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Rhodium-catalysed direct hydroarylation of alkenes
and alkynes with phosphines through
phosphorous-assisted C—H activation

Dingyi Wang'?, Ben Dong"?, Yandong Wang!, Jiasheng Qian', Jinjun Zhu', Yue Zhao' & Zhuangzhi Shi® '

Biarylphosphines have been widely applied as ligands in various synthetic methods, especially
in transition-metal-catalysed carbon-carbon and carbon-heteroatom bond cross-coupling
reactions. Based on the outstanding properties of the parent scaffolds, a general method for
in situ modification of the commercial tertiary phosphine ligands to access a series of ligands
is in high demand. Here we show that a rhodium-catalysed system is introduced for the
hydroarylation of alkenes and alkynes with tertiary phosphines through P(lID)-chelation
assisted C-H activation. A series of ligand libraries containing alkyl and alkenyl substituted
groups with different steric and electronic properties are obtained in high yields. Furthermore,
several experimental studies are performed to uncover the key mechanistic features of the
linear-selective hydroarylation of alkenes and branch-selective hydroarylation of alkynes.
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ransition-metal-catalysed C—H activation assisted by chelat-

ing directing groups is a well-established strategy!~10. Of these

processes, the hydroarylation of C—C double and triple bonds
through C—H addition has received much attention recently because
it represents a versatile and atom-economical method!!-14, A
remarkable feature of chelation-assisted hydroarylation resides in the
ability to overcome the inert nature of C—H bonds and control site-
selectivity in molecules with diverse C—H bonds. In 1993, Murai
et al.1° reported a significant, pioneering work on the Ru-catalysed
hydroarylation of alkenes with aromatic ketones by carbonyl-directed
C—H activation. Since then, the emergence of promising O-chelation
assisted hydroarylations in various substrates such as N,N-dime-
thylcarbamoyl indoles!'®, N,N-diethylbenzamides!”!8, anilides!®,
enamides?0—23 and so on by rhodium and iridium catalysts has been
reported (Fig. 1a)24. In the ensuing years, the catalytic hydroarylation
reactions have focused on the development of N directing groups
with different transition metal catalysts (Fig. 1b)2°-34, Since 2010,
Yoshikai and co-workers>>~40 have reported a series of cobalt-
catalysed hydroarylation of alkenes and alkynes with 2-
phenylpyridines and imines. In 2013, Wang and Chen uncovered
the Mn(I)-catalysed aromatic C—H alkenylation of terminal alkynes
with 2-phenylpyridines*1#2, In 2018, Ackermann and co-workers*3
reported the enantioselective cobalt(II)-catalysed C-H alkylation of
indole at C2 position with alkenes by an N-pyridine-type directing
group. A very recent example by Yu, Sun and Lu involved a U-
shaped nitrile template-directed, Rh(III)-catalysed meta-C—H alke-
nylation of arenes with disubstituted alkynes, wherein the chelation of
cyano group was crucial for the meta-selective hydroarylation*4.
Despite these widely acknowledged advances, a variation to the ori-
ginal Murai protocol, which enables catalytic P-chelated, regioselec-
tive hydroarylation remains elusive.

P-chelated transition metal-olefin complexes*® with an aromatic
C—H bond have been studied from a stoichiometric point of view.
In 2011, Schauer and Brookhart uncovered the migratory insertion
of square-pyramidal d6, 16-electron Ir(Ill), and Rh(III) olefin
hydride complexes assisted by a (bis)chelated O-P(III) motif
(Fig. 1c)*. Due to the high stability of pincer complexes’48,
subsequent reductive elimination to build the C(sp2)-C(sp?) bond

could not proceed. Furthermore, the catalytic variation is even more
challenging. Recently, we*® and Clark®>! have disclosed C-H
arylation and borylation of biaryl phosphines, in which the inherent
monodentate phosphine was used as a directing group (Fig. 1d).
The development of the PI-chelation-assisted C-H activation in a
catalytic process prompted us to consider whether these phosphines
could directly undergo hydroarylation by transition metal cata-
lysts>2->8, Inspired by these previous results, herein, we report a
catalytic transformation for the regioselective hydroarylation of
commercially available tertiary phosphines with alkenes and alkynes
through a rhodium-catalysed, P(III)-directed C-H alkylation and
alkenylation (Fig. le). Such routes are particularly desirable because
alkyl and alkenyl-substituted phosphine ligands®®-%! with different
steric and electronic properties can be produced by an in situ
modification strategy©2.

Results

Reaction design. We initiated our study by investigating the
reaction of phosphine 1a with methyl acrylate (2a) in the pre-
sence of an array of rhodium and iridium catalysts (Table 1). As a
result, we discovered that the use of 2.5 mol% [Rh(cod)Cl], and
3.0 equivalents of NaHCOj in toluene at 140 °C for 3 h led to the
formation of alkylation product 3aa with a 75% yield and a small
amount of disubstituted alkylation product 3aa’ (Table 1, entry
1). Other rhodium complexes such as [Rh(coe),Cl], (Table 1,
entry 2) and [Rh(CO),Cl], (Table 1, entry 3) were less efficient
for this reaction. When the reaction was carried out using iridium
catalysts such as [Ir(cod)Cl],, we did not observe any C-H
alkylation products (Table 1, entry 4). Further control experi-
ments confirmed that the coupling process did not occur in the
absence of the Rh catalyst (Table 1, entry 5) and the conversion
was poor without NaHCOj; (Table 1, entry 6). Other bases such as
Na,COj led to dramatic erosions in yield (Table 1, entry 7). The
non-polar solvent was required for the reaction and the use of
xylene as a solvent led to a slightly lower yield (Table 1, entry 8).
Lowering the temperature to 130 °C had a little impact on the
reaction outcome (Table 1, entry 9); however, at a lower
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Fig. 1 Towards a catalytic process for hydroarylation of alkenes and alkynes with diarylphosphines through P(llI)-chelation-assisted C—H activation. a O-Chelation-
assisted hydroarylation. b N-Chelation-assisted hydroarylation. € Precedent studies on P-chelated transition metal-olefin complexes. d Transition-metal-catalysed
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2 | (2019)10:3539 | https://doi.org/10.1038/s41467-019-11420-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Table 1 Reaction optimization

2.5 mol% [Rh(cod)Cl],

PhoP 3.0 equiv NaHCO.
: 3 Ph,P
H + 2 cooMe 2
O Toluene, 140 °C,3 h O COOMe
(1.0 equiv) (1.0 equiv)

1a 2a 3aa
Entry Variation from the standard conditions Yield of 3aa (%)?
1 None 89 (75)°
2 Using [Rh(coe),Cl];, instead of [Rh(cod)Cl], 79
3 [Rh(CO),Cl]; instead of [Rh(cod)ClI], 75
4 [Ir(cod)Cl], instead of [Rh(cod)Cl], 0
5 Without [Rh(cod)Cl], 0
6 Without NaHCO5 18
7 Using Na,COs instead of NaHCO3 66
8 Using Xylene 85
9 At 130 °C 80
10 At 100 °C 59

Reaction conditions: 2.5 mol% [Rh(cod)Cl1,, 1a (0.20 mmol), 2a (0.20 mmol), NaHCO5 (0.60 mmol) in 1mL toluene, at 140 °C, 3 h, under argon 2GC yield Plsolated yield
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Fig. 2 Rhodium-catalysed direct hydroarylation of alkenes with phosphines. Reaction conditions: 2.5 mol% [Rh(cod)Cl]5, 1 (0.20 mmol), 2 (0.20 mmol),
NaHCO3 (0.60 mmol) in 1mL toluene, at 140 °C, 3-4 h, under argon. All reported yields are isolated yields. 2Using 2 (0.60 mmol) at 150 °C for 24 h. b5
mol% [Rh(coe),Cl],, 1 (0.20 mmol), 2 (0.60 mmol), K,CO3 (0.60 mmol) in TmL toluene, at 150 °C, 24 h, under argon. Using 5 mol% [Rh(cod)Cl],, 2

(0.60 mmol) at 150 °C for 24 h
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temperature, 100 °C the result was found much inferior than that
observed under the optimal conditions (Table 1, entry 10).

Scope of the methodology. The scope of the mono-substituted
alkylation products were examined using a wide range of phos-
phine ligands. As shown in Fig. 2, biaryl phosphines bearing Me
(1b-1¢), OMe (1d), NMe, (1e) and F (1f) substituents underwent
facile hydroarylation with methyl acrylate (2a), affording the
corresponding products 3ba-3fa with 53-83% yields. Substrate
1g, containing a naphthalen-2-yl group, was also compatible, and
the C-H activation was located at the less sterically hindered C3
position. CyJohnPhos (1h), 2-(dicyclohexylphosphino)-2’-meth-
oxybiphenyl (1i), and Davephos (1j) with a PCy, directing group
produced hydroarylation products 3ha-3ja with 47-67% yields.
Furthermore, JohnPhos (1k), having a sterically hindered P'Bu,
group, produced the desired product 3ka in modest yield. The

J :
P

2.5 mol% [Rh(cod)Cl],

cataCxium ligand series, developed by Beller, such as cataCXium®
PPh (11) and cataCXium® PCy (1m), were compatible as well.
Under the optimized conditions, phosphine la was effectively
coupled to olefins such as butyl acrylate (2b), (vinylsulfonyl)
benzene (2d), and styrenes 2d-e in high efficiency and regios-
electivity. Reactions conducted with acrylonitrile (2f) formed a
linear hydroarylation product 3af with 80% yield, which was
confirmed by X-ray analysis. Notably, internal olefins such as
methyl (E)-but-2-enoate (2g) were tolerated as well.

Under slightly modified conditions, the reaction of phosphine 1a
(1.0 equiv) and 1-ethynyl-4-methoxybenzene (4a, 2.0 equiv) in the
presence of 2.5mol% [Rh(cod)Cl], without NaHCO;, at 120°C
under an Ar atmosphere in toluene, formed a Markovnikov
hydroarylation adduct 5aa in 85% yield (Fig. 3). Then we studied
the scope of the hydroarylation reaction between phosphine ligands
and alkynes for the synthesis of alkenyl-substituted products. Unlike
the above reactivity, this olefination reaction is sensitive to the steric
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Fig. 3 Rhodium-catalysed direct hydroarylation of alkynes with phosphines. Reaction conditions: 2.5 mol% [Rh(cod)Cl],, 1 (0.20 mmol), 4 (0.40 mmol) in
0.5 mL toluene, at 120 °C, 12 h, under argon. All reported yields are isolated yields. Using 1 (0.20 mmol), 4 (0.60 mmol)
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Fig. 4 Further investigations. a Rh-catalysed di-selective hydroarylation of alkenes with phosphines. b Rh-catalysed anti-Markovnikov hydroxylation of

alkyne 6 with phosphine 1a

hindrance of the phosphines. Therefore, the C2-substituted phos-
phines 1b, 1d-e and 1i-j and the sterically hindered JohnPhos (1k)
with the P!Bu, directing group were not tolerated. Phosphines such
as 1c, 1f~h and 11-m were applied in this C-H olefination reaction.
Terminal alkynes, including phenylacetylene (4b), as well as
derivatives that incorporate methyl (4c), phenyl (4d) and Cl (4e)
on arenes, which were readily tolerated (5ab-5ae). As an example of
a heteroaromatic alkyne, 3-ethynylthiophene (4f) was shown to be
amenable to this protocol. Furthermore, the hydroarylation of alkyl-
substituted terminal alkynes 4g-i proceeded smoothly with branch-
selectivity.

In addition to the mono-selective hydroarylation, we also
investigated the disubstituted products. To increase the di-
selectivity to a more synthetically useful level, phosphine 1a was
treated with 3.0 equiv of 2a and 3.0 equiv of NaHCOj in toluene
at 150 °C for 24 h to selectively form the disubstituted product
3aa’ with a 78% yield, which was confirmed by X-ray analysis
(Fig. 4a). Other olefins such as butyl acrylate (2b) and other
phosphines such as cataCXium® PCy (11) produced the
corresponding disubstituted hydroarylation products 3ab’ and
3ka’ in good yields. However, the C-H alkenylation reactions
only displayed mono-selectivity. For instance, the reaction of
phosphine 1a with a large amount of alkyne 4a still generated the
mono-substituted product 5aa and the corresponding disubsti-
tuted product 5aa’ was not detected. Besides the Markovnikov
selectivity observed in Fig. 3, interestingly, an extremely bulky
TIPS substituted terminal alkyne 6 only produced the product 7
in an anti-Markovnikov mode (Fig. 4b).

Synthetic applications. Besides diarylphosphines, this strategy
can also be extended to binaphthyl-based chiral phosphine
ligands. Notably, alkyl, ether and dialkylamino groups are widely
used to adjust the steric structure in these phosphines. Based on
this method, the alkyl groups could be rapidly and efficiently
installed by P(III)-directed C-H alkylation of alkenes. For
example, when (R)-H-MOP (8) was employed with olefin 2 h, the

alkylation product 9 was generated in 56% yield without
erosion of ee (Fig. 5a). To further modulate the steric properties
of the substituent at alkyl substituents, olefins 2i and 2j with
bulky substituents were employed, providing the compounds
10-11 with acceptable yields and excellent stereochemical relia-
bility. To show the synthetic utility, we next tested them as
ligands in transition metal-catalysed asymmetric reactions. As
shown in Fig. 5b, following the procedures disclosed by the
Hayashi research group on the Rh-catalysed arylation of related
isatins 12a-b with PhB(OH), (13) using the best ligand (R)-
MeO-MOP, alcohols 14a-b were obtained in good yields with
75%% and 89% ee®*, respectively. Furthermore, when the mod-
ified ligands 9-11 were screened, the enantioselectivity of the
product 12 could be dramatically improved to 84% ee. In addi-
tion, compound 9 showed a better reactivity for the synthesis of
the product 12b.

Discussion

To probe the reaction mechanism, we conducted a series of
experimental investigations (Fig. 6). Reactions of the [Rh(cod)
Cl], dimer with phosphine la (6p = —13.6 ppm) in toluene at
room temperature generated a yellow complex 15 (dp=
20.5 ppm), as confirmed by X-ray analysis and 3'P NMR spec-
troscopy. Detected by the 3P NMR spectrum, no new signal
appeared when the solution 6 was heated in D8-toluene at
120 °C%%. Addition of alkene 2a to the above system generated
two new signals, confirmed as intermediate 16 (Jp = 36.7 ppm)
and the product 3aa’ (6p = —15.0 ppm). Following a similar
protocol for alkyne 4a resulted in the formation of compounds 17
(6p =35.7 ppm) and 5aa (6p = —14.9 ppm). Further detected by
high-resolution mass spectrometry (HRMS), the analysed sam-
ples 16 and 17 showed diminished signals for the precursors of
products 3aa’ and 5aa. This result indicates that the C-H acti-
vation event is triggered by the addition of the alkene or alkyne,
and phosphine chelation with the rhodium species is crucial for
this regio-controlled hydroarylation.
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Fig. 5 Testing the developed binaphthyl-based chiral phosphine ligands. a Rh-catalysed C-H alkylation of with (R)-H-MOP (8). b Rh-catalysed asymmetric
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Fig. 6 Mechanistic studies experiments. Investigation of the reaction intermediates by X-ray analysis, 3P NMR spectroscopy and HRMS
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Fig. 7 Deuterium labelling experiments. a Deuteration experiments of D-1a with alkene 2a and alkyne 4a. b The kinetic isotope effects of C-H alkylation and

alkenylation

To gain further insight into the reaction mechanism, deuter-
ated experiments were carried out by D-1a with 2a in the stan-
dard reaction conditions. 'H NMR analysis revealed that D/H-
exchange was detected on the D5-benzonic core of 1a, and 42%
and 3% deuterium incorporation at the p and o positions,
respectively, were observed after 3 h. Moreover, 50% deuterium
incorporation was detected at the P-olefinic position of D-5aa,
without stereoselectivity (Fig. 7a). In addition, the KIE values of
the C-H activation in hydroarylation of 2a and 4a with phos-
phine la were 2.5 and 3.5, respectively, revealing that the C-H
cleavage is slow, and involved as a rate-determining step in both
alkylation and alkenylation process (Fig. 7b).

Based upon the results herein and the precedent reports,
plausible reaction pathways are shown in Fig. 8. The rhodium
species RhX first coordinates to the P atom of phosphine D5-1,
which leads to the formation of complex A. A reversible coor-
dination with alkene 2 or alkyne 4 delivers the intermediate B%°.
In the case of methyl acrylate (2a), subsequent C-H activation
takes place and delivers the alkene-hydride complex C. The
deuterium labelling experiments demonstrates the cis insertion of
the Rh-D bond into 2a, which first occurs at the a-position to
generate intermediate D49, then undergoes reversible B-hydride
elimination to form the olefin complex E7 and eventually pro-
duces the p-addition complex F. In the alkyne 4a system, the
Rh-alkyne complex B undergoes C-H activation to form rho-
dacycle C’, which undergoes a hydride addition at the a-position
to generate intermediate D’. If reductive elimination happens at

this step, we should only observe the trans-hydroarylation pro-
duct D-5aa. The nonstereospecific deuteration indicates that the
species F’ is possibly generated from carbenoid E’¢® via iso-
merization of the D’ species. Then, intermediates F and F’ pro-
duce complex G via reductive elimination, which generates the
desired products 3 and 5 and then reforms catalytic species A via
exchange with another phosphine molecule.

In summary, we developed an effective rhodium-catalysed
system that can activate the aromatic C-H bonds of phosphines
with alkenes and alkynes through a hydroarylation process. A
diverse class of alkyl and phosphine ligands with different steric
and electronic properties are obtained in moderate to good yields
with excellent site-selectivity. Additional applications of the
developed ligand libraries and more detailed mechanistic studies
are also ongoing in our laboratory.

Methods

General procedures for synthesis of 3. In an oven-dried Schlenk tube, 1

(1.0 equiv, 0.20 mmol), 2 (1.0 equiv, 0.20 mmol), [Rh(cod)Cl], (2.5 mol%, 2.5 mg,
0.005 mmol), NaHCO;(3.0 equiv, 50.4 mg, 0.60 mmol) were dissolved in freshly
distilled toluene (1.0 mL). The mixture was stirred at 140 °C under argon for 3 h.
Upon the completion of the reaction, the solvent was removed. The crude mixture
was directly subjected to column chromatography on silica gel using petrol ether/
EtOAc as eluent to give the desired products.

General procedures for synthesis of 5. In an oven-dried Schlenk tube, 1
(1.0 equiv, 0.20 mmol), 4 (2.0 equiv, 0.40 mmol), [Rh(cod)Cl], (2.5 mol%, 2.5 mg,
0.005 mmol) were dissolved in freshly distilled toluene (1.0 mL). The mixture was
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Fig. 8 Proposed mechanism. A tentative reaction mechanism involves coordination of Rh species with P atom, C-H activation, insertion of alkenes and

alkynes to form the desired products

stirred at 120 °C under argon for 12 h. Upon the completion of the reaction, the
solvent was removed. The crude mixture was directly subjected to column chro-
matography on silica gel using petrol ether/EtOAc as eluent to give the desired
products.
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