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Background: Methylation modification patterns play a crucial role in human cancer progression, 
especially in gastrointestinal cancers. We aimed to use methylation regulators to classify patients with gastric 
adenocarcinoma and build a model to predict prognosis, promoting the application of precision medicine. 
Methods: We obtained RNA sequencing data and clinical data from The Cancer Genome Atlas (TCGA) 
database (n=335) and Gene Expression Omnibus (GEO) database (n=865). Unsupervised consensus 
clustering was used to identify subtypes of gastric adenocarcinoma. We performed functional enrichment 
analysis, immune infiltration analysis, drug sensitivity analysis, and molecular feature analysis to determine 
the clinical application for different subtypes. The univariate Cox regression analysis and the LASSO 
regression analysis were subsequently used to identify prognosis-related methylation regulators and construct 
a risk model. 
Results: Through unsupervised consensus clustering, patients were divided into two subtypes (cluster A 
and cluster B) with different clinical outcomes. Cluster B included patients with a better prognosis outcome 
and who were more likely to respond to immunotherapy. We then successfully built a predictive model and 
found five methylation-related genes (CHAF1A, CPNE8, PHLDA3, SPARC, and EHF) potentially significant 
to the prognosis of patients. The 1-, 3-, and 5-year areas under the curve of the risk model were 0.712, 
0.696, and 0.759, respectively. The risk score was an independent prognostic factor and had the highest 
concordance index among common clinical indicators. Meanwhile, the tumor microenvironment, sensitivity 
of chemotherapeutic drugs, molecular features, and oncogenic dedifferentiation differed significantly across 
the risk groups and subtypes. 
Conclusions: We classified patients with gastric adenocarcinoma based on methylation regulators, which 
has positive implications for first-line clinical treatment. The prognostic model could predict the prognosis 
of patients and help to promote the development of precision medicine.
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Introduction

Unfortunately, due to most cases being diagnosed at an 
advanced stage, gastric cancer (GC) has a high mortality, 
and ranks third as the most common cause of cancer-
related death (1). GC’s risk factors consist of Helicobacter 
pylori gastritis, high salt intake, genetic background, and 
lack of vegetable and fruit intake (1-3). The main curative 
therapeutic modality for GC is surgical resection (4). 
Surgery remains an important intervention against GC, and 
endoscopic resection has been widely used for most early 
GC cases (5,6). However, chemotherapy is the first choice 
for patients with advanced GC (1). A combination of a 
platinum and a fluoropyrimidine agent constitutes the first-
line of chemotherapy (1,7,8). More recently, the addition 
of a checkpoint inhibitor to chemotherapy brought only 
modest benefit to the overall population of GC patients (9).  
Additionally, several targeted therapeutic agents are used 
for advanced GC (10). About 17–20% patients with GC 
overexpress the human epidermal growth factor receptor 

2 (HER2) protein, meaning that an anti-HER2 antibody, 
trastuzumab, can assist in treatment against GC (11). 
Treatment with pembrolizumab/nivolumab is based on 
testing for microsatellite instability (MSI) or mismatch 
repair (MMR), PD-L1 expression or tumor mutation 
burden (TMB) (10). Entrectinib/larotrectinib is based on 
testing for NTRK gene fusions (10). Despite these choices 
in therapy, the survival time of patients with advanced 
disease rarely exceeds 2 years (1). In order to maximize 
therapeutic effect, the latest findings in molecular biology 
need to be translated into clinical practice.

Methylation is an important epigenetic modification 
mechanism in cancer (12), occurring at DNA (13), RNA (14),  
and protein (15,16) levels. DNA methylation is involved 
in the regulation of target gene expression (17); RNA 
methylation is involved in the regulation of transcription, 
messenger RNA (mRNA) splicing, nuclear export, and 
translation (18); and protein methylation is involved in 
the regulation of activity, translation, localization, and 
signaling of protein (19). In recent years, many studies 
have demonstrated that the dysregulation of methylation 
is related to human cancer progression, especially in 
gastrointestinal cancers (20,21). Silencing of tumor-
suppressor genes by aberrant methylation of CpG islands 
in the promoter of DNA is one of the major mechanisms 
causing GC (22). Over 150 types of RNA methylation 
have been identified, with N1-methyladenosine (m1A), 
5-methylcytosine (m5C), N6-methyladenosine (m6A), N7-
methylguanosine (m7G), and 2-O-dimethyladenosine 
(m6Am) being the most representative and intensively 
studied types (12). A study has shown that demethylase 
ALKBH5 regulates m6A modification of downstream target 
PKMYT1 to suppress the invasion and metastasis of GC (23). 
The RNA methyltransferase NSUN2 was demonstrated 
to inhibit the downstream gene CDKN1C, thus promoting 
GC cell  proli feration via m5C modif ication (24).  
Abnormal m7G transfer RNA (tRNA) modification 
can promote hepatocarcinogenesis (25). Methylation 
modification of proteins is mainly found in histones, and this 
posttranslational modification participates in many cancer-
related processes, such as transcription and DNA repair (26).

Studies on the epigenetic modification of nucleic acid 
and protein molecules remain insufficient, with research 
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on crosstalk between different types of methylation in 
cancer being even less so. Methylation modification plays 
a great role in the development and diagnosis of gastric 
adenocarcinoma. In this study, we comprehensively 
evaluated the role played by methylation in gastric 
adenocarcinoma at the DNA, RNA, and protein level. 
The transcriptome, proteome, and genome data from The 
Cancer Genome Atlas (TCGA) and the Gene Expression 
Omnibus (GEO) database were collected to perform a 
series of bioinformatic analyses to investigate the potential 
application of patients’ classification based on methylation 
regulation in first-line clinical treatment. The signatures 
screened through different subtypes could predict patients’ 
overall survival (OS) and recurrence-free survival (RFS). 
We aimed to promote the application of precision medicine 
in GC patients via more refined stratification of gastric 
adenocarcinoma. The significance and innovation of this 
study are that it comprehensively considers all possible 
methylation regulation forms mentioned in existing studies 
and clarifies the association of methylation modifications 
with gastric adenocarcinoma-related pathological processes. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-23-770/rc).

Methods

Acquisition of data of patients with gastric adenocarcinoma

We downloaded the RNA transcriptome datasets (HTSeq-
Counts and HTSeq-FPKM) and the relevant clinical data 
from TCGA database (https://portal.gdc.cancer.gov/). 
RNA sequencing (RNA-seq) was converted to transcripts 
per kilobase million (TPM) values. Somatic mutation 
and copy number variation (CNV) were obtained from 
UCSC Xena (University California, Santa Cruz; https://
xenabrowser.net/datapages/). The clinical information 
is shown in https://cdn.amegroups.cn/static/public/
jgo-23-770-1.xls. In order to increase the accuracy of 
prognosis model, cases with missing OS values or OS 
values ≤30 days were excluded. Finally, 335 cases with 
gene expression values and survival times were obtained. 
External validation sets GSE84437 (27) and GSE26253 (28)  
were obtained from GEO database (http://www.ncbi.
nlm.nih.gov/geo). GSE84437 contains 433 samples of 
patients with GC and complete OS and transcriptome data 
retrieved from the Affymetrix GPL6947 platform (Illumina 
HumanHT-12 v. 3.0 Expression BeadChips). GSE26253 

contains 432 samples from patients with GC, with RFS 
and transcriptome data being retrieved from the Affymetrix 
GPL8432 platform (Illumina HumanRef-8 WG-DASL 
v. 3.0). All data from these platforms are public and with 
authorization for the study. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Acquisition of methylation-related genes and mutational 
analysis

Through a review of the literature, a total of 117 methylation 
regulators were collected. The detailed information about 
these methylation regulators is shown in Table 1. 

The mutation map of methylation regulators in 
patients with gastric adenocarcinoma was generated by 
the “maftools” package in R. CNV-altered positions of 
methylation regulators on 23 chromosomes were mapped 
with the “RCircos” package in R.

Unsupervised consensus clustering

Unsupervised consensus clustering analysis is a method 
of providing quantitative evidence to determine the 
members and number of possible clusters in a dataset (42).  
This method has been widely applied in cancer genomics 
to discover new subtypes of disease molecules. It was 
performed to divide patients into distinct molecular 
subtypes based on methylation regulators expression via 
the “ConsensusClusterPlus” R package. The following 
criteria were used to group patients: first, there was a fluid 
and progressive growth in the cumulative distribution 
function curve. Second, there was a sufficient sample size in 
each group. Thirdly, ensure a balance between intra group 
correlation and inter group correlation. The “survival” 
and “survminer” R packages were used to conduct the 
Kaplan-Meier curve and compare the OS between different 
subtypes. Clinical data were included and analyzed for 
differences in molecular subtypes by using the “heatmap” R 
package.

To investigate the diversity in enrichment status for 
biological processes of the different subtypes, gene set 
variation analysis (GSVA) was carried out via the “GSVA” 
R packages. Gene set “c2.cp.kegg. v7.4” was used for 
GSVA. We identified differentially expressed genes (DEGs) 
between different subtypes via the “limma” R package 
according to a P value of 0. 05 and a |logFC| of 0.5. In 

https://jgo.amegroups.com/article/view/10.21037/jgo-23-770/rc
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order to verify the robustness of clustering, the samples 
were clustered again based on DEGs. The “clusterProfiler” 
R package was used to perform functional enrichment 
analyses on the DEGs.

Analysis of tumor microenvironment and clinical 
application for different subtypes

Single-sample gene set enrichment analysis (ssGSEA) 
was used to evaluate the levels of immune cell infiltration. 
We examined the expression of 47 immune checkpoint 
genes among different subtypes and selected out 
significantly differently expressed checkpoints. Data from 
Tumor Immune Dysfunction and Exclusion (TIDE) 
was used to predict the potential response of patients to  
immunotherapy (43). We used the one-class logistic 
regression (OCLR) machine learning algorithm to 
calculate the degree of oncogenic dedifferentiation (44). 
The stemness indices were scaled from 0 (low) to 1 (high). 
The “pRRophetic” R package was applied to calculate the 
half-maximal inhibitory concentration (IC50) of common 
chemotherapy drugs for the clinical treatment of gastric 
adenocarcinoma.

Establishment of the risk model

A risk model was constructed using the DEGs among the 

different subtypes. We first performed univariate Cox 
proportional hazard regression analysis to obtain prognosis-
related signatures based on the transcriptome data in 
TCGA. All patients were randomly divided into training 
and testing groups in a 1:1 ratio. LASSO regression with 
1,000 cycles of 10-fold cross-validation was then used to 
build the risk model. With the aim of avoiding overfitting, 
we completed 1,000 random stimulations in each cycle. The 
computational formula used for this analysis was as follows:

( ) ( )1
Risk score n k k

k
coef gene expr gene

=
= ∗∑  [1]

Here, the coef (genek) is the short form of the coefficient 
of genes correlated with survival, and expr (genek) is the 
expression of genes. We divided the samples into low-risk 
and high-risk groups based on the median risk score.

Evaluation of the risk model

We used the “survival” R package to carry out univariate 
Cox (uni-Cox) and multivariate Cox (multi-Cox) regression 
analyses to investigate whether the risk score and clinical 
characteristics were independent variable factors (45). 
To evaluate the accuracy of the model, we drew receiver 
operating characteristic (ROC) and concordance index 
(C-index) curves of different clinical characteristics and 
stages.

Table 1 117 methylation regulators from levels of DNA, RNA and proteins

Classification Gene symbol Source

DNA methylation DNMT1, DNMT3A, DNMT3B, DNMT3L, TET1, TET2, TET3 (29-31)

RNA-N6-methyladenosine (m6A) METTL3, METTL14, METTL16, WTAP, KIAA1429, VIRMA, RBMY1A1, RBM15, RBM15B, 
ZC3H13, FTO, ALKBH5, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3 IGF2BP1, IGF2BP2, 
IGF2BP3, HNRNPA2B1, HNRNPC, RBMX, LRPPRC, FMR1

(32-34)

RNA-N1-methyladenosine (m1A) TRMT6, TRMT61A, TRMT61B, TRMT10C, BMT2 RRP8, YTHDF1, YTHDF2, YTHDF3, 
YTHDC1, ALKBH1, ALKBH3

(20,35)

RNA-N5-methylcytosine (m5C) TET1, TET3, DNMT3B, YBX1, NSUN2, NSUN6, NOP2 (36,37)

RNA-N7-methylguanosine (m7G) METTL1, WDR4, NSUN2, DCP2, DCPS, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, 
NUDT4B, AGO2, CYFIP1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, GEMIN5, LARP1, NCBP1, 
NCBP2, NCBP3, EIF3D, EIF4A1, EIF4G3, IFIT5, LSM1, NCBP2L, SNUPN

(38-40)

Protein methylation PRMT1, PRMT2, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, PRMT8, PRMT9, SUV39H1, 
EHMT2, SETDB2, KMT2A, KMT2B, KMT2C, KMT2D, KMT2E, SETD2, NSD1, SMYD2, 
SMYD3, NSD2, NSD3, DOT1L, KMT5A, EZH2, SETD7, KDM1A, KDM1B, KDM2A, KDM2B, 
KDM3A, KDM3B, KDM4A, KDM4B, KDM4C, KDM4D, KDM4E, KDM5A, KDM5B, KDM5C, 
KDM5D, KDM6A, KDM6B, KDM7A, KDM8

(26,41)
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Construction of the nomogram

We used the “regplot” and “rms” R packages to establish 
a nomogram capable of predicting the 1-, 3-, and 5-year 
survival of patients with gastric adenocarcinoma. Score, age, 
sex, and tumor stage were incorporated into the nomogram. 
We additionally constructed a correction curve according to 
the Hosmer-Lemeshow test to evaluate the performance of 
this nomogram.

Analysis of the tumor microenvironment and clinical 
application for different risk groups

We used ssGSEA to evaluate the levels of immune cell 
infiltration among the risk groups, calculated the tumor 
microenvironment score, and compared the expression of 
immune checkpoints. Response for immunotherapy and 
chemotherapy was predicted as described above. 

Statistical analysis

All statistical tests were performed using R4.1.3, including 
the two-sample Mann-Whitney test for continuous data, 
Fisher’s exact test or chi-square test for categorical data, 
log-rank test for Kaplan-Meier curves, Hosmer-Lemeshow 
test for nomogram and Cox proportional hazards regression 
for estimating hazard ratios (HRs) and 95% confidence 
intervals (CIs). Correlation coefficients between different 
genes were estimated via Pearson correlation analysis. 
All statistical P values were two-sided, and P<0.05 was 
considered statistically significant.

Results

Genomic alterations of methylation regulators in gastric 
adenocarcinoma

We explored the incidence of somatic mutations and 
CNVs for 117 methylation regulators in patients with 
gastric adenocarcinoma. The results showed that genomic 
alterations in methylation regulators occurred in 248 
(57.54%) of 431 samples (Figure 1A). Of note, KMT2D 
(16%) was the gene with the highest mutation frequency, 
followed by KMT2C (13%), KMT2B (12%), KMT2A 
(9%), and ZC3H13 (7%). All methylation regulators had 
prevalent CNVs (Figure 1B). AGO2, IGF2BP2, NCBP2, 
SMYD3, VIRMA, and EHMT2 had significant copy number 
amplification, while EIF4G3, KDM1A, KDM7A, KMT2C, 
and EZH2 had significant copy number deletions. The 

locations of significant CNVs in methylation regulators 
on chromosomes are shown in Figure 1C. Taken together, 
these results suggested that genomic alterations may create 
abnormalities in methylation regulators and thus contribute 
to the development of gastric adenocarcinoma.

Identification of methylation-related subtypes

Based on the 117 methylation regulators’ expression profiles, 
we used an unsupervised consensus clustering approach to 
classify the patients with gastric adenocarcinoma in TCGA 
cohort. Our analysis indicated that K=2 was the best choice 
of subtypes with the highest correlation within clusters 
and the least interference between clusters (Figure 2A,2B). 
Therefore, we divided patients into two subtypes: cluster 
A and cluster B. There were 111 patients in cluster A and  
224 patients in cluster B. According to the Kaplan-Meier 
curve, patients in cluster B were found to have a better OS 
than those in cluster A (P<0.001; Figure 2C). A heatmap 
revealed differences in methylation regulators’ expression 
between cluster A and cluster B (Figure 2D), with highly 
significant difference among the subtypes. Most methylation 
regulators had a high expression level in cluster B. The 
univariate and multivariate Cox analyses were performed to 
explore the independent prognostic factor. Tumor stage and 
cluster were independent prognostic factors in univariate 
Cox analysis, while tumor stage, age and cluster were 
independent prognostic factors in multivariate Cox analysis 
(Figure S1A,S1B).

Characterization of the tumor microenvironment and 
clinical application for different subtypes

We further investigated the differences in molecular 
characteristics, tumor microenvironment, and first-line 
therapy between the two subtypes. GSVA enrichment 
analysis showed that glyoxylate and dicarboxylate 
metabolism, base excision repair, pyrimidine metabolism, 
aminoacyl tRNA biosynthesis, non-homologous end joining, 
homologous recombination, DNA replication, MMR, 
spliceosome, cell cycle, nucleotide excision repair, and RNA 
degradation were enriched in cluster B as compared with 
cluster A (Figure 3A). Most of the pathways enriched in 
cluster B were related to nucleic acid metabolism, and thus 
therapies that interfere with related biological processes may 
be more effective for patients in cluster B. Calcium signaling 
pathway, vascular smooth muscle contraction, neuroactive 
ligand-receptor interaction and glycosphingolipid 

https://cdn.amegroups.cn/static/public/JGO-23-770-Supplementary.pdf
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biosynthesis—ganglion series were enriched in cluster A. 
The result of ssGSEA showed that the infiltration of 17 
immune cell subsets were significantly different between 
the two subtypes (Figure 3B). The expression immune 
checkpoints of the two subtypes were also investigated: the 
expression of LAIR1, CD40LG, TNFSF18, CD276, CD28, 
CD40, BTNL2, CD200, CD48, and NRP1 were higher 
in cluster A, while LAG3, HHLA2, TNFRSF25, CD80, 
TNFRSF14, LGALS9, IDO1, CD274, and CTLA4 were 
higher in cluster B (Figure 3C). TIDE score was employed 
to predict the treatment effects of immunotherapy. The 
higher the TIDE score is, the less effective the immune 
checkpoint blockade (ICB) will be: cluster A showed a higher 
TIDE score than cluster B (Figure 3D). Tumor mutational 
burden (TMB) and MSI could be predictive biomarkers 
for immunotherapeutic response (46): cluster B had a 
higher level of TMB than cluster A (Figure 3E). A greater 
proportion of patients in cluster A were microsatellite-stable 
(MSS), while a greater proportion of patients in cluster B 
showed high microsatellite instability (MSI-H) (Figure 3F). 
Stemness score was used to evaluate the similarity between 
tumor cells and stem cells. A higher stemness score may 
suggest a greater invasivity and drug resistance of tumor 
cells. The stemness score of cluster B was higher than that 
of cluster A (Figure 3G). The expression of target genes with 
therapeutic promise also differed between the two subtypes. 
ERBB2 and CDH1 were highly expressed in cluster B, while 
PIK3CA and VEGFR2 were highly expressed in cluster A 
(Figure 3H-3K).

In order to investigate the sensitivity to chemotherapeutic 
agents, we calculated the IC50 of the commonly used 
anticancer medicines in gastric adenocarcinoma. We found 
that patients in in cluster B may be more sensitive to 
cisplatin, etoposide and paclitaxel (Figure S2A).

Identification of DEGs and validation of clustering

A total of 1,578 DEGs related to the two subtypes were 
identified via the “limma” R package. We performed 
functional enrichment analysis based on these DEGs. 
Gene Ontology (GO) enrichment analysis showed that 
these DEGs were linked to biological processes such as 
extracellular matrix organization and cell cycle (Figure 4A).  
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis showed a similar result of cancer-
related and cell cycle-related pathways being enriched 
(Figure 4B). The results demonstrated the significance 
of the dysregulation of methylation regulators in cancer-

related pathological process, especially the cell cycle 
process. Aiming to verify the stability of clustering, we 
used a consensus clustering approach based on the DEGs 
to classify patients again. We obtained two subtypes which 
showed a significant difference in OS (Figure 4C,4D). 
Meanwhile, we used external validation sets (GSE84437 
with OS and GSE26253 with RFS) to perform consensus 
clustering and obtained similar results (Figure 4E,4F).

Establishment of the risk model

In the uni-Cox regression analysis, we obtained 66 
methylation-related signatures correlated with patients’ 
OS (Figure 5A). After the LASSO regression analysis, 
we obtained 5 methylation-related signatures when the 
first-rank value of Log(λ) was the minimum likelihood of 
deviance (Figure 5B,5C). 

The risk score was calculated with the following 
formula: risk score = exp CHAF1A × (–1.56998715109262) 
+ exp CPNE8 ×0.870527847113839+ exp PHLDA3 × 
(–1.41564641545321) + exp SPARC ×2.02578425941195+ 
exp EHF × (–0.521746288297191).

Via calculation, we obtained the risk score of each sample 
and divided the samples into a high-risk group (n=174) and 
low-risk group (n=161). The Kaplan-Meier curves of both 
the training set (Figure 5D) and test set (Figure 5E) showed 
that the high-risk group had a significantly poorer prognosis. 
The survival status and risk curves for the training and test 
sets are shown in Figure 5F,5G. Meanwhile, this model 
was also applicable to patients with different clinical 
characteristics (stage, age, and gender) (Figure 6A-6F).  
A boxplot showed that cluster B had a significantly lower 
risk score than cluster A, which illustrated the robustness of 
the consensus clustering (Figure 6G). The risk model also 
exhibited excellent ability of classification in the external 
validation sets (GSE84437 with OS and GSE26253 with 
RFS) (Figure 6H,6I).

Evaluation of the risk model

In the uni-Cox regression analysis, the HR of the risk score 
was 1.308 and the 95% CI was 1.169−1.464 (P<0.001) 
(Figure 7A). In the multi-Cox regression analysis, the HR of 
the risk score was 1.384 and the 95% CI was 1.227−1.560 
(P<0.001) (Figure 7B). This suggested that the risk score 
could act as an independent prognostic factor. We evaluated 
the outcomes of ROC using the area under the ROC curve 
(AUC). In this model, the 1-year AUC of the risk score was 

https://cdn.amegroups.cn/static/public/JGO-23-770-Supplementary.pdf
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0.712, and the AUCs of age, gender, grade, and stage were 
0.573, 0.522, 0.556, and 0.594 respectively (Figure 7C).  
The 1-, 3-, and 5-year AUC of risk score was 0.712, 0.696, 
and 0.759 (Figure 7D). Meanwhile, the risk model had 
the highest c-index among age, gender, stage, and grade  
(Figure 7E). 

Construction of the nomogram 

We constructed a nomogram to predict the 1-, 3-, 
and 5-year survival probability of patients with gastric 
adenocarcinoma (Figure 7F). The factors in the nomogram 
included risk score, age, gender, grade, and TNM stage. We 
then drew a calibration plot to evaluate the accuracy of the 
nomogram (Figure 7G), with the results indicating that this 
nomogram had the ability to predict patients’ risks.

Characterization of the tumor microenvironment and 
therapy response for the risk model

We evaluated the infiltration levels of immune cells in 
the tumor microenvironment and found that the levels 
of activated CD4 T cells, CD56 dim natural killer cells, 
eosinophil, gamma delta T cells, immature dendritic cells, 
myeloid-derived suppressor cell (MDSC), macrophages, 
mast cells, natural killer T cells, plasmacytoid dendritic 
cells, regulatory T cells, T follicular helper cells, and type 

1 T helper cells were significantly different between the 
two groups (Figure 8A). We then focused on immune 
checkpoints, which were found to be more active in the 
high-risk group, except for TNFRSF14, LGALS9, and 
TNFSF9 (Figure 8B). The high-risk group had a high TMB 
level (Figure 8C), while the proportion of MSS and MSI-H 
also differed between the groups: a greater proportion 
of patients in the high-risk group were MSS, while a 
greater proportion of patients in the low-risk group were 
MSI-H (Figure 8D). Meanwhile, the high-risk group had 
a higher TIDE score compared with the low-risk group  
(Figure 8E). We explored the sensitivity of the two groups 
to chemotherapy and found that the IC50 of etoposide and 
paclitaxel were lower in the low-risk group (Figure S2B)  
The results of the analysis in the risk model were 
highly consistent with those in the subtypes, once again 
demonstrating the robustness of the consensus clustering 
method.

Discussion

GC is one of the most dangerous malignant tumors in 
the digestive system and is a disease of global concern (1). 
Gastric adenocarcinoma is the most common histological 
type of GC. Due to the presence of tumor heterogeneity, 
the response of patients with gastric adenocarcinoma to 
clinical treatment varies widely. Therefore, the classification 

https://cdn.amegroups.cn/static/public/JGO-23-770-Supplementary.pdf
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Figure 6 Kaplan-Meier curves for patients with different clinical characteristics and external validation. (A,B) Kaplan-Meier curves for 
patients in different stages. (C,D) Kaplan-Meier curves for patients of different ages. (E,F) Kaplan-Meier curves for patients of different 
genders. (G) The boxplot depicting the difference of patients’ risk score between two subtypes. (H) Kaplan-Meier curve of the OS 
for clustering based on GSE84437. (I) Kaplan-Meier curve of the RFS for clustering based on GSE26253. OS, overall survival; RFS, 
recurrence-free survival.

of GC subtypes is crucial for the effectiveness and accuracy 
of treatment. Methylation plays a significant role in 
the occurrence and progression of cancer, especially in 
gastrointestinal cancers (20,47). Recently, many studies 
have built models based on m6A to predict the prognosis 
of patients with cancer and achieved good results (48-50). 
However, few studies have summarized and analyzed all 
methylation types, and an investigation of the possible link 
between all methylation types and the clinical characteristics 

of gastric adenocarcinoma has yet to be reported.
In this study, we identified two distinct methylation-

related subtypes based on 117 methylation regulators. 
There were significant differences in OS, RFS, molecular 
characteristics, tumor microenvironment, immunotherapy 
sensitivity, and chemotherapy sensitivity among the different 
subtypes. According to DEGs between the two subtypes, 
we constructed a risk model to predict the prognosis of 
patients. We found 66 DEGs to be relevant to the prognosis 
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Figure 7 Evaluation of the risk model and nomogram. (A) Univariate Cox regression analysis of clinical characteristics and risk score in 
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of gastric adenocarcinoma in Cox regression analysis. 
Among these, we identified five signatures (CHAF1A, 
CPNE8, PHLDA3, SPARC, and EHF) and constructed the 
risk model using LASSO regression analysis. We calculated 
the risk score and divided patients into a high-risk group 

and low-risk group accordingly. The high-risk group had a 
worse prognosis than the low-risk group. The ROC curve 
and internal data set verification proved that this model 
had good predictive performance. The performance of this 
model was better in predicting the prognosis of patients 
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than were certain clinical indices, such as stage and grade.
The waterfall plot showed that KMT2D, KMT2C, 

KMT2B, KMT2A, and ZC3H13 had a high level of mutation 
in patients with gastric adenocarcinoma. The lysine 
methyltransferase 2 (KMT2) family proteins methylate 
the Lys-4 position of histone H3, which is an important 
regulatory region of the genome. Genomic mutations in the 
KMT2 family may serve as potential predictors of response 
to immune checkpoint therapy (ICT) in patients with a 
variety of cancers (51). This may be related to the fact that 
KMT2 family mutations confer an increased TMB, which 
enhances tumor immunogenicity (51). ZC3H13 encodes the 

zinc finger CCCH domain-containing protein 13, acting 
as a key regulator of m6A methylation by promoting m6A 
methylation of mRNAs at the 3' untranslated region (3'-
UTR) (52). ZC3H13 was found to be able to inactivate 
the Ras-ERK signaling pathway and suppress invasion 
and proliferation of colorectal cancer (53). GSVA results 
showed that pathways associated with cell cycle and 
nucleic acid processing were enriched in cluster B. Some 
methylation regulators may participate in these processes. 
Human DCP2 protein participates in the decapping of 
mRNA through specifically hydrolyzing methylated-
capped RNA to release 7-methylguanosine 5’ diphosphate 
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(m7GDP) (54). Eukaryotic translation initiation factor 4E 
(EIF4E) can regulate translation, nuclear export, and tumor 
progression by recognizing the m7G cap of mRNA (55), 
and this distinctive cap-binding activity makes it a tumor  
suppressor (55). NUDT10 is a member of the nucleoside 
diphosphate-linked moiety X (NUDIX) hydroxylases. 
Research indicates that for patients with GC, NUDT10 
expression is related to the disease stage, level of local 
invasion, and survival outcome (56). POLR2I encodes a 
subunit of RNA polymerase II, the polymerase responsible 
for synthesizing mRNA in eukaryotes and has potential 
as a novel biomarker for colorectal cancer metastasis (57). 
GTF2F2 encodes general transcription factor IIF subunit 2, 
promoting transcription elongation. It may regulate neurite 
outgrowth in neuroblastoma IMR-32 cells (58).

Patients with malignant tumors with a high-level 
of somatic mutations are more likely to benefit from 
immunotherapy (59-61). Most patients with GC have 
a high somatic mutation rate, which indicates that 
immunotherapy may be of particular benefit (62). However, 
many clinical studies showed that the response rate of GC 
patients to immunotherapy was still quite different (63,64). 
Thus, it is critical to accurately divide patients with GC 
into different subtypes to improve the response rate of 
immunotherapy. Programmed death-ligand 1 (PD-L1)  
combined positive score (CPS), MSI-H, and TMB are 
regarded as promising signatures for indicating a greater 
efficacy of immunotherapy (65,66). Methylation regulators 
are involved in epigenetic regulation and are closely related 
to the stability of the genome. Classification based on 
methylation regulators may help to identify those tumors 
most responsive to immunotherapy (hot tumors) (67). The 
results of our study indicated that patients in cluster B 
tended to have a high TMB and MSI-H status. The TIDE 
score also suggested that the immune checkpoint blockade 
(ICB) may be more effective in cluster B. Furthermore, 
immune checkpoint molecules including CD274 (PD-L1) 
and CTLA4 were highly expressed in cluster B. Thus, we 
identified cluster B as a hot tumor, and patients in cluster 
B may be more sensitive to immunotherapy. Meanwhile, 
the identification of DEGs such as ERBB2, CDH1, PIK3CA 
and VEGFR2 may help to develop personalized treatment. 
HER-2 (ERBB2), belonging to the epidermal growth factor 
receptor (EGFR) family, activates downstream pathways via 
heterodimer and tyrosine kinase autophosphorylation (68). 
Trastuzumab, the HER-2 inhibitor, is the only targeted 
drug for the first-line treatment of advanced Gastric 
Adenocarcinoma. Based on this, numerous small-molecule 

drugs targeted to HER-2 are considered to have good 
prospects (69). Abnormal activation of receptor protein 
tyrosine kinases (RPTKs)-related pathways leads to GC 
development (70). Therapies targeting the RPTKs such as 
PIK3CA and PTEN represent promising treatments for GC. 
EGFR and VEGFR2 can be targeted by nimotuzumab and 
AZD4547, and this approach has been shown to achieve 
good therapeutic effect (70).

Some limitations to our study should be noted. All 
samples in our study were collected retrospectively from 
public databases, and our results still need to be validated 
in large-scale prospective cohorts. Furthermore, despite 
efforts to ensure its accuracy, some defects and deficiencies 
may be present in the risk model. Relevant research in the 
field of molecular biology is ongoing, and the model should 
be modified according to the most up-to-date findings.

Conclusions

Our study clarified the potential clinical application of 
methylation regulators in gastric adenocarcinoma from 
a new perspective. Classification based on methylation 
regulators could be applied to identify more effective 
treatments and build models to predict the prognosis of 
patients with gastric adenocarcinoma. Grouping research 
based on our study may promote the development of 
precision medicine in gastric adenocarcinoma and thus 
potentially benefit these patients. 
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