantly more sleep problems than men, likely
in part due to female sex hormones. Estrogen and progesterone
change sleep architecture, and ovarian hormones impact neural
transmission in areas related to sleep/wake regulation. However,
further research can be done in this field. Elucidating the
mechanisms behind sex differences in sleep could help not only
to reduce sleep disturbances in women, but also to promote sleep
health and well-being.
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